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概要.

We study the long time behavior of viscosity solutions to some Cauchy
problem for Hamilton-Jacobi equations. We deal with Hamiltonians and initial
data that consist of the principal part which is periodic and a non-periodic
perturbation term. We also discuss a generalization of the results.

1 Introduction and Known results.

We are concerned with the large time behavior of continuous viscosity solutions to
Hamilton-Jacobi equations of the form

$\{\begin{array}{ll}u_{t}+H(x, Du)=0 in \mathbb{R}^{n}\cross(0, +\infty),u(\cdot, 0)=u_{0}(\cdot)\in UC(\mathbb{R}^{n}) on \mathbb{R}^{n},\end{array}$ (1)

where the Hamiltonian $H=H(x,p)$ is always assumed to satisfy the folowing:
(H1) $H\in BUC(\mathbb{R}^{n}\cross B(0, R))$ for all $R>0$ , where $B(O, R)$ $:=\{x\in \mathbb{R}^{n};|x|\leq R\}$ .
(H2) $H$ is coercive, i.e., $\lim_{farrow+\infty}\inf\{H(x,p).;x\in \mathbb{R}^{n}, |p|\geq r\}=+\infty$ .
(H3) $H(x,p)$ is strictly convex in $p$ for every $x\in \mathbb{R}^{n}$ .
Our objective is to show that the unique continuous viscosity solution $u(x, t)$ of (1)
has the asymptotic behavior of the form

$u(x, t)+ct-\phi(x)arrow 0$ uniformly on compact subsets of $\mathbb{R}^{n}$ , (2)
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where $(c, \phi)$ is the pair of some real number and continuous function on $\mathbb{R}^{n}$ . Remark
here that if the convergence (2) holds, then $(c, \phi)$ should satisfy the following time-
independent Hamilton-Jacobi equation (additive eigenvalue $proble\dot{m}$):

$H(x, D\phi)-c=0$ in $\mathbb{R}^{n}$ . (3)

In particular, the function $\phi(x)-ct$ is a viscosity solution of $\phi_{t}+H(x, D\phi)=0$ in
$\mathbb{R}^{n}\cross(0, +\infty)$ , and it characterizes the large time asymptotic behavior of $u(x, t)$ . We
shall call such function the asymptotic solution of the Cauchy problem (1). Unfor-
tunately, as far as asymptotic problems in the whole Euclidean space are concerned,

the above three conditions $(H1)-(H3)$ are insufficient to guarantee such solutions.
Our aim is, therefore, to find some reasonable sufficient conditions on $H$ and $u_{0}$ for
the existence of asymptotic solutions of (1).

This problem can be restated as folows. Let $M=\mathbb{T}^{n}$ or $\mathbb{R}^{n}$ and define the
Lax-Oleinik semigroup $(T_{t})_{t\geq 0}$ acting on $UC(M)$ by

$(T_{t}u_{0})(x):= \inf\{\int_{-t}^{0}L(\gamma(s),\ddot{\gamma}(s))ds+u_{0}(\gamma(0))|\gamma\in AC([-t, 0], \mathbb{R}^{n})$ , $7(0)=x\}$ ,

(4)
where $L(x, \xi)$ $;= \sup_{p\in R^{n}}(\xi\cdot p-H(x,p))$ and $AC([-t, 0], \mathbb{R}^{n})$ stands for the totality

of absolutely continuous functions on $[-t, 0]$ with values in $\mathbb{R}^{n}$ . We would like to
know if $T_{t}u_{0}+ct$ has the limit in the topology of $C(M)$ as $tarrow\infty$ for some $c\in \mathbb{R}$

and $u0\in UC(M)$ .
The first attempt to attack such problem in the case where $M=\mathbb{T}^{n}$ (or $M$ is

a smooth compact manifold) was made by Fathi $[5, 6]$ . He proves (2) under some
additional assumptions on $H$. Recently, basing on the so-called Aubry-Mather the
ory, Davini-Siconolfi [4] improve his results and show the convergence result without
assuming any condition except for $(H1)-(H3)$ .

Similar results are obtained by Namah-Roquejoffre [12] and Barles-Souganidis [3].
Their proof is based on the theory of partial differential equations and viscosity
solutions. It is worth noting that the latter admits some class of Hamiltonians that
are not convex.

