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1 Introduction.
The aim of this note is to provide an announcement of the results of the paper
[9]. All results announced in this note are proved with additional descriptions
in the full paper [9].

In differential geometry and singularity theory of differentiable $mapping_{S_{\backslash }}$.
we often encounter the classification problem inducing several moduli. We
treat a class of mappings which forms an infinite dimensional space and, as
a result of the classification, we obtain the quotient space which is of finite
or infinite dimension. In this paper we introduce the general method to give
an differentiable structures on such a quotient space.

The method to provide a (differentiable $structure’$)
$to$ a mapping space

quotient (a moduli space) should be not unique $[2][16]$ . For instance, consider
the problem how to define a differentiable structure on a mapping space
a$\infty$ ( $N_{:}$ A4) itself for $c^{\gamma}\propto$ manifolds $N$ and Al. Then one of thc $s’t_{dJ}\iota da\iota\cdot d$

methods seems to define, first, Fr\’echet differentiable functions on the Banach
manifolds $C^{r}$ (N,. $M$ ), for each finite $r$ , and regard $C^{\infty}(N, M)$ as the inverse
limit of $C^{r}(N, M)$ to define the structure sheaf of differentiable funetions on
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it. However we apply another method in [9]: We regard Frechet differential of
a functional as a kind of “total differential”. Then we could consider, instead,
“partial $differentia1_{S}’$ ) Namely, to define $C^{\infty}$ functions on $C^{\infty}(N, M)$ , first
we define the notion of finite dimensional $C^{\infty}$ families in $C^{\infty}(N, M)$ by the
very classical and natural manner. Then we call a function on $C^{\infty}(N, M)$ of
class $C^{\infty}$ if its restriction to any finite dimensional family in $C^{\infty}(N, M)$ is of
class $C^{\infty}$ in the ordinary sense.

First we describe our idea in \S 2 and \S 3. Then we explain the case of
quotients of finite dimensional manifolds in \S 4. In 5, we give the general
definition of differentiable structures on mapping space quotients. In \S 6,
we apply our method to treat the classification problem of plane curves by
symplectomorphisms.

2 What are structures?
Let $\{X_{\nu}\}$ be a family of sets. The family $X_{\nu}$ is supposed to consist of quo-
tients of subspaces of a topological space, in particular a mapping space
$C^{\infty}(N_{j}\Lambda’I)$ for manifolds $N$ , Al.

To define a }‘differentiable structure“ on each $X_{\nu}$ from $\{X_{\nu}\}$ , it is sufficient
to give a criterion, for each pair $X_{\nu},$ $X_{\nu’},$ $X_{\nu}$ and $X_{\nu’}$ are ${}^{t}diffeomorphic’$ .
For that it is sufficient $t_{\}}o$ give a criterion that a mapping $\Phi$ : $X_{l\text{ノ}}arrow X_{\nu’}$ is

$\mathfrak{t}diff_{C^{1}1C^{\backslash }11}tiab1_{C^{\backslash ^{=}}}^{i}$ or not.
Then, for example, how should we define that a given mapping $\Phi$ :

$C^{\infty}(N_{J}.M)arrow C^{x}(L, M^{r})$ ( $L,$ $W$ are manifolds) is “differentiable”?
Let $\Phi$ : $C^{\infty}(N, M)arrow C^{\infty}(L, W)$ be a mapping. Then, for each differen-

tiable mapping $f\in C^{\infty}(N, M)$ , there corresponds a differentiable mapping
$\Phi(f)\in C^{\infty}(L, \dagger\phi^{r})$ . Now we propose to call $\Phi$ differentiable if, for any (dif-

ferentiable” family $h_{\lambda}\in C^{\infty}(N_{:}\Lambda’I))\Phi(h_{\lambda})\in C^{\infty}(L, W)$ is “differentiable“,
where the “parameter“ $\lambda$ runs over a finite dimensional manifold A. In fact
moreover we demand that $\Phi$ is continuous. As an ordinary term in global
analysis and differential $topologv\backslash$

’ we call $h_{\lambda}$ : $Narrow M,$ $(\lambda\in\Lambda)$ is a $di.$f-
ferentiable family if there exists a differentiable mapping $H$ : $\Lambda\cross Narrow M$

which satisfies $h_{\lambda}(?\cdot)=H(\lambda, x)$ for ca($:h(\lambda.:r)\in\Lambda\cross N$ . Then the mapping
$h:\Lambdaarrow C^{\infty}(N, \Lambda I)$ defined by $h(\lambda)=h_{\lambda}$ is called differentiable naturally.

Then for $\Phi(h_{\lambda})\in C^{\infty}(L, W)$ , we can take a differentiable mapping $G$ :
$\Lambda\cross Larrow W$ with $\Phi(h_{\lambda})(x’)=G(\lambda,:\iota’)_{:}(\lambda\backslash x’)\in L\cross W$ . Therefore we can
take the derivative of $\Phi(h_{\lambda})$ with respect t,o $\lambda$ .
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3Differentiability along finite dimensional di-
rections.

