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ABSTRACT. We present a simplified proof for the invariance of the corank and
index of Nash function germs under blow-Nash equivalence. We address also the
question of the blow-Nash types of simple singularities.

In order to address the question of a classification of the singularities of Nash
function germs, that is analytic and semi-algebraic germs, one need to consider a
relevant equivalence relation between such germs. Whereas in the complex case
the topological classification make sense, over the reals the situation is much more
complicated. In this paper we study the blow-Nash equivalence (see [2, 4]) which is
a Nash version of the blow-analytic equivalence between real analytic function germs
proposed by Kuo [7]. To give an idea, this means that we consider as equivalent
germs such germs that become Nash equivalent after resolution of their singularities
(for a precise statement see definition 1.1).

For this blow-Nash equivalence we know invariants called zeta functions [2]. These
invariants take into account the geometry of polynomial arcs passing through a germ
with a given order. We recalled their construction is section 1.2. Using these invari-
ants we proved in [3] that the corank and index of Nash function germs are preserved
by blow-Nash equivalence. This establishes a first step in the classification of the
singularities of Nash function germs with respect to the blow-Nash equivalence.

In this paper, we address the two following issues. First, we present in section 2 a
simplified proof for one crucial point in the proof of the invariance of the corank and
index. The point is to compute the virtual Poincar\’e polynomial of real algebraic
sets defined by quadratic polynomials. Second, we deal with the question of the
classification of simple Nash germs in section 3. In particular we announce that
their classification under blow-Nash equivalence coincide with their classification
under analytic equivalence. We prove moreover the particular case of $E_{6},$ $E_{7},$ $E_{8^{-}}$

singularities in order to give an idea of the general proof.
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1. BLOW-NASH EQUIVALENCE

1.1. Deflnition. The definition of blow-Nash equivalence comes from an adaptation
of the definition of the blow-analytic equivalence of Kuo (see [7]) for Nash function
germs. It states roughly speaking that two germs are blow-analytically equivalent if
they become analytically equivalent after resolution of their singularities. Similarly
to the blow-analytic case, several slightly different definitions exist, and to find the
appropriate definition is still a work in progress (see [5]). We adopt in this paper
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the strong definition of blow-Nash equivalence for which, in particular, we require a
Nash isomorphism between the exceptional spaces of the resolutions (see [3, 4]).

Definition 1.1.
(1) A Nash modification of a Nash function germ $f$ : $(\mathbb{R}^{d}, 0)arrow(\mathbb{R}, 0)$ is a

proper surjective Nash map $\sigma_{f}$ : $(M_{f}, \sigma_{f}^{-1}(0))arrow(\mathbb{R}^{d}, 0)$ , between semi-
algebraic neighbourhoods of $0$ in $\mathbb{R}^{d}$ and $\sigma_{f}^{-1}(0)$ in $M_{f}$ , whose complexifica-
tion is an isomorphism except on some thin subset of $\mathbb{R}^{d}$ and for which $f\circ\sigma$

is in normal crossing.
(2) Let $f,$ $g$ : $(M, o)arrow(\mathbb{R}, 0)$ be Nash function germs. They are said to be

blow-Nash equivalent if there exist two Nash modifications
$\sigma_{f}$ : $(M_{f}, \sigma_{f}^{-1}(O))arrow(M, 0)$ and $\sigma_{g}$ : $(M_{9}, \sigma_{g}^{-1}(O))arrow(M, o)$ ,

such that $fo\sigma_{f}$ and jac $\sigma_{f}$ (respectively $go\sigma_{g}$ and jac $\sigma_{g}$ ) have only normal
crossings simultaneously, and a Nash isomorphism (i.e. a semi-algebraic map
which is an analytic isomorphism) $\Phi$ between semi-algebraic neighbourhoods
$(M_{f}, \sigma_{f}^{-1}(0))$ and $(M_{9}, \sigma_{9}^{-1}(0))$ which preserves the multiplicities of the Ja-
cobian determinants of $\sigma_{f}$ and $\sigma_{g}$ along the components of the exceptional
divisors, and which induces a homeomorphism $\phi$ : $(\mathbb{R}^{d}, 0)arrow(\mathbb{R}^{d}, 0)$ such
that $f=go\phi$ , as illustrated by the commutative diagram:

We refer to [2, 3, 4] for an overview of the properties of the blow-Nash equivalence.

