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" A differentiable structure
on a mapping space quotient
and its application to the moduli problem
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1 Introduction.

The aim of this note is to provide an announcement of the results of the paper
[9]. All results announced in this note are proved with additional descriptions
in the full paper [9].

In differential geometry and singularity theory of differentiable mappings,
we often encounter the classification problem inducing several moduli. We
treat a class of mappings which forms an infinite dimensional space and, as
a result of the classification, we obtain the quotient space which is of finite
or infinite dimension. In this paper we introduce the general method to give
an differentiable structures on such a quotient space.

The method to provide a “differentiable structure”’to a mapping space
quotient (a moduli space) should he not unique [2}{16]. For instance, consider
the problem how to define a differentiable structure on a mapping space
C(N. M) itself for C> manifolds N and M. Then one of the standard
methods seems to define, first, Fréchet differentiable functions on the Banach
manifolds C"(N, M), for each finite r, and regard C>°(N, M) as the inverse
limit of C"(N, M) to define the structure sheaf of differentiable functions on
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it. However we apply another method in [9]: We regard Fréchet differential of
a functional as a kind of “total differential”. Then we could consider, instead,
“partial differentials”. Namely, to define C* functions on C*(N, M), first
we define the notion of finite dimensional C* families in C*(N, M) by the
very classical and natural manner. Then we call a function on C*(N, M) of
class C° if its restriction to any finite dimensional family in C*(N, M} is of
class C® in the ordinary scnsc.

First we describe our idea in §2 and §3. Then we explain the case of
quotients of finite dimensional manifolds in §4. In 5, we give the general
definition of differentiable structures on mapping space quotients. In §6,
we apply our method to treat the classification problem of plane curves by
symplectomorphisms.

2 What are structures?

Let {X,} be a family of sets. The family X, is supposed to consist of quo-
tients of subspaces of a topological space, in particular a mapping space
C*(N, M) for manifolds N, M.

To define a “differentiable structure” on each X, from {X,}, it is sufficient
to give a criterion, for each pair X,, X,,, X, and X,/ are “diffeomorphic”.
For that it is sufficient to give a criterion that a mapping ® : X, — X, is
“differentiable” or not.

Then, for example, how should we deﬁne that a given mapping ¢ :
C®(N, M) — C*(L,W) (L,W are manifolds) is “differentiable”?

Let & : C®(N, M) — C®(L,W) be a mapping. Then, for each differen-
tiable mapping f € C®(N, M), there corresponds a differentiable mapping
®(f) € C®(L.W). Now we propose to call ® differentiable if, for any “dif-
ferentiable” family hy, € C®(N, M), ®(hy) € C>®(L,W) is “differentiable”,
where the “parameter” A runs over a finite dimensional manifold A. In fact
moreover we demand that ® is continuous. As an ordinary term in global
analysis and differential topology, we call hy : N — M, (A € A) is a dif-
ferentiable family if there exists a differentiable mapping H : Ax N — M
which satisfies hy(x) = H(\, z) for each (X.x) € A x N. Then the mapping
h: A — C®(N, M) defined by h(\) = hy is called differentiable naturally.

Then for ®(h,) € C®°(L,W), we can take a differentiable mapping G :
A x L —» W with &(hy)(z') = G(X,2'), (A, 2") € L x W. Therefore we can
take the derivative of ®(h,) with respect to A.
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3 Differentiability along finite dimensional di-
rections.

Consider another example. How to define the differentiability of a func-
tional ¥ : C®(L,W) — R 7 The real value ¥(g) is determined for each
mapping g € C®(L,W). The function ¥(gs) of variable A is determined
for finite dimensional differentiable family gy, € C*(L,W). A € A. Then
we call a mapping ¥ : C*(L,W) — R differentiable if the function ¥(g,)
is differentiable on A. We regard each g, € C®(L.W) as a point in the
space C°(L,W). Then the family of mapping g\, € C>(L,W) is regarded
as a finite dimensional subspace in C*®(L,W). The family ¥(g,) is the re-
striction of ¥ to there, and we look at the differentiability of ¥(g,) in the
ordinary sense. The differentiability we are going to define may be called the
differentiability along finite dimensional directions.