Consider another example. How to define the differcnt $i$ abilitv of a func-
tional $\Psi$ : $C^{\infty}(L, W)arrow \mathbb{R}$ ? The real value $\Psi(g)$ is determined for each
rnapping $g\in C^{\infty}(L, W)$ . The function $\Psi(g_{\lambda})$ of variablc $\lambda$ is determined
for Pnite dimensional differentiable family $g_{\lambda}\in C^{\infty}(L\cdot, W).\lambda\in\Lambda$ . Then
we call a mapping $\Psi$ : $C^{x}(L_{?}W)arrow \mathbb{R}$ differentiable if the fUnction $\Psi(g_{\lambda})$

is differentiable on $\lambda$ . We regard each $g_{\lambda}\in C^{\infty}(L_{:}W)$ as a point in the
space $C^{\infty}(L, W)$ . Then the family of mapping $g_{\lambda}\in C^{\backslash \infty}(L\cdot, \dagger\psi)$ is regarded
as a finite dimensional subspace in $C^{\infty}(L, W)$ . The family $\Psi(g_{\lambda})$ is the re-
striction of $\Psi$ to there, and we look at the differentiability of $\Psi(g_{\lambda})$ in the
ordinary sense. The differentiability we are going to define may be called the
differentiability along finite dimensional directions.

If $\Phi$ : $C^{\infty}(N, \Lambda I)arrow C^{\infty}(L’.W)$ and $\Psi$ : $C^{\infty}(L, lf/)arrow \mathbb{R}$ are differentiable
then the composition $\Psi 0\Phi$ : $C^{\infty}(N, M)arrow \mathbb{R}$ is differentiable. If fact, for any
diffcrentiable family $h_{\lambda}\in C^{\infty}(N, \Lambda[)’$. we have $(\Psi\circ\Phi)(h_{\lambda})=\Psi(\Phi(h_{\lambda}))$ and
$\Phi$ : $C^{\infty}(N, M)arrow C^{\infty}(L, W)$ is differentiable, we see $\Phi(h_{\lambda})$ is differentiable
on $\lambda$ . Since $\Psi$ is differentiable, $\Psi(\Phi(h_{\lambda}))$ is differentiable, so is $(\Psi\circ\Phi)(h_{\lambda})$

on $\lambda$ .
$\backslash t^{\gamma}e$ have defined that $\Psi$ : $C^{\infty}(L, W)arrow \mathbb{R}$ is differentiable. On t.he other

hand. since $\mathbb{R}$ is identified with $C^{\infty}(\{pt\}, \mathbb{R})$ , we can regard $\Psi$ : $C^{\infty}(L.M^{A})arrow$

$C^{\infty}(pt, \mathbb{R})$ . Then $\Psi$ is differentiable in the sense of the first definition. In fact,
for any differentiable family $g_{\lambda}\in C^{\infty}(L, W)_{:}\Psi(g_{\lambda})$ is differentiable on $\lambda$ . If
we define $H$ : $\Lambda\cross\{pt\}arrow \mathbb{R}$ by $H$ ( $\lambda\}$ pt) $=\Psi(g_{\lambda})\backslash$

, then $H$ is differentiable.
Bv definition, $\Psi$ : $C^{\infty}(L, W)arrow C^{\infty}(\{pt\}, \mathbb{R})$ is differentiable.

4 Differential structure ofmanifold quotients.
First we start with the case that thc $\iota\iota 1a\iota$ )$pi_{Il}g$ space is a subset, of a finite
dimensional manifold $N$ which will be identified with the space $C^{x}(\{pt\}, N)$ .

Let $N$ be a differentiable manifold, $S$ a subset of $N,$ $\mathfrak{c}aI\downarrow d\sim a$ cquivalence
relation on $S$ . Assume $\Lambda,$ $M$ and $Q$ are also differentiable manifolds which
play a role of “test spaces}’

Then the differentiability is introduced inductively as follows:
(1) We call a mapping $h:\Lambdaarrow S$ from a manifold to a subset of a lnanifold

differentiable if the composed mapping $h$ : $\Lambdaarrow Sarrow N$ is a differentiable
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mapping from the manifold A to the manifold $N$ .
(2) We call a mapping $k$ : $Sarrow Q$ from a subset of a manifold to a

manifold differentiable if $k$ is continuos, and, for any differentiable mapping
$h$ : $\Lambdaarrow S$ in the sense of (1), the composed mapping $koh$ : $\Lambdaarrow Q$ is a
differentiable mapping from thc manifold A to the manifold $Q$ .

(3) We call a mapping $\ell$ : $S/\simarrow Q$ from a quotient of a subset of a
manifold to a manifold $diffe7entiable$ if thc composed mapping $lo\pi$ : $Sarrow$

$S/\simarrow Q$ is differentiable in the sense of (2).
(4) We call a mapping $m$ : $\Lambdaarrow S/\sim$ from a manifold to a quotient

of a subset of a manifold differentiabte if, for any differentiable mapping
$\ell$ : $Uarrow Q$ in the sense of (3), from an open subset $\subseteq S/\sim_{7}$ the composed
mapping $lom:m^{-1}(U)arrow Q$ is a differentiable mapping from the manifold
$m^{-1}(U)$ to the manifold $Q$ .