1.2. Invariants. We recall now the definition of the zeta functions associated to
a Nash function germ. To this aim, we need to introduce the virtual Poincar\’e
polynomial defined by McCrory and Parusi\’{n}ski [9] for algebraic sets and extended
to arc-symmetric sets [2].

Arc-symmetric sets have been introduced by Kurdyka [8]. The category of arc-
symmetric sets is larger than that of real algebraic varieties. In order to recall
$\mathbb{R}^{n}\subset \mathbb{P}^{n}thedefin.ition$

of arc-symmetric sets, we fix a compactification of $\mathbb{R}^{n}$ , for instance

Definition 1.2. Let $X\subset \mathbb{P}^{n}$ be a semi-algebraic set. We say that $X$ is arc-
symmetric if, for every real analytic arc $\gamma:$ ] $-1,1$ [ $arrow \mathbb{P}^{n}$ such that $\gamma($ ] $-1,$ $O[$ ) $\subset X$ ,
there exists $\epsilon>0$ such that $\gamma(]0, \epsilon[)\subset X$ .

One can think about arc-symmetric sets as the biggest category stable under
boolean operations and containing the compact real algebraic varieties and their
connected components.

We recall also that a Nash isomorphism between arc-symmetric sets $X_{1},$ $X_{2}$ is the
restriction of an analytic and semi-algebraic isomorphism between compact semi-
algebraic and real analytic sets $Y_{1},$ $Y_{2}$ containing $X_{1},$ $X_{2}$ respectively (see [2]).
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An additive map on the category of arc-symmetric sets is a map $\beta$ such that
$\beta(X)=\beta(Y)+\beta(X\backslash Y)$ where $Y$ is an arc-symmetric subset closed in $X$ . Moreover
$\beta$ is called multiplicative if $\beta(X_{1}\cross X_{2})=\beta(X_{1})\cdot\beta(X_{2})$ for arc-symmetric sets $X_{1},$ $X_{2}$ .

Proposition 1.3. $(I9,2$]) For an integer $i$ , there exists an additive map $\beta_{i}$ with val-
ues in $\mathbb{Z}$ , defined on the category of arc-symmetric sets. It coincides with the classical
Betti number $\dim H_{i}(\cdot, \frac{\mathbb{Z}}{2\mathbb{Z}})$ on compact nonsingular arc-symmetric sets. Moreover
$\beta(\cdot)=\sum_{i\geq 0}\beta_{i}(\cdot)u^{i}$ is multiplicative, with values in $\mathbb{Z}[u]$ . Finally, if $X_{1}$ and $X_{2}$ are
Nash isomorphic arc-symmetric sets, then $\beta(X_{1})=\beta(X_{2})$ .

The invariant $\beta_{i}$ is called the i-th virtual Betti number, and the polynomial $\beta$

the virtual Poincar\’e polynomial. Note that, by evaluation of the virtual Poincar\’e
polynomial at $-1$ , we recover the Euler characteristic with compact support (see
[9]).

Example 1.4. If $\mathbb{P}^{k}$ denotes the real projective space of dimension $k$ , which is
nonsingular and compact, then $\beta(\mathbb{P}^{k})=1+u+\cdots+u^{k}$ since dim $H_{i}( \mathbb{P}, \frac{z}{2Z})=1$ for
$i\in\{0, \ldots, k\}$ and dim $H_{i}( \mathbb{P}^{k}, \frac{z}{2Z})=o$ otherwise. Now, compactify the affine line $A_{\mathbb{R}}^{1}$

in $\mathbb{P}^{1}$ by adding one point at the infinity. By additivity $\beta(A_{\mathbb{R}}^{1})=\beta(\mathbb{P}^{1})-\beta(point)=$

$u$ , and so $\beta(A_{\mathbb{R}}^{k})=u^{k}$ by multiplicativity.