Concerning asymptotic problems in non-compact regions, Fujita-Ishii-Loreti [7]
and Ishii [10] treat the case $M=R^{n}$ . The main assumption of [10] in addition to
$(H1)-(H3)$ is
(H4) $\exists\phi_{i}\in C^{0+1}(\mathbb{R}^{n}),$ $\exists\sigma_{i}\in C(\mathbb{R}^{n})$ with $i=0,1$ such that for $i=0,1$ ,

$H(x, D\phi_{i}(x))\leq-\sigma_{i}(x)$ ae. $x\in \mathbb{R}^{n}$ ,

$\lim\sigma_{i}(x)=\infty$ , $\lim(\phi_{0}-\phi_{1})(x)=\infty$ ,
国\rightarrow \infty $|x|arrow\infty$
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and the class of initial data is taken as

$\Phi_{0}$
$:= \{v\in C(\mathbb{R}^{n}) ; \inf_{\mathbb{R}^{n}}(v-\phi_{0})>-\infty\}$ .

The proof is based on some dynamical approach associated with the variational
formula (4) as well as some techniques on the theory of viscosity solution. An
important feature by virtue of assumption (A4) is that any extremal curve $\gamma(\cdot)$ in
the right-hand side of (4) stays in a compact subset of $\mathbb{R}^{n}$ for all $t>0$ . Roughly
speaking, this fact corresponds to the compactness of the Aubry set, a uniqueness
set for (3).

2 Assumption and the Main theorem.

In this note, we try to find another type of conditions on the Hamiltonian so that
there exist asymptotic solutions of (1) for some class of initial data, Notice that
this note is based on the paper [9], and a part of the results presented in this note
has been announced in [8]. We are especially interested in the case where extreme
curves may diverge (i.e. $|\gamma(t)|arrow\infty$) as $t$ goes to the infinity. $Si_{1}nilar$ situations
are also investigated by Barles-Roquejoffre [2].

Now, we state our standing assumption.

(A1) $H(x,p)=h(x,p)-f(x)$ for some $h\in C(R^{n}\cross R^{n})$ satisfying $(H1)-(H3)$ and
$f\in C(\mathbb{R}^{n})$ .
(A2) $h(\cdot,p)$ is $\mathbb{Z}^{n}$-periodic for all $p\in \mathbb{R}^{n}$ .
(A3) $f\geq 0$ and $supp(f)$ is compact.

The main theorem of this note is the following:

Theorem 2.1 (c.f. Theorem 2.4 of [8]). Let $H$ satish (A $l$)$-(A3)$ . Suppose moreover
that additive eigenvalue problem $(S)$ has a solution in the dass $BUC(\mathbb{R}^{n})$ for some
$c$ . Then, for any initial function $u_{0}$ belonging to

$\Phi_{0}$ $:=\{u_{0}\in BUC(\mathbb{R}^{n});\exists\hat{u}_{0}\in C(\mathbb{R}^{n}):\mathbb{Z}^{n}\cdot pe\dot{n}odic$ such that
$\hat{u}_{0}\leq u_{0}$ in $\mathbb{R}^{n}$ and $\lim_{|x|arrow\infty}(u_{0}-\hat{u}_{0})(x)=0$ },

there exists an asymptotic solution $\phi(x)-ct$ of (1).

We give here one of the simplest but most typical examples of Hamiltonian satis-
fying $(A1)-(A3)$ .
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Example 1. Let $n=1$ , and define $h\in C(\mathbb{R}\cross \mathbb{R})$ by

$h(x_{J}.p)$ $:=|p-1|^{2}-1-V(x)$ ,

where $V\in C(\mathbb{R})$ is a non-negative and $\mathbb{Z}$-periodic function such that $\min_{R}V=0$

and $\int_{0}^{1}\sqrt{V(x)}dx<1$ . Remark that the equation $h(x, D\phi)=0$ in $\mathbb{R}$ has bounded
solutions $(c.f. [11])$ .

Now, let $f\in C(R)$ be such that $f\geq 0$ and supp $f\subset B(O, 1)$ , and define $H$ by

$H(x,p)$ $:=h(x,p)-f(x)$ .