More generally:
(5) We call a mapping $\varphi$ : $S/\simarrow T/\approxarrow T\subseteq M$ from a quotient of

a subset of a manifold to another quotient of a subset of a manifold differ-
entiable if $\varphi$ is continuous and, for any differentiable mapping $p$ : $U(\subseteq T/\approx$

$)arrow Q$ in t,he sense of (3), the coniposed $IX1\dot{r}1PI$)$ing\ell\circ\varphi$ : $\varphi^{-1}(U)arrow Q$ is
differentiable in the sense of (3),

(6) A $lnappir$)$g\varphi$ : $S/\simarrow T/\approx$ is called a diffeomorphism if $\varphi$ is
differentiable in the sense of (5), bijective, and the inverse mapping $\varphi^{-1}$ :
$T/\approxarrow S/\sim is$ differentiable in the sense of (5).

(7) The quitient spaces $S/\sim$ and $T/\approx$ are called diffeomorphic if there
exists a diffeomorphism $\backslash \rho$ : $S/\simarrow T/\approx$ .

Remark 4.1 There is a different definition for the stage (2) (cf. [15]): A
mapping $k:Sarrow Q$ is called differentiable if there exists an open neighbor-
hood $U$ in $N$ and a differentiable mapping $\overline{k}$ : $Uarrow Q$ satisfying $\overline{k}|s=k$ .
Compared with this definition which is based on extensions of mappings on
$S$

(

our definition is based on parametrizations of $S$ and may be called a
parametric-minded” definition.

Example 4.2 (Differentiable structure on orbifolds). Let $G$ be a finite sub-
group of $GL(n, \mathbb{R})$ which acts on $\mathbb{R}^{\gamma 1}$

. naturally.
By the above general theory, we can endow with the (orbifold’ $\mathbb{R}^{n}/G$ the

ordinary differentiable structure.

Example 4.3 The quotient space $\mathbb{R}/\sim is$ diffeomorphic to $\mathbb{R}_{\geq 0},$ $where\sim is$

an equivalence relation oI1 $\mathbb{R}$ defined by that $\cdot$ $\backslash x\sim x’$ if and only if $x’=\pm:\mathfrak{r}$ .
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In fact $\varphi$ : $\mathbb{R}/\simarrow \mathbb{R}\geq(),$ $\varphi([x])=x^{2}$ is a diffeomorphism. For, $\ell’\circ\pi$ :
$\mathbb{R}arrow \mathbb{R}\geq 0,$ $(\varphi\circ\pi)(x)=x^{2}$ is a continuous differentiable mapping by (1). we
see $\varphi$ is a differentiable mapping by (3). The inverse mapping is given by
$\psi$ : $\mathbb{R}\geq 0arrow \mathbb{R}/\sim,$ $\psi(y)=[\sqrt{y}]$ . To see $\psi$ is differentiable, we check, based
on (5). for any differentiablc mapping $p$ : $\mathbb{R}/\simarrow Q$ , that, $p_{\circ’}\emptyset$ : $\mathbb{R}\geq 0arrow Q$

is differentiable. By (3), $lo\pi$ : $\mathbb{R}arrow Q$ is differentiable. Since $(l\circ\pi)(x)=$

$(\ell\circ\pi)(-\tau)$ , we see there exists a differentiable mapping $\rho$ : $\mathbb{R}arrow Q$ with
$(l\circ\pi)(x)=\rho(x^{2})$ . Then $(\ell\circ\psi)(y)=l([\sqrt{y}])=(\ell\circ\pi)(\sqrt{y})=\rho(y)$ . Thus

$\ell\circ\cdot\psi$ is differentiable. $\square$

Example 4.4 We give the equivalence relation $\sim$ on $\mathbb{R}^{2}$ by that $(x, y)\sim$

$(x’, y’)$ if and only if $(x’, y’)=\pm(\lambda\cdot:y)$ . Then we see $R^{2}/\sim is$ homeomorphic
to $\mathbb{R}^{2}$ but $\mathbb{R}^{2}/\sim is$ not diffeomorphic to $\mathbb{R}^{2}$ .

The mapping $s$ : $\mathbb{R}^{2}/\simarrow \mathbb{R}^{2},$ $s([(x, y)])=(:\epsilon^{2}-y^{2},2\prime xy)$ is a home-
omorphism. However $s$ is not a diffeomorphism. Moreover we $see$ that
there exists no diffeomorphism between $\mathbb{R}^{2}/\sim$ and $\mathbb{R}^{2}$ . To see that. sup-
pose that there exist a differentiable mapping $\psi$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}/\sim$ and a dif-
ferentiable mapping $\varphi$ : $\mathbb{R}^{2}/\simarrow \mathbb{R}^{2}satisfv\backslash$ ing $\psi 0_{t}\rho=$ id. $\varphi 0\psi=$ id.
Since $\varphi\circ\pi$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ is differentiable and invariant under the transforma-
tion $(x, y)rightarrow(-x, -y)$ , there exists a differentiable mapping $\rho$ : $\mathbb{R}^{3}arrow \mathbb{R}^{2}$