If®:C®(N,M)— C®(L,W)and ¥ : C®(L,W) — R are differentiable
then the composition Yo ® : C*(N, M) — R is differentiable. If fact, for any
differentiable family hy € C®(N, M), we have (¥ o ®)(hy) = ¥(®(hy)) and
® . C°(N,M) — C>(L,W) is differentiable, we see ®(h,) is differentiable
on A. Since V¥ is differentiable, ¥(®(h,)) is differentiable, so is (¥ o ®)(h,)
on .

We have defined that ¥ : C*°(L, W) — R is differentiable. On the other
hand, since R is identified with C*°({pt}, R), we can regard ¥ : C*(L. W) —
C*(pt,R). Then V¥ is differentiable in the sense of the first definition. In fact,
for any differentiable family g, € C*(L, W), ¥(g,) is differentiable on A. If
we define H : A x {pt} — R by H(A, pt) = ¥(g,), then H is differentiable.
By definition, ¥ : C*°(L, W) — C>({pt},R) is differentiable.

4 Differential structure of manifold quotients.

First we start with the case that the mapping space is a subset of a finite
dimensional manifold N which will be identified with the space C>=({pt}, N).
Let N be a differentiable manifold, S a subset of N, and ~ a equivalence
relation on S. Assume A, M and Q are also differentiable manifolds which
play a role of “test spaces”.
Then the differentiability is introduced inductively as follows: _
(1) We call amapping h : A — S from a manifold to a subset of a manifold
differentiable if the composed mapping h : A — S — N is a differentiable
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mapping from the manifold A to the manifold N.

(2) We call a mapping £ : S — Q from a subset of a manifold to a
manifold differentiable if k is continuos, and, for any differentiable mapping
h : A — S in the sense of (1), the composed mapping koh : A — Q is a
differentiable mapping from the manifold A to the manifold Q.

(3) We call a mapping £ : S/ ~ — @ from a quotient of a subset of a
manifold to a manifold differentiable if the commposed mapping fonm : § —
S/ ~— @ is differentiable in the sense of (2).

(4) We call a mapping m : A — S/ ~ from a manifold to a quotient
of a subset of a manifold differentiable if, for any differentiable mapping
¢: U — @ in the sense of (3), from an open subset C S/ ~, the composed
mapping fom : m~Y(U) — @ is a differentiable mapping from the manifold
m~Y(U) to the manifold Q. |

More generally:

(5) We call a mapping ¢ : S/~ — T/~ «— T C M from a quotient of
a subset of a manifold to another quotient of a subset of a manifold differ-
entiable if ¢ is continuous and, for any differentiable mapping ¢ : U(C T/~
) — @ in the sense of (3), the composed mapping £o @ : ¢~} U) — Q is
differentiable in the sense of (3).

(6) A mapping ¢ : S/ ~ — T/ = is called a diffeomorphism if ¢ is
differentiable in the sense of (5), bijective, and the inverse mapping ¢! :
T/~ — S/~ is differentiable in the sense of (5).

(7) The quitient spaces S/~ and T/~ are called diffeomorphic if there
exists a diffeomorphism ¢ : S/~ — T/=.

- Remark 4.1 There is a different definition for the stage (2) (cf. [15]): A
mapping k : S — @ is called differentiable if there exists an open neighbor-
hood U in N and a differentiable mapping k : U — @ satisfying k|s = k.
Compared with this definition which is based on extensions of mappings on
S, our definition is based on parametrizations of S and may be called a
“parametric-minded” definition.

Example 4.2 (Differentiable structure on orbifolds). Let G be a finite sub-
group of GL(n,R) which acts on R™ naturally.

By the above general theory, we can endow with the “orbifold” R®/G the
ordinary differentiable structure.

