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Abstract

Let $M_{n}$ be the space of all affine conjugacy classes of polynomial maps
of degree $n$ . We define a map $\Psi_{n}$ from $M_{n}$ to $\mathbb{C}^{n-1}$ via the elementary
symmetric functions of multipliers of the fixed points. The image of $M_{\mathfrak{n}}$

under $\Psi_{n}$ is denoted by $\Sigma(n)$ . In this paper, we define the algebraic variety
$Q_{4}$ that indicates essential property of M4, and introduce “flip relation” to
conjugacy classes. First, we show that the image of the real moduli space
$M_{4}(\mathbb{R})$ under $\Psi_{4}$ is the real section of $\Sigma(4)$ with $discr\{G_{4}\}\geq 0$ , where
$G_{4}=0$ is the defining equation of $\mathcal{G}_{4}$ Next, we show connection between
flip relation and sign of the discriminant of G4.

1 Introduction

Let $Poly_{n}$ be the space of all polynomial maps of degree $n$ , and $M_{n}$ be the space
of all affine conjugacy classes of these polynomials. We define a projection $\Psi_{n}$

from $M_{n}$ to $\mathbb{C}^{n-1}$ via the elementary symmetric functions of the multipliers of
the fixed points. In [3], we show the projection is not surjective for every $n\geq 4$ .
The image of $M_{n}$ under $\Psi_{n}$ is denoted by $\Sigma(n)$ and the complement $\mathbb{C}^{n-1}\backslash \Sigma(n)$

called the exceptional set, denoted by $\mathcal{E}(n)$ . We remark that for $n=2$ or 3 the
exceptional set is empty and the real section of the space $\Sigma(n)$ coincides with
the real moduli space $M_{n}(\mathbb{R})$ , the space of all conjugacy classes of polynomial
maps of degree $n$ with real coefficients (see [8]).

In this paper, we introduce “flip relation” and investigate relations between
the real section of the space $\Sigma(4)$ and the real moduli space M4 $(\mathbb{R})$ .

In section 2, we define the map $\Psi_{4}$ and the algebraic variety $\mathcal{G}_{4}$ that indicates
essential property of $Poly_{4}$ . In section 3, we introduce flip relation to conjugacy
classes. First, we show $\Psi_{4}(M_{4}(\mathbb{R}))=\mathbb{R}^{3}\cap\Sigma(4)\cap\{G_{4}(s_{1}, s_{2}, s_{4})=0$ has a
real root}, where $G_{4}(s_{1}, s_{2}, s_{4})=0$ is the defining equation of $g_{4}$ , as Theorem 1.
And next, we show connection between flip relation and sign of the discriminant
of the defining equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ of $g_{4}$ as Theorem 2.

2 The moduli space $M_{4}$

Let $Poly_{4}$ be the space of all polynomials of the form:

$p(z)=a_{4}z^{4}+a_{3}z^{3}+a_{2}z^{3}+a_{1}z+a_{0}$ $(a_{4}\neq 0)$ .
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Two maps $p_{1},$ $p_{2}\in Poly_{4}$ are holomorphically conjugate, denoted by $p_{1}\sim p_{2}$

if and only if there exists $g\in \mathfrak{U}$ with $g\circ p_{1}\circ g^{-1}=p_{2}$ , where $\mathfrak{U}$ is the group of
all affine transformations.

The space, $Poly_{4}/\sim$
’ of holomorphic conjugacy classes $\langle p\rangle$ of quartic poly-

nomials is denoted by M4.
For each $p(z)\in Poly_{4}$ , let $z_{1}$ , $\cdot$ . . , $z_{4},$ $z_{5}=\infty$ be the fixed points of

$p$ , and $\mu_{1}$ , $\cdot$ . . , $\mu_{4},$ $\mu_{5}=0$ the multipliers of $z_{j}$ , i.e. $\mu_{j}=p’(z_{j})$ . Let
$\sigma_{4,1},$ $\sigma_{4,2},$ $\cdots,$ $\sigma_{4,5}$ be the elementary symmetric functions of these multipliers

$\sigma_{4,1}=\mu_{1}+\mu_{2}+\mu_{3}+\mu_{4}$ ,
$\sigma_{4,2}=\mu_{1}\mu_{2}+\mu_{1}\mu_{3}+..\mu_{1}\mu_{4}+\mu_{2}\mu_{3}+\mu_{2}\mu_{4}+\mu_{3}\mu_{4}$,
$\sigma_{4,3}=\mu_{1}\mu_{2}\mu_{3}+\mu_{1}\mu_{2}\mu_{4}+\mu_{1}\mu_{3}\mu_{4}+\mu_{2}\mu_{3}\mu_{4}$,
$\sigma_{4,4}=\mu_{1}\mu_{2}\mu_{3}\mu_{4}$ ,
$\sigma_{4,5}=0$ .