satisfying $(’\Psi\prime 0\pi)(x, y)=p(x^{2}, xy, y^{2})$ . Therefore there exists a differen-
tiable mapping $\Phi$ : $\mathbb{R}^{2}/\simarrow \mathbb{R}^{3}\backslash$ with $(\Phi 0\pi)(x, y)=(x^{2}, xy.y^{2})$ so with
$\varphi\circ\pi=\rho\circ\Phi\circ\pi$ . Since $\pi$ is a surjective, we have $\varphi=\rho 0\Phi$ . Therefore
id $=\varphi\cdot\iota_{l}\iota^{l,}=\rho\circ(\Phi\circ\psi):\mathbb{R}^{2}arrow \mathbb{R}^{2}$ . However the image of $\Psi$ $:=\Phi\circ\cdot\psi$ : $\mathbb{R}^{2}arrow R^{3}$

is contained in $\{(x^{2}, xy$
ノ

$.y^{2})|(x, y)\in \mathbb{R}^{2}\}=$ { $(X,$ $Y,$ $Z)\in \mathbb{R}^{3}|$ XZ-Y2 $=0$}
and thus $rank_{0}\Psi\leq 1$ . This leads a contradiction. $\square$

5 Differentiable structure on a mapping space
quotient.

We denote by $C^{\lambda}(N, M)$ the space of $C^{\infty}$ mappings from a (finite dimen-
sional) $c^{Y}’\infty$ manifold $N$ to a (finite dimensional) $C^{x}$ manifold A $I$ . In this
section, also $P,$ $Q,$ $L,$ $K$ always designate (finite dimensional) $C^{\alpha_{-}}$ manifolds
respect ively.

Let $X\subseteq C^{\infty}(N, M)$ be a subset. Then, such a set $X$ is a mapping
space. Lct $X/\sim$ be any quotient of $X$ under an cquivalence relation $\sim Ol1$

X. We give on the quotient space $X/\sim the$ quotient topology of $X$ with the
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relative topology of the $C^{\infty}$ topology on $C^{\infty}(N, M)$ , not Whitney (fine) $C^{\infty}$

topology. Such space is called a mappmg.space quotient. Then we will endow,
in the following seven steps, a differentiable structure with the mapping space
quotient $X$ , depending just on the representation $X/\simarrow X\subseteq C^{x}(N, M)$ .
We note that the notion of differentiable structures can provided just by
defining the notion of diffeomorphisms. Therefore our goal is to define the
$Ilotio\iota 1$ of $:(diffeoIno\iota\cdot phis\iota IlS^{\prime:}$ .

(i) We call a mapping $h$ : $Parrow X$ differentiable (or $C^{\infty}$ ) if there exists
a $C^{\infty}$ mapping (between manifolds) $H$ : $P\cross Narrow M$ satisfying $H(p, x)=$
$h(p)(x)\in M,$ $(p\in P, x\in N)$ .

(ii) We call a mapping $k$ : $Xarrow Q$ differentiable if $k$ is a continuous
mapping and, for any differentiable mapping $h:Parrow X$ in the sense of (i),
the composition $k\circ h:Parrow Q$ is a $C^{\infty}$ mapping between manifolds.

Now, $if\sim is$ an equivalence relation on a mapping space $X$ , then we get
the quotient space $X/\sim$ . Then the canonical projection $\pi=\pi_{X}$ : $Xarrow X/\sim$

is defined by $\pi(x)=[x]$ (the $eq_{f1}ivalcnco$ class of $x$ ).
(iii) We call a mapping $l$ : $X/\simarrow Q$ differentiable if the composition

$\ell 0\pi$ : $Xarrow Q$ with the projection $\pi$ is differentiable in the sense of (ii).
(iv) We call a mapping $\varphi$ : $X/\simarrow$ } $/\approx h\cdot om$ a mapping space quotient

$X/\sim to$ another mapping spacc quotient $Y/\approxarrow Y\subseteq C^{\infty}(\Gamma_{\lrcorner}, K)$ differentiable
if $\varphi$ is a continuous mapping and, for any open subset $U\subseteq Y/\approx(arrow\pi_{Y}^{-1}(U)\subseteq$

$C^{\infty}(L, K))$ and for any differentiable mapping $\ell$ : $U$ $arrow Q$ in the sense of
(iii), the composition $p_{\circ\varphi}$ : $\forall^{\prime(U)(arrow\pi_{X}^{-1}(\varphi^{-1}}’\cdot\wedge^{-1}(U))\subseteq C^{\infty}(N, M))arrow Q$ is
differentiable in the sense of (iii).

