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Abstract
We present a necessary and sufficient condition for the positive invariance of the positive cone

under general semi-linear convection-diffusion-reaction systems with constant coefficients, com-
prising Fickian diffusion as well as cross-diffusion. This criterion turns out to be a generalization
of an invariance criterion for ordinary differential equations and also includes previously known
sufficient criteria under weaker conditions. As an illustration of the main result we discuss a river
quality model, a model of anaerobic waste digestion, and a predator-prey model.

Keywords: positive invariance, convection-diffusion-reaction, Streeter-Phelps model, anaer-
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1 Introduction
The solutions of convection-diffusion-reaction systems arising in biology, ecology, or engineering
often represent quantities such as population sizes or concentrations of nutrients, pollutants and
other chemicals. Positivity is a natural and paramount property that these solutions need to
possaes. Models that do not guarantee it loose their validity and break down for small values
of the solutions. In many instances, understanding that a particular model does not preserve
positivity but aMows under certain circumstances solutions to become negative, can lead to a
better understanding of the model and its limitations. Therefore, one of the first steps in analyzing
a biological or ecological model by mathematical techniques is traditionaUy to $veri\phi$ that solutions
that originate from a positive initial state remain non-negative for all time. In other words, one
shows that the positive cone is positively invariant under for the model under consideration.
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We will formulate and prove a theorem that provides the modeler with an easy to use tool to
tactkle this question. In this first version it is restricted to semi-linear $convection-diffusion$-reaction
systems with constant coefficients. This class of equations is big enough, though, to comprise
important and interesting applications in the engineering and biological sciences, as well as in
other application areas, such as financial mathematics and modeling of social dynamics. We will
demonstrate the application of this positivity criterion with three examples that are drawn from
environmental engineering and ecology. While some sufficient conditions for positive invariance
of diffusion-reaction equations are known in the literature, e.g. in [8], we present here a criterion
that is also necessary. The proof is elementary and the criterion is easy to evaluate.

2 Main result
We consider the semi-linear convection-diffusion-reaction system

$\partial_{t}u=a\Delta u-\gamma\cdot Du+f(u)$ ,
(1)

$u|_{t=0}=u_{0}$ , $u|_{\partial\Omega}=0$ ,

where the dependent variable $u=$ $(u^{1}, \ldots , u^{k})$ is a vector-valued function of $t\in \mathbb{R}$ and $x\in\Omega\subset$

$\mathbb{R}^{\mathfrak{n}},$ $a$ is a $(kxk)$-matrix with constant coefficients such that $a+a^{*}>0$ , and $f\in C^{1}(\mathbb{R}^{k},\mathbb{R}^{k})$ .
Here $\gamma\cdot Du=\sum_{1=1}^{n}\gamma_{i}\partial_{x_{l}}u$, with $\gamma_{1}$ a $(kxk)$-matrix with constant coefficients and $\Delta$ is the
Laplacian, applied to the components of $u$ . We assume that solutions $u$ to (1) with initial data
$u(0, \cdot)=u_{0}$ exist under appropriate compatibility conditions. (Note: if $f\in C^{1}$ then there exists
$\delta_{u0}>0$ , such that a solution of (1) exists in $[0, \delta_{u0}]$ ).

We establish a criterion for positive invariance of the positive cone $K^{+}=\{u^{1}\geq 0, \ldots, u^{k}\geq 0\}$ ,
that is if $u$ is a solution originating from initial data $u_{0}$ then

$u0\in K^{+}\Rightarrow u(t)\in K^{+}$ .
Theorem 2.1. Let $a,\dot{\gamma}$:, $i=1,$ $\ldots,$

$n$ , be $(kxk)$ -matrices with constant coefficients, such that
$a+a^{*}>0$ and $f\in C^{1}(\mathbb{R}^{k},\mathbb{R}^{k})$ . Let $u_{0}\in L^{2}(\Omega,\mathbb{R}^{k})$ and the compatibility conditions on the
data of (1) hold. Then in order to preserve the non-negative cone for (1) necessary and sufficient
conditions are that the matrices $a$ and $\gamma_{1},$ $i=1,$ $\ldots,$

$n$ are diagonat and $f_{1}$ $(u^{1}, \ldots , 0:’\ldots , u^{k})\geq 0$

for $u^{1}\geq 0,$ $\ldots,u^{k}\geq 0$ .
Proof. Necessity. We assume that $u_{0}\in K^{+}$ implies that $u(t)\in K^{+}$ . Then for any pair
$u_{0},v\in K+$ such that