Clearly, $H$ satisfies $(A1)-(A3)$ . We shall prove that the equation

$H(x, D\phi)=0$ in $\mathbb{R}$ (5)

has a solution in the class $BUC(\mathbb{R}^{n})$ . Observe first that the Lagrangian $L$ associated
with $H$ can be calculated as

$L(x, \xi)=\frac{1}{4}|\xi+2|^{2}+f(x)\geq 0$.

For any $x\in \mathbb{R}$ , we define $\gamma_{x}\in AC((-\infty, 0$]) by $\gamma_{x}(s)$ $:=x-2s$. Then, for every
$t>0$ ,

$\int_{-t}^{0}L(\gamma_{x}(s),\dot{\gamma}_{x}(s))ds=\int_{-t}^{0}f(\gamma_{x}(s))ds\leq\max f$.

If we set

$d(x,y)$ $:= \inf\{\int_{-t}^{0}L(\gamma(s),\dot{\gamma}(s))ds|t>0,$ $\gamma\in AC([-t, 0]),$ $\gamma(-t)=y,$ $\gamma(0)=x\}$ ,

then, $d(\cdot, y)$ is a viscosity solution of (5) in $\mathbb{R}\backslash \{y\}$ . Moreover, for any $a>0$ , we see

$0 \leq d(x, x+a)\leq\int_{-\frac{\alpha}{2}}^{0}L(\gamma_{x}(s),\dot{\gamma}_{x}(s))ds\leq\max f$.

Thus, by the Ascoli-Arzela theorem, we conclude that there exists $\phi\in BUC(\mathbb{R}^{n})$

such that $d(x, x+j_{k})arrow\phi$ in $C(\mathbb{R})$ for some diverging sequence $\{j_{k}\}_{k\in N}\subset N$ as
$karrow\infty$ . In view of stability, $\phi$ is indeed a viscosity solution of (5). Hence, $Th\infty rem$

2.1 is valid with $c=0$ .

3 Proof of Theorem 2.1.

This section is devoted to the proof of Theorem 2.1. Note first that in order to prove
$Th\infty rem2.1$ , we need only to study the case where $c=0$ by replacing, if necessary,
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$H-c$ and $u(x, t)+ct$ with $H$ and $u(x, t)$ , respectively. Therefore, from now on, we
always assume that $c=0$.

Let us denote by $S_{H}^{-}$ (resp. $S_{H}^{+}$ ) the totality of viscosity subsolutions (resp. su-
persolutions) of

$H(x, D\phi)=0$ in $\mathbb{R}^{n}$ . (6)

We set $S_{H}$ $:=S_{H}^{-}\cap S_{H}^{+}$ . It is known that, under (H1) and (H2), we have $S_{H}^{-}\subset$

$Lip(\mathbb{R}^{n})$ .
Let $\phi\in S_{H}$ . Then, for any $(x, t)\in \mathbb{R}^{n}\cross[0, \infty)$ , we have

$\phi(x)=\inf\{\int_{-t}^{0}L(\gamma(s),\dot{\gamma}(s))ds+\phi(\gamma(-t))|\gamma\in AC([-t, 0]),$ $\gamma(0)=x\}$ . (7)

Fora givenp $>0$ , we denote by $\mathcal{E}_{\rho}((-\infty, 0$] $;x;\phi$) the set of curves $\gamma\in AC((-\infty, 0$])

satisfying $\gamma(0)=x$ and

$\phi(x)>\int_{-t}^{0}L(\gamma(s),\dot{\gamma}(s))ds+\phi(\gamma(-t))-\rho$ for all $t>0$ . (8)

It is not difficult to check that $\mathcal{E}_{\rho}((-\infty, 0$ ] $;x;\phi$) $\neq\emptyset$ .