We call a mapping $\varphi:X/\simarrow Y/\approx a$ diffeomorphism if $\varphi$ is differentiable
in the sense of (iv), $\varphi$ is a bijection and the inverse mapping $\varphi^{-1}$ : $Y/\approxarrow$

$X/\sim is$ also differentiable in the sense of $(i_{1^{\Gamma}})-$ Moreover we call two mapping
space quotients $X/\sim\prime r\iota ndY/\approx d_{7fl\cdot f\prime}e,orno7I^{J}/.\iota c$: if $t1_{1(}\backslash r\epsilon_{l}^{\backslash }$ exists a diffeomorphisIn
$\varphi$ : $X/\simarrow Y/\approx in$ the sense of (iv).

Now we give several related results: First, form the definition above,
we immediately have that the differentiability is a local notion. Also we
observe that, for any $C^{\infty}$ manifoId $P,$ $P$ is diffeomorphic to $C^{\infty}(\{pt\}.P)$ .
We announce useful lemmata (shown in [9]) which follow from the definition:

Lemma 5.1 If $h$ : $Parrow X$ is differentiable in the sense of (i), then $\pi oh$ :
$Parrow X/\sim’ is$ differentiablc in the sensc of (iv),
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Lemma 5.2 The following two conditions are equivalent to each other:
(1) $\varphi$ : $X/\simarrow Y/\approx is$ differentiable in the sense of (iv).
(2) $\varphi$ : $X/\simarrow Y/\approx is$ a continuous mapping and, for any differentiable

mapping $h:Parrow X$ in the sense of (i), $\varphi 0\pi oh:Parrow Y/\approx is$ differentiable
in the sense of (iv).

Lemma 5.3 A differentiable mapping $h:Parrow X\subseteq C^{\infty}(N, M)$ in the sense
of (i) is a continuous mapping.

Lemma 5.3 does not hold for the Whitney $c\propto$ topology. This is the
$re$ason we adopt the $C^{\infty}$ topology.

Lemma 5.4 (1) The identity mapping id : $X/\simarrow X/\sim is$ differentiable.
(2) Let $\varphi$ : $X/\simarrow Y/\approx and$ $\psi$ : $Y/\approxarrow Z/\equiv be$ differentiable mappings.
Then the composition $\psi 0\varphi$ : $X/\simarrow Z/\equiv is$ differentiable.

Lemma 5.5 (1) $Tf\iota e$ quotient mappi$ng\pi$ : $Xarrow X/\sim is$ differentiable. (2)
A mapping $\varphi$ : $X/\simarrow Y/\approx is$ differentiable if and only if $\varphi 0\pi$ : $Xarrow Y/\approx$

is differentiable.

Lemma 5.6 If $N$ and $N’$ are diffeomorphic, and if $M$ and $M’$ are diffeo-
morphie. th $(j\gamma|, Cf^{\propto\infty}(N_{:}M)$ and $C^{\infty}(N’, M‘)$ are diffeomorphic.

6 An application to the moduli problem of
plane curves on the symplectic plane.

We announce the results obtained in [9].
Let $f$ : $S^{1}arrow \mathbb{R}^{2}$ be a generic immersion of the circle $S^{1}$ in the symplectic

plane $\mathbb{R}^{2}$ with the standard symplectic (area) form $\omega_{0}=dx\wedge dy$ . Clearly
the $are_{C}\urcorner s$ of domains surrounded by the curve $f(S^{1})$ are invariant under
$symp1_{C_{!}^{\backslash }}ct,omorp^{h]_{L}}\backslash \iota n\backslash$ . Thus, denoting the first Bet,ti number of $f\cdot(S^{1})$ by $r$ ,
we see the cuIves isotopic to $f$ have r-dimensional symplectic moduli.

Wc denotc by C.,’x $(S^{1}, \mathbb{R}^{2})$ thc space of $C^{\infty}$ mappings from $S^{1}$ to $\mathbb{R}^{2}$ , which
has the natural action (from iright’) of the group $Diff^{\vdash}(S^{1})$ consisting of
$orientation- preservi_{ll}g$ diffeomorphisms on $S^{1}$ . Thus $C^{\infty}(S_{7}^{1}\mathbb{R}^{2})/Diff^{+}(S^{1})$

denotes the space of oriented curves. The space $C^{\infty}(S^{1}, \mathbb{R}^{2})/Diff^{+}(S^{1})$ has
the action (from $:_{1_{t}>ft’)}$

) of the group $Diff^{+}(\mathbb{R}^{2})$ (resp. Symp$(\mathbb{R}^{2})$ ) consisting of
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orientation-preserving diffeomorphisms (resp. symplectomorphisms) on $\mathbb{R}^{2}$ .

For each oriented curve $f\in C^{\infty}(S^{1}, \mathbb{R}^{2})/Difl^{+}(S^{1})$ , we denote by $Dif^{\vdash}(\mathbb{R}^{2})f$

the orbit through $f$ via the action of $Diff^{+}(\mathbb{R}^{2})$ . Thus $Dif^{\vdash}(\mathbb{R}^{2})f$ consists of
oriented curves of form $\tau\circ f$ for orientation preserving diffeomorphisms $\tau$ .
Similarly the spacc $Diff^{+}(\mathbb{R}^{2})\int/Sy_{I}np(\mathbb{R}^{2})$ means the quotient space by the
Symp $(\mathbb{R}^{2})$-action of $Diff^{+}(\mathbb{R}^{2})f$ in $C^{\infty}(S‘, \mathbb{R}^{2})/Diff^{+}(S^{1})$ .