$(u_{0},v)_{L^{2}}$ $:= \sum_{i=1}^{k}\int_{\Omega}u_{0}^{1}(x)v^{i}(x)dx=0$
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we have

$( \frac{\partial u}{\partial t}|_{t=0},v)_{L^{2}}=\lim_{tarrow 0,l>0}(\frac{u(t)-u_{0}}{t},v)_{L^{2}}=\lim_{t\succ 0}\frac{u(t)}{t}\geq 0tarrow 0$ (2)

where we used that $u(t)\in K^{+}$ due to necessity. On the other hand

$( \frac{\partial u}{\partial t}|_{t=0},v)_{L^{2}}=(a\Delta u_{0}-\gamma Du_{0}+f(u_{0}),v)\geq 0$ (3)

for $aUv\in K^{+}$ , because $u(t)$ is a solution of (1). Since $v\in K^{+}$ in (3) is arbitrary, we have

$(a\Delta u_{0}-\gamma Du_{0}+f(u_{0}),v)\geq 0$ (4)

for all pairs $u_{0},v$ with $(u_{0},v)_{L^{2}}=0$ . Choosing in particular $u_{0}=(0,\tilde{i}$$u,$ $\ldots,0)$ and $v\mathfrak{g}=$

$(0,$
$\tilde{iv},$

$\ldots,0)$ , with $\tilde{u}\geq 0,\tilde{v}\geq 0,$ $i\neq j$ , we obtain $bom(4)$

$((a_{1j} \Delta\tilde{u},\overline{v})-\sum_{\ell=1}^{n}(\gamma_{\ell}^{ij}\partial_{x_{\ell}}\tilde{u},\overline{v})+f_{j}(0,\tilde{i} u, \ldots,0),\tilde{v})_{L^{2}}\geq 0$ (5)

Rom (5) it follows that, for almost all $x\in\Omega$ we have

$a_{1j} \Delta\overline{u}-\sum_{\ell=1}^{n}\gamma i^{j}\partial_{x_{\ell}}\tilde{u}+f_{j}(0, \ldots,\tilde{u}, \ldots,0)|\geq 0$ (6)

for $i\neq j$ . Note that (6) is a differential inequality for the scalar function $\tilde{u}$ . Since (6) is a
pointwise estimate, we obtain

$u_{j}=0$ , $\gamma_{\ell}^{ij}=0$ , $f_{j}(0, \ldots,\tilde{u},.,0):..\geq 0,$ . (7)

for $i\neq j,$ $\ell=1,$ $\ldots$ , $n$ . Our next goal is to show that (7) implies $f_{i}(u^{1}, \ldots , 0i , u^{k})\geq 0$ for
$u^{j}\geq 0,$ $j=1,$ $\ldots$ , $k$ . Indeed, taking $a=diag(a_{1}, \ldots,a_{k}),$ $\gamma_{\ell}^{ij}=di*(\gamma_{\ell}^{1}, \ldots,\gamma_{\ell}^{k}),$ $\ell=1,$ $\ldots,n$ ,
into account, for a pair $u_{0}=$ $(u^{1}, \ldots,0i , u^{k})$ and $v=(O, \ldots,\tilde{vi} , 0)$ from (4) we obtain that

$f_{1}(u^{1}, \ldots,0, \ldots,u^{k}):\geq 0$, (8)

for $u^{j}\geq 0,$ $j=1,$ $\ldots,$
$k$ . This proves the necessity part of Theorem 2.1.

Sufficient. We assume that $a=diag(a^{1}, \ldots, a^{k}),$ $\gamma\ell=diag(\gamma_{\ell}^{1}, \ldots, \gamma_{\ell}^{k}),$ $\ell=1,$ $\ldots,n$ , and
$f_{1}$ $(u^{1}, .., 0i , u^{k})\geq 0$ for $u^{j}\geq 0,$ $j=1,$ $\ldots$ , $k$ . We need to prove that if $u_{0}\in K^{+}$ , it follows
that $u(t)\in K^{+}$ .
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To this end, we introduce the functions $u+= \max(u, 0)$ and $u-=- \min(u, 0)$ and use thathom
$u\in H^{1}(\Omega)$ it follows that $u_{+},$ $u-\in H^{1}(\Omega)$ and $(u+, u_{-})_{L^{2}}=(\nabla u_{+}, u_{-})=(\nabla u_{+}, \nabla u_{-})=0$ .
Hence, it suffices to show that, if $u_{-}(O,x)=0$ it follows that $u_{-}(t, x)=0$, as long as a solution
exists. Let $L_{0}u:=a \Delta u-\sum_{\ell}\gamma\ell\partial_{x_{\ell}}u$. Then, since $u=u_{+}-u_{-}$ , we have