Then, using the virtual Poincar\’e polynomial, we can define the zeta functions of
a Nash function germ $f$ : $(\mathbb{R}^{d}, 0)arrow(\mathbb{R}, 0)$ as follows. Denote by $\mathcal{L}$ the space of
arcs at the origin $0\in \mathbb{R}^{d}$ , that is:

$\mathcal{L}=\mathcal{L}(\mathbb{R}^{d}, 0)=$ { $\gamma;(\mathbb{R},$ $0)arrow(\mathbb{R}^{d},$ $0)$ : $\gamma$ formal},
and by $\mathcal{L}_{n}$ the space of arcs truncated at order $n+1$ :

$\mathcal{L}_{n}=\mathcal{L}_{n}(M, o)=\{\gamma\in \mathcal{L} : \gamma(t)=a_{1}t+a_{2}t^{2}+\cdots+a_{n}t^{n}, a_{i}\in \mathbb{R}^{d}\}$ ,

for $n\geq 0$ an integer. We define the naive zeta function $Z_{f}(T)$ of $f$ as the following
element of $\mathbb{Z}[u, u^{-1}][[T]]$ :

$Z_{f}(T)= \sum_{n\geq 1}\beta(A_{n})u^{-nd}T^{n}$
,

where
$A_{n}=\{\gamma\in \mathcal{L}_{n} : ord(fo\gamma)=n\}=\{\gamma\in \mathcal{L}_{n} : fo\gamma(t)=bt^{n}+\cdots , b\neq 0\}$.

Similarly, we define zeta functions with sign by

$Z_{f}^{+1}(T)= \sum_{n\geq 1}\beta(A_{n}^{+1})u^{-nd}T^{n}$
and $Z_{f}^{-1}(T)= \sum_{n\geq 1}\beta(A_{n}^{-1})u^{-nd}T^{n}$

,

where
$A_{n}^{+1}=\{\gamma\in \mathcal{L}_{n} : f\circ\gamma(t)=+t^{n}+\cdots\}$ and $A_{n}^{-1}=\{\gamma\in \mathcal{L}_{n} : f\circ\gamma(t)=-t^{n}+\cdots\}$ .
Theorem 1.5. $\mathfrak{n}2$]) Blow-Nash equivalent Nash function germs have the same naive
zeta function and the same zeta functions with sign.

Remark 1.6. This result is inspired by that of Koike and Parusi\’{n}ski [6] who proved
that these zeta functions, with the Euler characteristic with compact supports in
place of the virtual Poincar\’e polynomial, are invariant with respect to the blow-
analytic equivalence.
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2. SOME COMPUTATIONS OF VIRTUAL POINCAR\’E POLYNOMIALS

One crucial point in order to prove the invariance of the corank and index of Nash
function germs under blow-Nash equivalence is to compute the following virtual
Poincar\’e polynomials (see [3]).

Let’s denote by $Q$ the quadratic polynomial:

$Q(x, y)= \sum_{i=1}^{p}x_{1}^{2}-\sum_{j=1}^{q}y_{j}^{2}$

where $x=(x_{1}, \ldots, x_{p})$ and $y=(y_{1}, \ldots, y_{q})$ . The virtual Poincar\’e polynomial of the
algebraic sets

$Y_{p,q}=\{Q(x, y)=0\},$ $Y_{p,q}^{\epsilon}=\{Q(x, y)=\epsilon\}$

for $\epsilon\in\{1, -1\}$ are the following.

Proposition 2.1. ([3]) Assume $(p, q)\neq(O, 0)$ .
$\bullet\beta(Y_{p,q})=u^{p+q-1}-u^{\max\{p,q\}-1}+u^{\min\{p,q\}}$ .
$\bullet$ If $p\leq q$ , then $\beta(Y_{p,q}^{1})=u^{q-1}(u^{p}-1)$ .
$\bullet$ If $p>q$ , then $\beta(Y_{p,q}^{1})=u^{q}(u^{p-1}+1)$ .