Example 4.3 The quotient space R/~ is diffeomorphic to R>q, where ~ is
an equivalence relation on R defined by that = ~ 2’ if and only if 2’/ = +x.
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In fact ¢ : R/ ~ — Ry, ¢([z]) = 2? is a diffeomorphism. For, po7 :
R — Ryxg, (po7)(z) = z? is a continuous differentiable mapping by (1), we
see ¢ is a differentiable mapping by (3). The inverse mapping is given by
¥ Ry — R/ ~, ¥(y) = [\/y]. To see 9 is differentiable, we check, based
on (5), for any differentiable mapping ¢ : R/~ — Q, that o4 : R5o — @
is differentiable. By (3), fo 7 : R — @ is differentiable. Since (£ o 7)(z) =
(¢ o m)(—1), we see there exists a differentiable mapping p : R — @ with
(¢om)(x) = p(&?). Then (£o)(y) = Lly/H) = (£om)(y/5) = p(y). Thus
¢ o v is differentiable. ]

Example 4.4 We give the equivalence relation ~ on R? by that (z,y) ~
(2',¢) if and only if (z/,y') = £(z,y). Then we see R?/~ is homeomorphic
to R? but R%/~ is not diffeomorphic to R2.

The mapping s : R?/ ~ — R?, s([(z,vy)]) = (¢ — ¥? 2zy) is a home-
omorphism. However s is not a diffeomorphism. Moreover we see that
therc cxists no diffeomorphism between R%2/ ~ and R?. To see that, sup-
pose that there exist a differentiable mapping ¢ : R? — R?/ ~ and a dif-
ferentiable mapping ¢ : R?/ ~ — R? satisfying ¢ o p = id,p o ¢ = id.
Since ¢ o 7 : R? — R? is differentiable and invariant under the transforma-
tion (z,y) — (—z,—v), there exists a differentiable mapping p : R® — R?
satisfying (¢ o m)(z,y) = p(z? zy,4?). Therefore there exists a differen-
tiable mapping ® : R?/ ~ — R® with (® o m)(z,y) = (2% zy.y?) so with
gom = podom Since 7 is a surjective, we have ¢ = p o ®. Therefore
id = po) = po(Porp) : R? — R2. However the image of ¥ := ®oy : R? — R?
is contained in {(2%, zy,4?) | (z,y) € R?} = {(X,Y,Z) e R} | XZ -Y? =0}
and thus rankg¥ < 1. This leads a contradiction. a

5 Differentiable structure on a mapping space
quotient.

We denote by C>*(N, M) the space of C™° mappings from a (finite dimen-
sional) " manifold N to a (finite dimensional) C'>* manifold A/. In this
section, also P,Q, L, K always designate (finite dimensional) C* manifolds
respectively.

Let X C C*®(N,M) be a subset. Then, such a set X is a mapping
space. Let X/~ be any quotient of X under an equivalence relation ~ on
X. We give on the quotient space X/~ the quotient topology of X with the
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relative topology of the C* topology on C*°(N, M), not Whitney (fine) C®
topology. Such space is called a mapping space quotient. Then we will endow,
in the following seven steps, a differentiable structure with the mapping space
quotient X, depending just on the representation X/~ «— X C C>*(N, M).
We note that the notion of differentiable structures can provided just by
defining the notion of diffeomorphisms. Therefore our goal is to define the
notion of “diffeomorphisins”.

(i) We call a mapping h : P — X differentiable (or C™) if there exists
a C*° mapping (between manifolds) H : P x N — M satisfying H(p,z) =
h(p)(z) e M, (p € P,x € N).

- (ii) We call a mapping k : X — @ differentiable if k is a continuous
mapping and, for any differentiable mapping h : P — X in the sense of (i),
the composition ko h : P — @Q is a C* mapping between manifolds.

Now, if ~ is an equivalence relation on a mapping space X, then we get
the quotient space X/~. Then the canonical projection # = 7x : X — X/~
is defined by 7(z) = [z] (the equivalence class of ).