$(L_{0}u, u_{-})_{L^{2}}=-(L_{0}u_{-}, u_{-})_{L^{2}}+(L_{0}u_{+}, u_{-})_{L^{2}}=-(L_{0}u_{-}, u_{-})_{L^{2}}$ . (9)

Hence

$(\partial_{t}u, u_{-})=(f(u),u_{-})-(L_{0}u_{-}, u_{-})$ . (10)

Note that, $( \ u, u_{-})_{L^{2}}=(\partial_{t}u+, u_{-})_{L^{2}}-(\partial_{t}u_{-}, u_{-})_{L^{2}}=-\frac{1}{2}\ ||u_{-} \Vert^{2}$ due to $(\partial_{t}u_{+}, u_{-})=0$ .
where we denote by $||\cdot||$ the corresponding norm in $L^{2}(\Omega,\mathbb{R}^{k})$ . Thus, we have

$- \frac{1}{2}\partial_{t}\Vert u_{-}||^{2}=-(L_{0}u_{-},u_{-})_{L^{2}}+(f(u), u_{-})_{L^{2}}$ . (11)

First, let us estimate the term $(L_{0}u_{-}, u_{-})$ in (11). Note that

$(a \Delta u_{-},u_{-})_{L^{2}}=-\sum_{i=1}^{k}a^{:}||\nabla u_{-}^{i}||^{2}$ (12)

and

$|( \gamma_{\ell}^{i}\frac{\partial u_{-}^{i}}{\partial x_{\ell}},$ $u_{-)_{L^{2}}}^{i}|\leq\epsilon\Vert\nabla u_{-}^{i}\Vert^{2}+C_{\epsilon}\Vert u_{-}^{\dot{*}}\Vert^{2}$ . (13)

Therefore $kom(11),(12)$ we obtain

$\frac{1}{2}\frac{\partial}{\partial t}||u_{-}||^{2}+\sum_{i=1}^{k}a^{i}\Vert\nabla u_{-}^{i}\Vert^{2}=\sum_{i=1\ldots k,\ell=1\ldots \mathfrak{n}}\gamma_{\ell}^{i}(\nabla u_{-}^{\dot{*}}, u_{-}^{i})_{L^{2}}-(f(u), u_{-})_{L^{2}}$ (14)

and as a result of (13) and (14) we have

$\partial_{t}||u_{-}||^{2}\leq C_{\epsilon}||u_{-}||^{2}-(f(u),u_{-})_{L^{2}}$ . (15)

Next we estimate the last term in (15). Note that

$(f(u),u_{-})_{L^{2}}= \sum_{i=1}^{k}\int_{\Omega}f_{\dot{*}}(u^{1}, \ldots,u^{k})u_{-}^{i}dx$. (16)

On the other hand, due to $f\in C^{1}(\mathbb{R}^{k},\mathbb{R}^{k})$ it follows that

$f_{i}(u^{1}, \ldots,u^{k})=f_{i}(u^{1}, \ldots,0,., u^{k})*\cdot..+u^{\dot{*}}F_{i}(u^{1}, \ldots,u^{k})$ , (17)
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with $|F_{1}$ $(u^{1}, \ldots , u^{k})|\leq M$ . We obtain

$f_{1}(u^{1}, \ldots, u^{k})u_{-}^{i}=f_{2}(u^{1}, \ldots, 0,.., u^{k})u_{-}^{i}+F_{i}(u^{1}, \ldots,u^{k}):$.
and

$\int_{\Omega}f_{i}(u^{1}, \ldots,u^{k})u_{-}^{1}dx=\int_{\Omega}f_{i}(u^{1}, \ldots, 0,., u^{k})u_{-}^{i}\ :..+ \int_{\Omega}u_{-}u^{:}F_{1}(u^{1}, \ldots,u^{k})dx$. (18)