Lemma 3.1. For any $\phi\in S_{H_{f}}x\in \mathbb{R}^{n},$ $\rho>0$ and $\gamma\in \mathcal{E}_{\rho}((-\infty, 0$ ] $;x;\phi$), there exists
$\lambda>1$ and a modulus $\omega_{1}$ such that for $eve\eta\tau$ and $t>0$ satisfy ing $t\geq\lambda\tau$ ,

$u(x, t)- \phi(x)\leq u(\gamma(-t), \tau)-\phi(\gamma(-t))+\rho+\frac{t\tau}{t-\tau}\omega_{1}(\frac{\tau}{t-\tau})$ . (9)

Proof. This lemma has essentially been proved in [4] and [10]. So, we omit to
reproduce the proof (see also {9]). $\square$

Proof of Theorem 2.1. Let $u$ be the unique solution of Cauchy problem (1) satisfying
$u($ . , $0)=u_{0}\in\Phi_{0}$ (see Appendix in [9] for the solvability of Cauchy problem (1)).

Let $\phi$ be any bounded solution of (6). Since $u_{0}$ is bounded, we can take $A>0$ so
that $\phi(x)-A\leq u_{0}(x)\leq\phi(x)+A$ for $aUx\in \mathbb{R}^{n}$ . Remark also that $\phi+A$ and
$\phi-A$ are solutions of (1) with initial data $\phi+A$ and $\phi-A$ , respectively. Then, the

standard comparison theorem for (1) infers that $\phi(x)-A\leq u(x, t)\leq\phi(x)+A$ for

all $(x, t)\in \mathbb{R}^{n}\cross[0, +\infty)$ . In particular, $u$ is bounded on $\mathbb{R}^{n}\cross[0, +\infty$ ).

We next define $u^{+},$ $u^{-}\in BUC(\mathbb{R}^{n})$ by

$u^{+}(x)$
$:= \lim_{tarrow+}\sup_{\infty}u(x, t)$ , $u^{-}(x)$ $:=1 \inf_{tarrow+\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}u(x, t)$ .

Note that $hom$ the general theory of viscosity solution, $u^{+}$ and $u^{-}$ are sub- and
supersolutions of (6), respectively. Moreover, the convexity of $H(x, \cdot)$ implies that
$u^{-}$ is a subsolution of (6) (see [1]). In particular, $u^{-}$ is a bounded solution of (6).
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We now show that $u^{+}\leq u^{-}$ in $R^{n}$ . Fix any $y\in \mathbb{R}^{n}$ and choose a diverging
sequence $\{t_{j}\}_{j\in N}\subset(0, \infty)$ so that $u^{+}(y)= \lim_{jarrow\infty}u(y, t_{j})$ . Take any $\rho>0$ ,
$\gamma\in \mathcal{E}_{\rho}((-\infty, 0];y;u^{-})$ , and set $y_{j}=\gamma(-t_{j})$ for $j\in N$ .
Case 1: $|y_{j}|arrow\infty$ as $jarrow$ oo.
In this case, since $h(x,p)$ is $\mathbb{Z}^{n}$-periodic in $x$ , we may assume by taking a subsequence
of $\{y_{j}\}$ if necessary that there exists $\{\theta_{j}\}_{j\in N}\subset[0,1)^{n}$ such that $y_{j}\equiv\theta_{j}$ by mod $\mathbb{Z}^{d}$

and $\theta_{j}arrow\theta$ for some $\theta\in[0,1]^{\dot{n}}$ as $jarrow\infty$ . Setting $\xi_{j}$ $:=\theta-\theta_{j}$ and using (A3), we
see

$H(\cdot+y_{j}, \cdot)arrow h(\cdot+\theta, \cdot)$ in $C(\mathbb{R}^{n}\cross \mathbb{R}^{n})$ as $jarrow\infty$ ,

$H(x+y_{j}+\xi_{j},p)\leq h(x+\theta,p)$ for all $(x,p,j)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}x$ N.

Similarly, by the definition of $\Phi_{0}$ , there exists a $\mathbb{Z}^{n}$-periodic $\hat{u}_{0}\in BUC(\mathbb{R}^{n})$ such
that

$u_{0}(\cdot+y_{j})arrow\hat{u}_{0}(\cdot+\theta)$ in $C(\mathbb{R}^{n})$ as $jarrow\infty$ ,

$u_{0}(x+y_{j}+\xi_{j})\geq\hat{u}_{0}(x+\theta)$ for all $(x,j)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}\cross$ N.