(iii) We call a mapping ¢ : X/~ — @Q differentiable if the composition
tom: X — Q with the projection 7 is differentiable in the sense of (ii).

(iv) We call a mapping ¢ : X/~ — Y/~ from a mapping space quotient
X/~ to another mapping space quotient Y/~ — Y C C*®(L, K) differentiable
if ¢ is a continuous mapping and, for any open subset U C Y/~ (— n;' (U) C
C*(L,K)) and for any differentiable mapping £ : U — @ in the sense of
(iii), the composition £ o : ¢ H(U)(— 75" (p~HU)) € C®(N,M)) — Q is
differentiable in the sense of (iii).

We call a mapping ¢ : X/~ — Y/~ a diffeomorphism if ¢ is differentiable
in the sense of (iv), ¢ is a bijection and the inverse mapping ¢! : Y/~ —
X/~ is also differentiable in the sense of (iv). Moreover we call two mapping
space quotients X/~ and Y/~ diffeornorphic if there exists a diffeomorphisin
@ : X/~ — Y/~ in the sense of (iv).

Now we give several related results: First, form the definition above,
we immediately have that the differentiability is a local notion. Also we
observe that, for any C° manifold P, P is diffeomorphic to C®°({pt}, P).
We announce useful lemmata (shown in [9]) which follow from the definition:

Lemma 5.1 Ifh: P — X is differentiable in the sense of (i), then mo h :
P — X/~ is differentiable in the sense of (iv).
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Lemma 5.2 The following two conditions are equivalent to each other:

(1) ¢ : X/~ — Y/~ is differentiable in the sense of (iv).

(2) ¢ : X/~ — Y/= is a continuous mapping and, for any differentiable
mapping h : P — X in the sense of (i), pomoh: P — Y /= is differentiable
wn the sense of (iv).

Lemma 5.3 A differentiable mapping h : P — X C C®(N, M) in the sense
of (i) is a continuous mapping. :

Lemma 5.3 does not hold for the Whitney C* topology. This is the
reason we adopt the C'™ topology.

Lemma 5.4 (1) The identity mapping id : X/~ — X/~ is differentiable.
(2) Let p : X/~ = Y/= and ¢ : Y/= — Z/= be differentiable mappings.
Then the composition Yo : X/~ — Z/= is differentiable.

Lemma 5.5 (1) The quotient mapping © : X — X/~ is differentiable. (2)
A mapping ¢ : X/~ — Y /= is differentiable if and only if pon: X — Y/~
15 differentiable.

Lemma 5.6 If N and N’ are diffeomorphic, and if M and M' are diffeo-
morphic. then C*(N. M) and C°(N’, M') arc diffeornorphic.

6 An application to the moduli problem of
plane curves on the symplectic plane.

We announce the results obtained in [9].

Let f: S' — R? be a generic immersion of the circle S! in the symplectic
plane R? with the standard symplectic (area) form wy = dz A dy. Clearly
the areas of domains surrounded by the curve f(S') are invariant under
symplectomorphisms. Thus, denoting the first Betti number of f(S') by 7,
we see the curves isotopic to f have r-dimensional symplectic moduli.

We denote by O (S, R?) the space of C*™ mappings from S* to R?, which
has the natural action (from “right”) of the group Diff*(S!) consisting of
orientation-preserving diffeomorphisms on S*. Thus C*(S?!, R?)/Diff*(S?)
denotes the space of oriented curves. The space C°(S?, R?)/Diff*(S?) has
the action (from “left”) of the group Diff " (R?) (resp. Symp(R?)) consisting of
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orientation-preserving diffeomorphisms (resp. symplectomorphisms) on R2.
For each oriented curve f € C*(S!, R?)/Diff*(S?), we denote by Difft(R?) f
the orbit through f via the action of Diff*(R?). Thus Difft(R?)f consists of
oriented curves of form 7 o f for orientation preserving diffeomorphisms 7.
Similarly the space Diff"(R?)f/Symp(R?) means the quotient space by the
Symp(R?)-action of Diff*(R?)f in C*°(S?, R?)/Diff*(S!).