The last tem in (18) admits the following estimate

$| \int_{\Omega}u_{-}^{i}u^{i}F_{1}\cdot(u^{1}, \ldots,u^{k})dx|\leq\int_{\Omega}|u_{-}^{i}||u^{i}|F_{i}(u^{1}, \ldots, u^{k})dx\leq M\int_{\Omega}(u_{-}^{i}+u:)|u_{-}^{i}|dx=M\int_{\Omega}(u_{-}^{i})^{2}dx$ .
(19)

Then

$-(f(u),u_{-})_{L^{2}}=- \sum_{i}\int_{\Omega}f_{i}(u^{1},j 0, \ldots,u^{k})u_{-}^{i}dx-\sum_{i}\int_{\Omega}u_{-}^{i}u^{:}F_{\dot{*}}(u^{1},$ $\ldots,u^{k})dx$

(20)
$\leq M||u_{-}||^{2}-(f_{i}(u^{1}, \ldots,0, \ldots, u^{k}),u_{-)_{L^{2}}}^{1}$ .

Let us aesume now for a moment that $f_{1}$ $(u^{1}, \ldots , 0, \ldots , u^{k})\geq 0$ (in fact, this is true only for
$u^{1}\geq 0,$

$\ldots$ , $u^{k}\geq 0$ and we don’t have any reason to assume this a priori). Then with the help of
(20) the estimate (15) becomes

$\partial_{\mathfrak{t}}\Vert u_{-}||^{2}\leq M’||u_{-}\Vert^{2}$ . (21)

Takuing into account $u_{-}(O)=0$ we obtain $u_{-}(t)\equiv 0$, which in turn implies $u\in K^{+}$ .
It remains to improve the arguments for $f_{i}$ $(u^{1}, \ldots , 0, \ldots,u^{k})\geq 0$ . To this end, we use the

folowing triCk: Let us consider the representation of $f_{i}(u^{1}, \ldots, u^{k})$ , i.e.

$f_{1}(u^{1},$ $\ldots,u^{k})=f_{i}(u^{1}, \ldots,0, \ldots,u^{k})$ 十 $u^{i}F_{1}(u^{1},$ $\ldots,u^{k})$ ,

define
$\tilde{f_{1}}(u^{1},$

$\ldots,$
$u^{k})=f_{i}(|u^{1}|,$

$\ldots,$
$0,$

$\ldots,$ $|u^{k}|)+u^{i}F_{i}(u^{1},$
$\ldots,$

$u^{k})$

and consider the equation

$\frac{\partial u}{\partial t}=a\Delta u-\gamma\cdot Du+\tilde{f}(u)$ ,
(22)

$u|_{t=0}=u_{0}(x)$ , $u|_{\partial\Omega}=0$ .
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For this equation we know that, if $u_{0}\in K^{+}$ it follows that $u(t)\in K^{+}$ . But for such $u(t)\in K^{+}$

we have

$\frac{\partial u}{\partial t}=a\Delta u-\gamma\cdot Du+f(u)$ ,
(23)

$u|_{t=0}=u_{0}(x)$ , $u|_{\partial\Omega}=0$ ,

which implies that from $u_{0}\in K^{+}$ , it follows that $u(t)\in K^{+}$ . This proves Theorem 2.1. 口

Remark 2.2. Our criterion Theorem 2.1 applied to the linear case

$(\begin{array}{llll}f_{1}(u^{1} ’ \cdots u^{k}) f_{k}(u^{1} \cdots \cdots u^{k})\end{array})=(\begin{array}{lll}b_{l1} \cdots b_{1k}\vdots \ddots \vdots b_{kl} \cdots b_{kk}\end{array})(\begin{array}{l}u^{1}\vdots u^{k}\end{array})$

leads to the condition that the matri $b=(b)_{*j}$ nee& $to$ be essentially positive, $i.e$ . $b_{:j}\geq 0,$ $i\neq j$ .
Remark 2.3. In many classical applications in engineering and ecology one encounters positive
diagonal matrices a (pure Fickian diffusion) and diagonal convection matrices $\gamma_{1}$ . The criterion
Theorem 2.1 is then equivalent to the tangent condition for positive invanance under ordinary
differential equations, $cf/10J$. In other words, if the positive cone $K^{+}$ is positively invariant for
the spatially homopeneous case, as described by the ordinary differential equation

$u_{t}=f(u)$ ,

then it is also positively invariant ifFickian diffusion and a convective drift term is added. Positive
invariance, however, does not carry over p.om the ODE case to the PDE case if $cro\epsilon s- diffision$

tenns appear in the diffusion matri $a$ .
Remark 2.4. The “sufficient part” of Theorem 2.1 includes the invarianoe theorems of [$8J$ n-
stricted to constant coefficient systems, but the conditions required for Theorem 2.1 are weaker
and quicker to verify for a particular system.