We presented in [3] a proof using a nonsingular compactification of these algebraic
sets in the projective space and computations of the homology of these compactifi-
cations. We give here a different proof. Namely, we use the additivity of the virtual
Poincar\’e polynomial combined with a well chosen stratification (suggested by F.
Sottile) of the sets $Y_{p,q}$ and $Y_{p,q}^{\epsilon}$ .

Proof. We proceed by the following change of variables. Assume $p\leq q$ . Then put
$u_{i}=x_{i}+y_{i}$ and $v_{i}=x_{i}-y_{i}$ for $i=1,$ $\ldots,p$ . The new expression for $Q$ is

$\sum_{1=1}^{p}u_{i}v_{i}-\sum_{j=p+1}^{q}y_{j}^{2}$ .

Let us compute the virtual Poincar\’e polynomial of $Y_{p,q}$ . We stratify $Y_{p,q}$ depending
on the vanishing of $u_{i}$ for $i=1,$ $\ldots,p$ . Assume $u_{1}\neq 0$ . Then the value of $v_{1}$ is
prescribed by

$v_{1}= \frac{-1}{u_{1}}(\sum_{1=2}^{p}u_{i}v_{i}-\sum_{j=p+1}^{q}y_{j}^{2})$

and therefore $Y_{p,q}\cup\{u_{1}\neq 0\}$ is isomorphic to $\mathbb{R}^{*}x\mathbb{R}^{p+q-2}$ , so that
$\beta(Y_{p,q}\cup\{u_{1}\neq 0\})=(u-1)u^{p+q-2}$ .

Assume now that $u_{1}=0$ . Then $v_{1}$ is free, and we may deal in the same way with
$u_{2}$ : if $u_{2}\neq 0$ then $v_{2}$ is fixed and we obtain a contribution of

$\beta(Y_{p,q}\cup\{u_{1}=0, u_{2}\neq 0\})=(u-1)u^{p+q-3}$ .
At the final step $u_{1}=\cdots=u_{p-1}=0$ , if $u_{p}\neq 0$ then $Y_{p,q}\cup\{u_{1}=\cdots=u_{p-1}=$

$0,$ $u_{p}\neq 0$ } is isomorphic to $\mathbb{R}^{*}x\mathbb{R}^{-1}$ . If $u_{p}=0$ the remaining equation

$- \sum_{j=p+1}^{q}y_{j}^{2}=0$
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admits only the zero solution, hence $\beta(Y_{p,q}\cup\{u_{1}=\cdots=u_{p}=0\})=u^{p}$ since the
variables $v_{1},$ $\ldots$ , $v_{p}$ are free.

Finally

$\beta(Y_{p,q})=(u-1)\sum_{i=1}^{p}u^{p+q-1-i}+u^{p}=u^{p+q-1}-u^{q-1}+u^{p}$ .

We proceed similarly in the case of $Y_{p,q}^{1}$ . If $p\leq q$ the remaining equation

$- \sum_{j=p+1}^{q}y_{j}^{2}=1$

does no longer admit a solution, hence

$\beta(Y_{p,q}^{1})=(u-1)\sum_{i=1}^{p}u^{p+q-1-i}=u^{q-1}(u^{p}-1)$ .

In the case $p>q$ the remaining equation is that of a $p-q-1$-dimensional sphere.
The virtual Poincar\’e polynomial of such a sphere is $1+u^{p-q-1}$ therefore

$\beta(Y_{p,q}^{1})=(u-1)\sum_{j=1}^{q}u^{p+q-1-j}+u^{q}(1+u^{p-q-1})$

where the $u^{q}$ term in front of $1+u^{p-q-1}$ comes from the free variables $v_{1},$ $\ldots,$ $v_{q}$ . As
a consequence

$\beta(Y_{p,q}^{1})==u^{p+q-1}-u^{p-1}+u^{q}+u^{p-1}=u^{q}(u^{p-1}+1)$ .
口

Remark 2.2. Note that we can recover $p$ and $q$ from $\beta(Y_{p,q})$ and $\beta(Y_{p,q}^{1})$ . This is
no longer the case if we consider the Euler characteristic with compact supports in
place of the virtual Poincar\’e polynomial. More precisely, in the latter case we only
recover the parity of $p$ and $q$ .