We call the quotient space Diff*(R?)f/Symp(R?) the symplectic moduli
space of f and denote it by Mgymp(f). It describes the symplectic classifi-
cation of a fixed diffeomorphism class of a plane curve.

To study the moduli space minutely, we label the r-domains surrounded
by the curve f(S') as Dy, Ds, ..., D, for a f € C*(S*, R?)/Diff*(S*). Then,
for each p € Diff"(R?), we can label bounded r-domains surrounded by
(po f)(S?) as p(Dy), p(Ds), ..., p(D,) induced by the labelling for f. We set
Msyrnp( J) = Diff*(R?)/~;, where we call p, o’ € Diff*(R?) are equivalent
via f, and write p ~f p/, if the exists a symplectomorphism 7 such that
Topo f = p’o f up to Diff*(S§') and preserving the given labelling: Tp(D;) =
p'(D;),1 <j<r. Wecal Msymp( f) the labelled symplectic moduli space of
f.

Then we have:

Theorem 6.1 If f € C®(S?, R?) /Diff*(Si is a generic labelled immersion,

then the labelled symplectic moduli space Msymp(f) is diffeomorphic to the
relative cohomology space H*(R?, f(S*),R) = R".

The labelled symplectic moduli space ./’\/Ivsymp( f) has a canonical differ-
entiable structure. We claim in Theorem 6.1 that the labelled symplectic
moduli space of f with the differentiable structure is diffeomorphic to RT,
r = dimg H?(R?, [(S').R). Actually we are going to give a diffeomorphism
between HS}.mp( f) and the positive cone in H#(R?, f(S*),R). Note that the
relative cohomology group H*(R?, f(S'),R) over R is isomorphic to the vec-
tor space Hy(R?, f(S!),R)* = Homg(H,(R?, f(S*),R),R). The orientation
of R? and the labelling of the bounded domains surrounded by f(S!) give
the canonical basis [D\], [Do], ..., [D,] of Hy(R?, f(S'),R). The positive cone
H*(R?, f(S"),R)so of H*(R?, f(S'),R) = Hy(R?, f(S'),R)* is defined by

H(R?, £(S),R)>0 = {a € HX(R?, f(S").R) | o([D,])) >0, 1 < j <r}.
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The diffeomorphism of Msymp( f) and H?(R?, f(S*),R)>o is given actu-
ally by the mapping

o - Msymp(f) = HA(RZ, f(5*),R)50,

0l ([D;-] ~ [ (D,)“"’) -

1<j<r wy=dxAdy.

The symplectic moduli space Mgymp(f) = Diff* (R?)f/Symp(R?) is ob-
tained as a quotient of ./T/lisymp( f). A symmetry of a generic immersion
f: 8' — R? is an orientation preserving diffeomorphism p : R2 — R? such
that po f = f oo for some ¢ € Diff " (S§*). The group of symmetries of f
induces a subgroup G; of the permutation group S, of the r-bounded do-
mains of R?\ f(S*). Then G; naturally acts on Hz(]R2 f(S'),R) and on
H,(R?, f(S"),R)" = H*(R?, f(S*),R) = |

By Theorem 6.1, we have the followmg

defined by

Corollary 6.2 The symplectic moduli space Mgsymp(f) is diffeomorphic to
the finite quotient R"/G; of R".

Theorem 6.1 is generalised to more singular curves. To state the gener-
alisation, first we treat the local case.