Remark 2.5. $fi\gamma_{om}$ a mathematical modeling perspective, positivity is one of the most important
and natural $p$roperties that solutions of convection-diffusion-feactions systems should have, and
one would obviously $e\{\varphi ect$ that general results like the one stated here nist in the literature and
are easy to find. As it turns out, this is not the $case$ /6, $12J$; indeed it appears that most $n$lated
results are indeed folklore theore $ms$ .

3 Applications

3.1 Extended Streeter-Phelps Theory
The Streeter-Phelps model describes self-purification of a river and is formulated in terms of the
biological oxygen demand BOD and the dissolved oxygen concentration [5]. The first is a wa-
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ter quality parameter in which several organic pollution sources are lumped. In essence, BOD
measures how much oxygen is required by the (aerobic) bacteria to degrade the pollutants. The
disslved axygen concentration is a measure for the healthyness of the river. Under perfect condi-
tions, BOD vanishes and the oxygen is at saturation level. In the original Streeter-Phelps model,
the processes considered are transport of dissolved substrates by convection, decay of BOD due
to microbial activity as a first order reaction, and re.aeration, that is external transfer of oxygen,
proportionally to the oxygen deficit ( $i.e$ . the difference between the saturation concentration of
oxygen and the actual value). Thus, the original Streeter-Phelps model is a linear first order equa.
tion and, therefore, analytically solvable [5]. Over the years several extensions of this model have
been suggested, in particular including diffusion as a second transport mechanism and nonlinear
reaction terms for BOD decay. An extended Streeter-Phelps model reads

$b_{t}+vb_{x}$ $=$ $D_{b}b_{xx}-F(b)$ (24)
$c_{t}+vc_{x}$ $=$ $D_{c}c_{xx}-F(b)+k(c_{\infty}-c)$ (25)

where $v$ is the (constant) flow velocity in the river, $D_{b,c}$ the diffusion coefficients, and $k$ the re-
aeration rate. $F(b)daecrib\infty$ the decay of BOD due to microbial activity. Due to monotonicity
cooiderations, it must hold $F(b)\geq 0,$ $F(O)=0$ and $F’(b)\geq 0$ (assuming that the reaction terms
are smooth). The classical (linear) $Str\infty ter$ Phelps model has the $fir\epsilon t$ order reaction $F(b)=\tilde{k}b$.
Other models in the literature are the second order reaction model $F(b)=\check{k}b^{2}[7,11]$ or the
Monod term model $F(b)= \frac{b}{n+b}(\gamma_{1}-\gamma ab)[2,7]$ . While we can always assume a $homogen\infty us$

Neumann condition at the downstream boundary, we have either $non- homogen\infty us$ Diriilet,
$non- homogen\infty us$ Neumann, or Robin boundary conditions uPstream, depending on the physical
situation. In order to apply our criterion it is sufficient to consider the right hand side of $(24, 25)$ ,
cf Remark 2.3. The positivity of $b$ is $1^{aranteed}$ by the definition of F. More $inter\infty tingi\epsilon$ the
$beha\dot{\mathfrak{n}}or$ of $c$. For $c=0$ the right hand side of (25)$becom\infty kc_{\infty}-F(b)$ . Henoe, whether or not $c$

$remain8$ positive depends on the parameters of $r\triangleright aeration$ as well as on the parameters daecribing
the decay of BOD and the initial data for $b$ . Of course, negatIve values for the $\omega ncentration$ of
di8so1v\’e oxygen are unphysical. In this situation the Streeter-Phelps model breaks down. The
river falls under an aerobic regime, which means that all oxygen coouming organisms will leave,
die off or fall dormant, including the ones responsible for (24). Iotead, anaerobic organisms take
over and (24) but must be replaced by adifferent model. Environmentally, this is the wooet case
scenario. The decrease of rygen following apollution fall-out is known as the oxygen $8ag$ . In
the long term $c$ will approach the saturation concentration $c_{\infty}$ .