Case 2: $\sup_{j}|y_{j}|<\infty$ .
In this case, there exists $z\in \mathbb{R}^{n}$ such that $y_{j}arrow z$ as $jarrow\infty$ . Thus, by setting
$\xi_{j}:=z-y_{j}$ , we have

$H(\cdot+y_{j}, \cdot)arrow H(\cdot+z, \cdot)$ in $C(\mathbb{R}^{n}\cross \mathbb{R}^{n})$ as $jarrow\infty$ ,

$H(x+y_{j}+\xi_{j},p)\leq H(x+z,p)$ for all $(x,p,j)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}\cross N$ ,

and

$u_{0}(\cdot+y_{j})arrow u_{0}(\cdot+z)$ in $C(\mathbb{R}^{n})$ as $jarrow\infty$ ,

$uo(x+y_{j}+\xi_{j})\geq u_{0}(x+z)$ for $aU(x,j)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}\cross$ N.

Summarizing these two cases, we may assume that there exist functions $G\in C(\mathbb{R}^{n}\cross$

$\mathbb{R}^{n}),$ $v0\in BUC(\mathbb{R}^{n})$ and a sequence $\{\xi_{j}\}_{j\in N}\subset \mathbb{R}^{n}$ converging to zero such that

$H(\cdot+y_{j}, \cdot)arrow G$ in $C(\mathbb{R}^{n}\cross \mathbb{R}^{n})$ as $jarrow\infty$ ,

$H(x+y_{j}+\xi_{j},p)\leq G(x,p)$ for $a^{g}(x,p,j)\in \mathbb{R}^{n}\cross \mathbb{R}^{n}\cross N$ ,

and

$u_{0}(\cdot+y_{j}+\xi_{j})arrow v_{0}$ in $C(\mathbb{R}^{n})$ as $jarrow\infty$ ,
$u_{0}(x+y_{j}+\xi_{j})\geq v_{0}(x)$ for all $(x,j)\in \mathbb{R}^{n}\cross N$ .
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We now consider the Cauchy problem

$\{\begin{array}{ll}v_{t}+G(x, Dv)=0 in \mathbb{R}^{n}\cross(0, +\infty),v(\cdot, 0)=v_{0}(\cdot) on \mathbb{R}^{n},\end{array}$ (10)

and let $v(x, t)$ be the unique viscosity solution of (10). We denote by $S_{G}^{-},$ $S_{G}^{+}$ the

set of all sub- and supersolutions of

$G(x, D\phi)=0$ in $\mathbb{R}^{n}$ ,

respectively. Set $S_{G}$ $:=S_{G}^{-}\cap S_{G}^{+}$ . Then, we can check that $\emptyset\neq S_{G}\subset BUC(\mathbb{R}^{n})$ . In

particular, the function
$v^{-}(x)$ $:= \lim_{tarrow+}\inf_{\infty}v(x, t)$

is $wen$-defined and moreover $v^{-}\in S_{G}$ .
Now we apply Proposition 3.1 by taking $\phi:=u^{-}$ to get

$u(y,t_{j})-u^{-}(y) \leq u(y_{j}, \tau)-u^{-}(y_{j})+\rho+\frac{t_{j}\tau}{t_{j}-\tau}\omega_{1}(\frac{\tau}{t_{j}-\tau})$ (11)

for every $\tau>0$ and sufficiently large $j\in N$ . On the other hand, by comparison and
stability, we see

$u(x+y_{j}+\xi_{j}, t)arrow v(x, t)$ in $C(\mathbb{R}^{n}\cross[0, \infty))$ as $jarrow\infty$ ,

$u(x+y_{j}+\xi_{js}t)\geq v(x, t)$ for all $(x, t,j)\in \mathbb{R}^{n}\cross[0, \infty)\cross N$ .

In particular, the latter implies $u^{-}(y_{j})\geq v^{-}(-\xi_{j})$ for all $j\in N$ . Thus, in view of

(11), we have

$u(y, t_{j})-u^{-}(y) \leq.u(y_{j}, \tau)-v^{-}(-\xi_{j})+\rho+\frac{t_{j}\tau}{t_{j}-\tau}\omega_{1}(\frac{\tau}{t_{j}-\tau})$ . (12)

Sending $jarrow\infty$ in (12), we have

$u^{+}(y)-u^{-}(y)\leq v(0, \tau)-v^{-}(0)+\rho$ .