A multi-germ f,, : (S, S) — (R%,yo) at a finite set S C S* is called of
finite codimension (or A-finite) in the sense of Mather if f,, is determined
by its finite jet up to diffeomorphisms (or A equivalence). See [14][17]. Then
the local image of f,, divides (R?,0) into several domains. We label them.
Then, for any p € Difft (RQ,yO) the labelling of p o f is induced. Two
| dlf‘feomorphlqm -germs p, p’ € Diff* (R?, 1) are equivalent via f,,, and write
p ~; p, if there exists a symplectomorphism-germ 7 € Symp(R?,0) such
that T o po f,, = o' o [, up to diffeomorphism-germs of (S',S) fixing S
pointwise, and 7 preserves the labelling. Thus we define the local labelled
symplectic moduli space by

Msymp(fyo) = DIH+(R25 yO)/ ~f

Moreover we define the local symplectic modult space

Msymp(fyn) = Diﬁk(R2: yo)f/Symp(Rz, yo)-
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Note that the space of map-germs
C®((N,S),(M,y)) :={f: (N,S) = (M, y) C* map-germs}

is a quotient space of C*(N, M), so also it has the differentiable structure.
In particular Msymp(_ fyo) and Mgymp(fy,) are mapping space quotient have
natural differentiable structures. Moreover there exists the canonical pro-
jection ™ : Msymp(fyo) — Msymp(fy,) defined by m(r) = 7o f modulo
Diff*(S!, S), the diffeomorphism-germs of S* at S fixing S pointwise.

Now returning to the global case, we consider an oriented curve [ :
S' — R? up to Diff*(S?), namely, f € C=(S',R?)/Diff*(S'). Then we
call f of finite type if, for some (and for any) representative f : S — R? of
f € C=(S5,R?)/Diff*(S?), for some (and any) representative f : ST — R? of
f € C=(S*, R?)/Diff*(S?), except for a finite number of points yg € f(S?),
the multi-germ f, : (S*, f~}(yo)) — (R?, o) is a stable multi-germ, namely
a single immersion-germ or a transversal two-immersion-germ, and, even if
fyo is unstable, f~'(y) is a finite set in S' and f,, is of finite codimen-
sion. The condition means roughly that the Diff* (R?)-orbit through f in
C>(S', R?)/Diff* (S!) is of finite codimension.

If f e C=(St R?)/Diff*(S') is of finite type, then f(S') divides R? into
a finite number of bounded domains and onec unbounded domain. Then we
define the the labelling of f as the labelling of bounded domains D,,..., D,
and the multiple or singular values yi,. ..,y of / in R2,

We define, similarly to the case of generic immersions, the labelled sym-
plectic moduli space of plane curve f of finite type by

Msymp(f) = Diﬁ+(R2)/ ~F;

where p ~; p' if Topo f = p' o f for some 7 € Symp(R?) preserving the
labellings induced by p and p'. | :
Moreover we define the symplectic moduli space of plane curve f of finite

type by
Msymp(f) := Diff* (R?) f /Symp(R?).

Theorem 6.3 (Localisation Theorem) If f € C*(S',Rz)/Diﬁ*(S’l) is of
finite type, then

Msymp(f) = diffeo. H Mvsymp(fyo) x R",

yo€ f(S?)
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where r = dimg H*(R?, f(S'),R). Moreover

Msymp(./.) = diffeo. H Msymp(fyo)XRr /ny
o€ f(S?)

where Gy C S is the group induced by the symmetry group of f, r' being r
plus the number of unstable singular values of f.

Note that we have that ngmp( fyo) is just a point if f,, is a single
immersion-germ. Therefore the product in Theorem 6.3 turns out to be
a finite product.

Theorem 6.3 can be regarded as the “localisation theorem” for the global
labelled moduli space of the isotopy type of a singular plane curve.

The diffeomorphism between Mgymp(f) and the product of local sym-
plectic moduli spaces and an open cone of H2(R?, f(S'),R)>o is given by the
mapping

o ﬂsymp(f) - H /’V’Véymp(fyo) | x H*(R?, f(S").R)>o0

yo€ f(S)

defined by

(I)([TD = ((["/T(yo) © T])yoef(S‘): W([T])) :
where 7(,0) : (R?,7(y0)) — (R? yo) is any symplectomorphism-germ. Note
that [, 0 7] € M( [yo) does not depend on the choice of 7(y,).

The detailed proofs of all results announced here are given in the paper

[9].
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