3.2 Anaerobic digestion of solid waste
The underlying model includes two processes, (i) hydrolysis, $i.e$ . degradation of waste constituting
poymers, and (u) methanogenesis, $i.e$ . production of methane by methanogenic bacteria. Both
process rates are controlled by volatile fatty acids (VFA). In particular, high VFA $\infty noentratioo$

slow down the process. The model is formulated in terms of the independent variables waste
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density $W$, concentration of VFA $S$ and concentration of methanogenic biomass $B$ . In order to
allow for spatio-temporal effects, such as formation of methanogenic pockets, we consider the
model formulated in [4], based on previous work by Vavilin and $cc\succ workers$ in [9]

$W_{t}$ $=$ $D_{W}\Delta W$ 一っwu\nabla W $-k_{1}F(S)W=:fi(W, S, B)$ (26)
$S_{t}$ $=$ $D_{S}\Delta S-\gamma_{S}u\nabla S+k_{2}F(S)W-k_{3}G(S)B=:f_{2}(W, S, B)$ (27)

$B_{\ell}$ $=$ $D_{B}\Delta B-\gamma_{B}u\nabla B+(k_{4}G(S)-k_{5})B=:f_{3}(W, S, B)$ (28)

All parameters $k_{1,\ldots,5},$ $m_{S,B},$ $D_{W,S,B}$ are positive. $u$ describes the velocity of leachate flow. In
the model (26,27,28) we omitted an equation for methane production that is included in $[4, 9]$ .
This equation decouples for the system presented here.

The smooth coefficient function $F(S)$ describes the dependency of hydrolysis on $S$ ; we have
$F(O)=1,$ $F’(S)<0$ and $\lim_{Sarrow\infty}F(S)=0$ . The smooth coefficent function $G(S)$ describes
the dependency of methanogenesis on $S;G$ is a positive $singl\triangleright bump$ function with $G(O)=0$,
$\lim Sarrow\infty^{G(S)}=0$ and exactly one local maximum $\hat{S}$ , for which $k_{4}G(\hat{S})-k_{5}>0$ . This last
condition implies the existence of exactly two values $S_{2}>S_{1}>0$ such that $k_{4}G(S_{1})=k_{5}$ , where
$S_{1}$ is very small in practical situations. Further conditions on $F$ and $G$ apply, which, however,
are not of relevance for our current purpose, see [4] for more details. The tem $-k_{5}B$ describes
cell death of methanogenic biomass. Model (26, 27, 28) is completed by a set of appropriate
boundary conditions.

It is easy to verify that non-negative initial data imply non-negative solutions using Th. 2.1,
since

$fi(0, S, B)=0$, , $f_{2}(W,0, B)=k_{2}W>0$, $f_{3}(W, S,0)=0$

Although the solutions of (26, 27, 28) are bounded [4], there is no positive invariant interval
$[0,\overline{W}]x[0,\overline{S}]x[0,\overline{B}]\in R^{3}$ , which implies that the bounds of the solution are established by the
initial data. In order to show this we assume that the opposite is true and introduce the new
variables

$w:=\overline{W}-W$, $s:=\overline{S}-S$, $b:=\overline{B}-B$ (29)

and study the positive cone $w\geq 0,$ $s\geq 0,$ $b\geq 0$ . Then model (26, 27, 28) is transformed into

$w_{t}$ $=$ $D_{W}\Delta w+\gamma_{W}u\nabla W+k_{1}(\overline{W}-w)F(\overline{S}-\epsilon):=g_{1}(w, s, b)$ (30)
$s_{t}$ $=$ $D_{S}\Delta s+\gamma_{S}u\nabla S-k_{2}(\overline{W}-w)F(\overline{S}-s)+k_{3}G(\overline{S}-s)(\overline{B}-)=g_{2}(w,s,b)$ (31)
$b_{t}$ $=$ $D_{B}\Delta b+\gamma_{B}u\nabla B-(k_{4}G(\overline{S}-s)-k_{5})(\overline{B}-b)=:g_{3}(w, s, b)$ (32)