Letting $\tau=\tau_{j}arrow\infty$ along a sequence $\{\tau_{j}\}$ such that $\lim_{jarrow\infty}v(0, \tau_{j})=\lim\inf v(O, t)\iotaarrow\infty$ we

finally obtain $u^{+}(y)\leq u^{-}(y)+\rho$ . Since $\rho>0$ and $y\in \mathbb{R}^{n}$ are arbitrary, we conclude
that $u^{+}\leq u^{-}$ in $\mathbb{R}^{\mathfrak{n}}$ , and the proof of Theorem 2.1 has been completed. $\square$

4 Final remarks.

Theorem 1 can be generalized considerably. We first introduce the notion of semi-
periodicity,and obliquely semi-almost period.icity (see [9] for details).
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Definition 1. A function $\phi\in C(\mathbb{R}^{n})$ is called lower (resp. upper) semi-periodic if
for any sequence $\{y_{j}\}_{j\in N}\subset \mathbb{R}^{n}$ , there exist a subsequence $\{z_{j}\}_{j\in N}$ of $\{y_{j}\}$ , a sequence
$\{\xi_{j}\}_{j\in N}\subset \mathbb{R}^{n}$ converging to zero, and a function $\psi\in C(\mathbb{R}^{n})$ such that $\phi(\cdot+z_{j})arrow$

$\psi(\cdot)$ in $C(\mathbb{R}^{n})$ as $jarrow\infty$ and $\phi(x+z_{j}+\xi_{j})\geq\psi(x)$ (resp. $\phi(x+z_{j}+\xi_{j})\leq\psi(x)$ )

for all $(x,j)\in \mathbb{R}^{n}\cross N$ .

Definition 2. A function $\phi\in C(\mathbb{R}^{n})$ is called obliquely lower (resp. upper) semi-
almost periodic if for any sequence $\{y_{j}\}_{j\in N}\subset \mathbb{R}^{n}$ and any $\epsilon>0$ , there exist a
subsequence $\{z_{j}\}_{j\in N}$ of $\{y_{j}\}$ and a function $\psi\in C(\mathbb{R}^{n})$ such that $\phi(\cdot+z_{j})-$

$\phi(z_{j})arrow\psi(\cdot)$ in $C(\mathbb{R}^{n})$ as $jarrow\infty$ and $\phi(x+z_{j})-\phi(z_{j})+\epsilon>\psi(x)$ (resp.
$\phi(x+z_{j})-\phi(z_{j})-\epsilon<\psi(x))$ for all $(x,j)\in \mathbb{R}^{n}\cross N$ .

Theorem 4.1 (Theorem 2.2 of [9]). Let $H$ be a Hamiltonian satisfying $(Hl)-(HS)$

and

$(H5)$ $H(\cdot,p)$ is upper semi-periodic for all $p\in \mathbb{R}^{n}$ ,
$(H\theta)$ Theoe exzst a constant $c\in \mathbb{R}$ and functions $\phi_{0}\in S_{H-c}^{-}$ and $\psi 0\in S_{H-c}^{+}$ such
that $\phi_{0}\leq u_{0}\leq\phi_{0}+C_{0}$ for some $C_{0}>0$ and $u_{0}^{-}\leq\psi 0$ , where $u_{0}^{-}$ is defined by

$u_{0}^{-}(x)$ $:= \sup${ $\phi(x)|\phi\in S_{H-c}^{-}$ , $\phi\leq u_{0}$ in $\mathbb{R}^{n}$ }.

Then, for any initia$l$ datum $u_{0}$ belonging to

$\Phi_{0}:=$ { $v\in UC(\mathbb{R}^{n});v$ is obliquely lower semi-almost $per\dot{\tau}odic$},

there enists an asymptotic solution of (1).

Remark. It seems that almost periodicity for $H$ might be sufficient to guarantee
the existence of asymptotic solutions. In fact, there are a few examples that an-
swer this question affirmatively. However, a complete research will be left in future
investigation.
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