We call thc quotient space $Diff^{+}(\mathbb{R}^{2})f/Sy\iota np(\mathbb{R}^{2})$ the symplectic moduli
space of $f$ and denote it by $\mathcal{M}_{s\}^{\prime mp}}(f)$ . It describes the symplectic classifi-
cation of a fixed diffeomorphism class of a plane curve.

To study the moduli space minutely, we label the r-domains surrounded
by the curve $f(S^{1})$ as $D_{1},$ $D_{2\cdots\prime}.D,$. for a $f\in C^{\infty}(S^{1}, \mathbb{R}^{2})/Diff^{+}(S^{1})$ . Then,
for each $\rho\in Diff^{+}(\mathbb{R}^{2})$ , we can label bounded r-domains surrounded by
$\underline{(p}of)(S^{1})$ as $p(D_{1}),$ $\rho(D_{2}),$

$\ldots$ : $\rho(D_{r})$ induced by the labelling for $f$ . We set
$\mathcal{M}_{syrv\iota p}(\int)=Diff^{+}(\mathbb{R}^{2})/\sim_{f}$ , where we call $p,$ $\rho’\in Diff^{\vdash}(\mathbb{R}^{2})$ are equivalent
via $f$ , and write $\rho\sim_{f}p’$ , if the exists a symplectomorphism $\tau$ such that
$\tau\circ\rho\circ f=\rho’\circ f$ up to $Diff^{+}\underline{(S}^{1}$ ) and prcserving thc given labeIling: $\tau\rho(O_{j})=$

$p’(D_{j}),$ $1\leq j\leq r$ . We call $\mathcal{M}_{sy\iota np}(f)$ the labeiled symplectic moduli space of
$f$ .

Then we have:

Theorem 6.1 If $f\cdot\in C^{\infty}(S^{1}, \mathbb{R}^{2})/Diff^{+}(S^{1}\underline{)}$ is a generic labelled immersion,
then the labelled symplectic $modt\iota li$ space $\mathcal{M}_{synp}1(f)$ is diffeomorphic to the
$r\cdot c^{J}Iati^{r}vc^{J}$ cohomology space $H^{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R}$ ) $\cong \mathbb{R}^{r}$ .

The labelled symplectic moduli space $\overline{\mathcal{M}}_{symp}(f)$ has a canonical differ-
entiable structure, We claim in Theorem 6.1 that the labelled symplectic
moduli space of $f$ with the differentiable structure is diffeomorphic to $\mathbb{R}^{r}$ ,
$r=din1_{R}H^{2}(\mathbb{R}_{J}^{2}../(\iota\^{Y1}).\mathbb{R})$ . Actually we are going to give a diffeoinorphism
between $\mathcal{M}_{symp}(f)$ and the positive cone in $H^{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R}$ ). Note that the
relative cohomology group $H^{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R}$ ) over $\mathbb{R}$ is isomorphic to the vec-
tor space $H_{2}( \mathbb{R}^{2}.\int(S^{1}), \mathbb{R})^{*}=Hom_{\mathbb{R}}(H_{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R}$ ) $,$

$\mathbb{R}$ ). The orientation
of $\mathbb{R}^{2}$ and the labelling of the bounded domains surrounded by $f(S^{1})$ give
the canonical basis $[D_{1}],$ $[D_{2}],$

$\ldots$ , $[D_{7}.]$ of $H_{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R}$ ). The positive cone
$H^{2}(\mathbb{R}^{2}, f(S^{t}),$ $\mathbb{R}$ ) $>0$ of $H^{2}(\mathbb{R}^{2}, f(S^{1}),\cdot \mathbb{R})\cong H_{2}(\mathbb{R}^{2}, f(S ‘). \mathbb{R})^{*}$ is defined by

$H^{2}(\mathbb{R}^{2}.f(S^{1}), \mathbb{R})>0=\{\alpha\in H^{2}(\mathbb{R}^{2}, f(S^{1})_{:}\mathbb{R})|\alpha([D_{j}])>0,1\leq j\leq r\}$ .
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The diffeomorphism of $\overline{\mathcal{M}}_{sy\uparrow\cdot\iota\iota p}(f)$ and $H^{2}(\mathbb{R}^{2})f\cdot(S^{1}),$ $\mathbb{R}$ ) $>0$ is given actu-
ally by the mapping

$\varphi:\overline{\mathcal{M}}_{syp}111(f)arrow H^{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R}$ ) $>0$ ,

defined by

$\varphi$ : $[ \tau]\mapsto([D_{j}]\mapsto\int_{\tau(D_{j})}\omega_{0})$ .