3. BLOW-NASH TYPES OF SIMPLE SINGULARITIES

We announce in this section some results concerning the classification of the blow-
Nash types of simple singularities.

As recalled, the corank and index of a Nash function germ are invariant under
blow-Nash equivalence. In order to go further in the classification of singularities,
the next step is to deal with simple singularities. Considering real analytic function
germs, their simple singularities have been classified [1]. A real analytic function
germ with a simple singularity is analytically equivalent to a polynomial germ be-
longing to one of the family

$A_{k}$ : $x^{k+1}+ \sum_{i=1}^{p}y_{i}^{2}-\sum_{j=1}^{q}z_{j}^{2}$ for $k\geq 2$

$D_{k}$ : $x_{1}( \pm x_{2}^{2}\pm x_{1}^{k-2})+\sum_{i=1}^{p}y_{i}^{2}-\sum_{j=1}^{q}z_{j}^{2}$ for $k\geq 4$

$E_{6} \cdot.\cdot x_{1}^{3}\pm x_{2}^{4}+\sum py_{i}^{2}-\sum_{-\sum^{q}q}\cdot=1z_{j}^{2}E_{7}x_{1}^{3}+x_{1}x_{2}^{3}+\sum_{i=1}^{p}^{.}y_{i}^{2}j=1^{Z_{j}^{2}}$

$E_{8}$ : $x_{1}^{3}+x_{2}^{5}+ \sum_{i=1}^{p}y_{i}^{2}-\sum_{j=1}^{q}z_{j}^{2}$

This classification holds for Nash function germs. Indeed, analytically equivalent
Nash function germs are also Nash equivalent by Nash Approximation Theorem [10].
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Now, the question is: are we able to distinguish the blow-Nash types of simple
singularities? I claim that this is possible, using the invariance of the zeta functions
under blow-Nash equivalence.

Claim. Let $f,$ $g:(\mathbb{R}^{d}, 0)arrow(\mathbb{R}, 0)$ be Nash function germs. Assume $f$ and $g$ are
simple. Then $f$ and $g$ are blow-Nash equivalent if and only if $f$ and $g$ are analytlcally
equivalent.

To give an idea of the proof, let us consider the case of 2-dimensional $E_{6},$ $E_{7},$ $E_{8^{-}}$

singularities. We use the notation
$h_{6}^{\pm}(x, y)=x^{3}\pm y^{4}$

$h_{7}(x, y)=x^{3}+xy^{3}$

$h_{8}(x, y)=x^{3}+y^{5}$

Proposition 3.1. The function germs $h_{6}^{+},$ $h_{6}^{-},$ $h_{7},$ $h_{8}$ belong to different blow-Nash
equivalence classes.

In order to distinguish their blow-Nash types, we compute the virtual Poincar\’e
polynomial of some spaces or arcs related to $h_{6}^{+},$ $h_{6}^{-},$ $h_{7},$ $h_{8}$ .
Lemma 3.2. Take $\epsilon\in$ $\{-,$ $+\}$ .

(1) $\beta(A_{4}^{\epsilon}(h_{6}^{\epsilon}))=2u^{6}$ whereas $\beta(A_{4}^{-\epsilon}(h_{6}))=\beta(A_{4}(h_{7}))=\beta(A_{4}(h_{8}))=0$ .
(2) $\beta(A_{5}^{\epsilon}(h_{7}))=(u-1)u^{7}$ whereas $\beta(A_{5}^{\epsilon}(h_{8}))=u^{8}$ .

Proof. Let us deal with point (1). We consider arcs of the form
$\gamma(t)=(a_{1}t+a_{2}t^{2}+a_{3}t^{3}+a_{4}t^{4}, b_{1}t+b_{2}t^{2}+b_{3}t^{3}+b_{4}t^{4})$

with $a_{1},$ $a_{2},$ $a_{3},$ $a_{4},$ $b_{1},$ $b_{2},$ $b_{3},b_{4}\in \mathbb{R}$ Then
$h_{6}^{\epsilon}(\gamma(t))=a_{1}^{3}t^{3}+(3a_{1}^{2}a_{2}+\epsilon b_{1}^{4})t^{4}+\cdots$

therefore such an arc belongs to $A_{4}^{\epsilon}(h_{6}^{\epsilon})$ if and only if $a_{1}=0$ and $b_{1}^{4}=1$ . So $A_{4}^{\epsilon}(h_{6}^{\epsilon})$

is isomorphic to the union of two 6-dimensional affine space and thus
$\beta(A_{4}^{\epsilon}(h_{6}^{\epsilon}))=2u^{6}$.