Applying criterion Th. 2.1 to (30, 31, 32) gives

$g_{1}(0, s, b)$ $=$ $k_{1}\overline{W}F(\overline{S}-s)>0$ (33)
$g_{2}(w, 0, b)$ $=$ $-k_{2}(\overline{W}-w)F(\overline{S})+k_{3}G(S)(\overline{B}-b)$ (34)
$g_{3}(w, s,0)$ $=$ $-(k_{4}G(\overline{S}-s)-k_{5})\overline{B}$ (35)
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This implies $g_{2}(w, 0, b)<0$ for all pairs $w,$ $b$ such that $b$ is close enough to $\overline{B}$ and $w$ close enough
to $0$ . Moreover, we have $g_{3}(w, s, 0)>0$ guaranteed only for very small $\overline{S}<S_{1}$ , in which case cell
death of methanogenic biomass prevails over methanogenesis. For $\overline{S}>S_{1}$ , we have $9s(w, s,0)<0$
for $S_{1}<\overline{S}-s<S_{2}$ .

3.3 Cross-diffusion in ecological models
In ecological models cross-diffusion describes populations moving in response to the spatial dis-
tribution of another population or resource. Examples are populations moving into regions with
higher food availability, in the direction of a chemo-attractant or away kom a chemo-repellent,
predators moving toward regions with more prey, prey moving away &om predators, etc. A
general model for the dual-species case is

涜
$=f(u,v)+D_{11^{\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial}{\partial x}}}(D_{12}(u) \frac{\partial v}{\partial x})$ (36)

涜
$=g(u,v)+D_{22^{\frac{\partial^{2}v}{\partial x^{2}}+\frac{\partial}{\partial x}}}(D_{21}(v) \frac{\partial u}{\partial x})$ (37)

where the density-dependent cross-diffusional coefficient $D_{12}(u)>0$ describes a population $u$

that moves away from regions with high density of $v$ (e.g. prey in a predator-prey model),
while $D_{12}(u)<0$ describes a population moving toward a region with higher density of $v$ (e.g.
predators). In $[1, 3]$ cross-diffusion coefficients of the saturation form

$D_{12}(u)=d_{12^{\frac{u}{\epsilon_{1}+u’}}}$ (38)

are assumed to be $D_{12}(u)=d_{12}$ . With a similar simplification for $D_{21}$ ) one obtains the linearized
cross-diffusion model

$\frac{\partial u}{\partial t}$ $=$ $f(u,v)+D_{11} \frac{\partial^{2}u}{\partial x^{2}}+d_{12}\frac{\partial^{2}v}{\partial x^{2}}$ (39)

$\frac{\partial v}{\partial t}$ $=$ $g(u,v)+D_{22} \frac{\partial^{2}v}{\partial x^{2}}+d_{21^{\frac{\partial^{2}u}{\partial x^{2}}}}$ (40)

which was studied in [1] with respect to stability and persistence. Our Theorem 2.1 with Remark
2.3 implies that this system does not preserve positivity, even if the $f^{eaction}$ terms satisfy $f(0, \cdot)\geq$

$0,$ $g(\cdot,0)\geq 0$ . Hence, there exist initial data such that $u$ or $v$ become negative. The reason for
this breakdown of the model is in the simplification $D_{12}(u)=d_{12}u(\epsilon_{1}+u)^{-1}\approx d_{12}$ (similar for
$v)$ , which implicitly assumes $\epsilon_{1}\ll u$ . This does not hold anymore if $u$ becomes small. For small
densities $u\approx O$ or $v\approx O$ the non-linear cross-diffusion coefficients (38) are $D_{12}(u)\approx 0,$ $D_{21}(v)\approx O$

and the nonlinear cross-diffusion model $(36, 37)$ behaves like the Fickian diffusion-reaction model,
which preserves positivity.
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4 Conclusion
The Theorem 2.1 is an easy to verify and easy to apply criterion for positive invariance of the
positive cone for certain parabolic systems. While in its present form it is restricted to semi-
linear $convection-diffusion$-reaction equations with constant coefficients in the spatial operators,
the examples have shown that this class is large enough to include many models that arise in
various application areas. In particular the criterion was shown to be useful in describing and
discussing the breakdown of certain model assumptions, and it was demonstrated how the criterion
can be used to study the existence of positive invariant intervals. An extension to more general
non-linear systems is possible and will be presented in a forthcoming paper.
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