$1\leq j\leq r,$ $\omega_{0}=d\uparrow\wedge dy$ .
The symplectic moduli space $\mathcal{M}_{symp}(f\cdot)=Diff^{+}(\mathbb{R}^{2})f\cdot/Symp(\mathbb{R}^{2})$ is ob-

tained as a quotient of $\mathcal{M}_{sy\iota np}(f)$ . A symmetry of a generic immersion
$f$ : $S^{1}arrow \mathbb{R}^{2}$ is an orientation preservirxg diffeomorphism $\rho$ : $\mathbb{R}^{2}arrow \mathbb{R}^{2}$ such
that $pof=fo\sigma$ for sonie $\sigma\in Diff^{+}(S^{1})$ . The group of symmetries of $f$

induces a subgroup $G_{f}$ of the permutation group $S_{r}$ of the r-bounded do-
mains of $\mathbb{R}^{2}\backslash f(S^{1})$ . Then $G_{f}$ naturally acts on $H_{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R}$ ) and on
$H_{2}(\mathbb{R}^{2}, f(S^{1}),$ $\mathbb{R})^{*}\cong H^{2}(\mathbb{R}^{2}, f\cdot(S^{1}),$ $\mathbb{R}$ ) $\cong \mathbb{R}^{r}$ .

By Theorem 6.1, we have the following:

Corollary 6.2 The symplectic moduli space $\mathcal{M}_{symp}(f)$ is diffeomorphic to
the finite quotient $\mathbb{R}^{r}/G_{f}$ of $\mathbb{R}^{r}$ .

Theorem 6.1 is generalised to more $si_{I1}gula\iota$ . curves. To state the geuer-
alisation, first we treat the local case.

A multi-germ $f_{y0}$ : $(S_{:}^{1}S)arrow(\mathbb{R}^{2}, y_{0})$ at a finite set $S\subset S^{1}$ is called of
finite codimension (or A-finite) in the sense of Mather if $f_{y_{0}}$ is determined
by its finite jet up to diffeomorphisms (or $\mathcal{A}$ equivalence). See [14][17]. Then
the local image of $f_{y0}$ divides $(\mathbb{R}^{2},0)$ into several domains. We label them.
Then, for any $\rho\in Diff^{+}(\mathbb{R}^{2}, y_{0})’$. the labelling of $\rho of$ is induced. Two
diffeomorphism-germs $\rho,$

$\rho^{f}\in Diff^{+}(\mathbb{R}^{2}, y_{0})$ are equivalent via $f_{yo}$ , and write
$p\sim_{f}p’$ , if there exists a symplectomorphism-germ $\tau\in Symp(\mathbb{R}^{2}.0)$ such
that $\tau\dot{\circ}pof_{y0}=p’of_{y0}$ up to diffeomorphism-germs of ( $S^{1},$ $S\rangle$ fixing $S$

pointwise, and $\tau$ preserves the labelling. Thus we define the locaf labelled
symplectic moduli spacc by

$\overline{\mathcal{M}}_{symp}(\int_{y()})$ $:=Diff^{+}(\mathbb{R}^{2}, y_{0})/\sim_{f}$ .

Moreover we define the local symplectic moduli space

$\mathcal{M}_{syrnp}(f_{10}/)$ $:=Diff^{+}(\mathbb{R}^{2}, y_{0})f/Symp(\mathbb{R}^{2}, y_{0})$ .
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Note that the space of map-germs

$C^{\infty}((N, S)$ , (A $I,y_{0}$ )) $:=$ { $f$
. : $(N,$ $S)arrow(M,$ $y_{0})C^{\infty}$ map-germ$s$}

is a quotient space of $(_{\text{ノ}}^{\gamma}\infty(N, \Lambda f)$ , so also it has the differentiable structure.
In partlcular $\mathcal{M}_{symp}(f_{y0})$ and $\mathcal{M}_{symp}(f_{\iota’ 0})$ ar$e$ mapping space quotient have
natural $diffe\underline{re}ntiable$ structures. Moreover there exists the canonical pro-
jection $\pi$ : $\mathcal{M}_{syrr\downarrow p}(f_{y0})arrow \mathcal{M}_{symp}(f_{J0}|)$ defined by $\pi(\tau)=\tau of$ modulo
$Diff^{+}(S^{1}, S)$ , the diffeomorphism-germs of $S^{1}$ at $S$ fixing $S$ pointwise.

Now returning to the global ease, we $cons\ddagger d\backslash .\cdot$ an oriented curve $f$ :
$Slarrow \mathbb{R}^{2}$ up to $Diff^{+}(S$ ‘

$)$ , namely, $f\in C^{\infty}(S^{1}, \mathbb{R}^{2})/Diff^{+}(S$ “
$)$ . Then we

call $f$
.
of finite type if, for some (and for any) reprcscntative $\int:S^{1}arrow \mathbb{R}^{2}$ of