On the other hand $A_{4}^{-\epsilon}(h_{6}^{\epsilon})$ is empty since $b_{1}^{4}=-1$ does not admit solutions, so
$\beta(A_{4}^{-\epsilon}(h_{6}^{\epsilon}))=0$ .

For the functions $h_{7}$ and $h_{8}$ the argument is even simpler because the vanishing
of the $t^{3}$-coefficient of the series $h_{7}(\gamma(t))$ and $h_{8}(\gamma(t))$ implies the vanishing of the
$t^{4}$-coefficient, so that $\beta(A_{4}(h_{7}))=\beta(A_{4}(h_{8}))=0$ .

The proof of point (2) is of the same type. Now we consider arcs of the type
$\gamma(t)=(a_{1}t+a_{2}t^{2}+a_{3}t^{3}+a_{4}t^{4}+a_{5}t^{5}, b_{1}t+b_{2}t^{2}+b_{3}t^{3}+b_{4}t^{4}+b_{5}t^{5})$

with $a_{1},$ $a_{2},$ $a_{3},$ $a_{4},$ $a_{5},$ $b_{1},$ $b_{2},$ $b_{3},$ $b_{4},$ $b_{5}\in \mathbb{R}$ Such an arc $\gamma$ belongs to $A_{5}^{\epsilon}(h_{7})$ if and
only if $a_{1}=0$ and $a_{2}b_{1}^{3}=\epsilon$ . The set $\{(a_{2}, b_{1})\in \mathbb{R}^{2} : a_{2}b_{1}^{3}=\epsilon\}$ is isomorphic to $\mathbb{R}^{*}$

therefore $A_{5}^{\epsilon}(h_{7})$ is isomorphic to $\mathbb{R}^{l}x\mathbb{R}^{7}$ .
Finally such an arc $\gamma$ belongs to $A_{6}^{\epsilon}(h_{8})$ if and only if $a_{1}=0$ and $b_{1}^{5}=\epsilon$ thus

$A_{5}^{\epsilon}(h_{8})$ is isomorphic to $\mathbb{F}$ . $\square$

Now we can achieve the proof of proposition 3.1.

Proof. We prove that the function germs $h_{6}^{+},$ $h_{6}^{-},$ $h_{7},$ $h_{8}$ have different zeta functions
with signs. Therefore they can not be blow-Nash equivalent by theorem 1.5.
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First, note that the $T^{4}$-coefficient of the positive zeta function of $h_{6}^{+}$ is nonzero
whereas that of $h_{6}^{-},$ $h_{7},$ $h_{8}$ is zero by lemma 3.2.1. Therefore $h_{6}^{+}$ can not be blow-
Nash equivalent to $h_{6}^{-},$ $h_{7}$ or $h_{8}$ . Similarly, considering the negative zeta function,
we prove that $h_{6}^{-}$ can not belong to the blow-Nash equivalence classes of $h_{7}$ and
$h_{8}$ . Finally, the $T^{5}$-coefficient of the zeta functions with sign of $h_{7}$ and $h_{8}$ differ by
lemma 3.2.2, thus $h_{7}$ and $h_{8}$ also belong to different blow-Nash classes. $\square$

Remark 3.3. Note that proposition 3.1 still holds considering the more general set-
ting of the blow-analytic equivalence (compare with remark 2.2). Indeed, we recover
the Euler characteristic with compact supports from the virtual Poincar\’e polyno-
mial by evaluating it at $-1$ . After this evaluation, we are still able to distinguish
the Euler characteristics of the different spaces of arcs involved in lemma 3.2.
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