$f\in C^{\infty}(S^{1}, \mathbb{R}^{2})/Dif^{\vdash}(S^{1})$ , for some (and any) representative $f$ : $S^{1}arrow \mathbb{R}^{2}$ of
$f.\in C^{\infty}(S^{1}, \mathbb{R}^{2})/DiH^{+}(S^{1})$ , except for a finite nmnber of points $y_{0}\in f(S^{1})$ ,
the multi-germ $f_{y_{0}}$ : $(S_{:}^{1}f^{-1}(y_{0}))arrow(\mathbb{R}^{2}, y_{0})$ is a stable multi-germ, namely
a single immersion-germ or a transversal two-immersion-germ, and, even if
$f_{:\downarrow J0}$ is unstable, $f^{-1}(y_{(1})$ is a finite set in $S^{1}$ and $f_{:/0}I$ is of finite codimen-
sion. The condition means roughly that the $Diff^{+}(\mathbb{R}^{2})$ -orbit through $f$ in
$C^{\infty}(S^{1}, \mathbb{R}^{2})/Diff^{+}(S^{1})$ is of finite codimension.

If $f\in C^{\infty}(S^{1}, \mathbb{R}^{2})/Difi^{+}(S^{1})$ is of finite tvpe. then $f(S$ ‘
$)$ divides $\mathbb{R}^{2}$ into

a finite number of boundod domains and one unbounded domain. Then we
define the the labelling of $f$ as the labelling of bounded domains $D_{1},$

$\ldots,$
$D_{r}$

$\dot{c}tI1(1$ the rnultiple or singular $\tau^{r_{\dot{\zeta}}}\iota 1_{tlt^{\backslash \iota}}’;y_{1},$

$\ldots$ , $\prime p/s$ of $f$

. in $\mathbb{R}^{2}$ .
$\backslash 1^{\gamma}e$ define, similarly to the case of generic immersions, the labelled sym-

plectic moduli space of plane curvc $f$ of finitc typc $t\rangle y$

$\overline{\mathcal{M}}_{symp}(f):=Diff^{+}(\mathbb{R}^{2})/\sim_{f_{\text{ノ}}}$.

where $p\sim_{f}\rho’$ if $\tau\circ\rho\circ f=p^{l}\circ f$ for some $\tau\in Symp(\mathbb{R}^{2})$ preserving the
labellings induced by $\rho$ and $p’$ .

Moreover we define the symplectic moduli space of plane curve $f$ of finite
type by

$\mathcal{M}_{symp}(f):=Diff^{+}(\mathbb{R}^{2})f/Symp(\mathbb{R}^{2})$ .

Theorem 6.3 (Localisation Theorem) If $f\in C^{x}(S^{1}, \mathbb{R}^{2})/D;ff^{+}(S^{1})$ is of
$fi_{7}\iota itc$ type, then

$\overline{\mathcal{M}}_{symp}(f)\cong_{\mathfrak{c}tiReo}$

.
$.$

$\prod_{\tau 1,uo\in\int(L)}\overline{\mathcal{M}}_{symp(f_{yo})}\cross \mathbb{R}^{r}\backslash$
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where $r= \dim_{\mathbb{R}}H^{2}(\mathbb{R}^{2}, \int(S^{1}))\mathbb{R})$ . Moreover

$\mathcal{M}_{sy_{1}\mathfrak{n}p())}\cong_{diReo}$ . $( \prod_{yo\in f(S^{1})}\overline{\mathcal{M}}_{symp}(f_{y0})\cross \mathbb{R}^{r})/(J\gamma f$ ,

where $G_{f}\subset S_{r’}$ is the $gr\cdot ot\iota p$ induced by the symmetry group of $f_{J}r’$ being $r$

plus the number of unstable singular values of $f$ .

Note that we have that $\overline{\mathcal{M}}_{symp}(f_{I\int 0}\backslash )$ is just a point if $f_{y0}$ is a single
immersion-germ. Therefore the product in Theorem 6.3 turns out to be
a finite product.

Theorem 6.3 can be regarded as the “localisation theorem”for the global
labelled moduli space of the $isotop_{L^{r}}$type of a singular plane curve.

The diffeomorphism between $\mathcal{M}_{symp}(f)$ and the product of local sym-
plectic moduli spaces an( an open cone of $H^{2}( \mathbb{R}^{2}, \int(S^{1}),$ $\mathbb{R}$ ) $>0$ is given by the
mapping

$\Phi$ : $\overline{\mathcal{M}}_{symp}(f)arrow(\prod_{)},\overline{\mathcal{M}}_{symp}(f_{y0}))\cross H^{2}(\mathbb{R}^{2}, f(S^{1}),$
$\mathbb{R}$ ) $>0$

defined by
$\Phi([\tau])$ $:=(([7)_{\tau(y_{0}\rangle}0\tau])_{yo\in f(S^{L})},$ $\varphi([\tau]))’$.

where $\eta_{\tau(yo)}$ : $(\mathbb{R}^{2}, \tau(y_{0}))arrow(\mathbb{R}^{2}, y_{0})$ is any symplectomorphisrn-gerln. Note
that $[\eta_{\tau(yu)^{\circ}}\tau]\in\overline{\mathcal{M}}(f_{t/0})$ does not depend on the choice of $\eta_{\tau(y_{0})}$ .

The detailed proofs of all results announced here are given in the paper
[9].
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