These multipliers are invariant under taking an afBne conjugate.
The holomorphic index of a rational function $f$ at a fixed point $\zeta\in \mathbb{C}$ is

$defi\dot{n}$ed to be the complex number

$\iota(f, \zeta)=\frac{1}{2\pi i}\oint\frac{dz}{z-f(z)}$ ,

where we integrate in a small loop in the positive direction around $\zeta$ .
The following results are well known as “Fatou’s index theorem”:

$\bullet$ If $\zeta$ is a fixed point of multiplier $\mu\neq 1$ , then $\iota(f, \zeta)=\frac{1}{1-\mu}$ .
$\bullet$ For any non-identical polynomial $p$ ,

$\sum_{\zeta\in \mathbb{C}}\iota(p, \zeta)=0$
, (1)

where this summation is taken over all fixed points of $p$ .

Let $\sigma_{4,1},$ $\cdots,$ $\sigma_{4,4}$ be the elementary symmetric functions of the multipliers
of $p(z)\in Poly_{4}$ . The following relation holds by Fatou’s index theorem.

Lemma (Theorem 1 in [4]) Among $\sigma_{4,j’}s$ , there is a linear relation

$4-3\sigma_{4,1}+2\sigma_{4,2}-\sigma_{4,3}=0$ .

Under the conjugacy of the action of $\mathfrak{U}$ , it can be assumed that any quartic
polynomial is (monic and “centered”, i.e. $p(z)=z^{4}+c_{2}z^{2}+c_{1}z+c_{0}$ . There
are three monic and centered polynomiaJs in any conjugacy class $\langle p\rangle$ except
for $\langle z^{4}+z\rangle$ , and they are transformed each other under the action of $G(3)=$
$\{1, \omega, \omega^{2}\}$ , where $w$ is the cube roots of unity.
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By this lemma, for a monic and centered quartic polynomial $p(z)=z^{4}+$
$c_{2}z^{2}+c_{1}z+c_{0}$ , it is enough to consider the three invariant values $\sigma_{4,1},$ $\sigma_{4,2},$ $\sigma_{4,4}$

of $\langle p\rangle$ , determined by the transformation formula:
$\sigma_{4,1}=-8c_{1}+12$ ,
$\sigma_{4,2}=4c_{2}^{3}-16c_{0}c_{2}+18c_{1}^{2}-60c_{1}+48$,
$\sigma_{4,4}=16c_{0}c_{2}^{4}+(-4c_{1}^{2}+8c_{1})c_{2}^{3}-128c_{0}^{2}c_{2}^{2}+(144c0c_{1}^{2}-288c_{0}c_{1}$

(2)

+128$c_{0}$ ) $c_{2}-27c_{1}^{4}+108c_{1}^{3}-144c_{1}^{2}+64c_{1}+256c_{0}^{3}$ .
There is a natural projection

$\Psi_{4}$ : M4 $arrow$ $\Sigma(4)$

$t\cup$ $w$

$\langle p\rangle$ $\mapsto$ $(\sigma_{4,1}, \sigma_{4,2}, \sigma_{4,4})$ ,

where $\Sigma(4)$ is the image of M4 under $\Psi_{4}$ . We call $\Sigma(4)=\{(\sigma_{4,1}, \sigma_{4,2}, \sigma_{4,4})\}$

multiplier-coordinate space. The complement $\mathbb{C}^{3}\backslash \Sigma(4)$ is denoted by $\mathcal{E}(4)$ , and
called the exceptional set.

In [5] and [2], we define the following parametrized algebraic variety, by
putting $c_{2}^{3}=c$ and $s_{j}=\sigma_{4,j}(j=1,2,4)$ . This variety indicates essential
property of the projection $\Psi_{4}$ . or of $Poly_{4}$ .
Deflnition 1 An algebraic variety $\mathcal{G}_{4}$ in $\mathbb{C}^{3}\cong\{(s_{1}, s_{2}, s_{4})\}$ with a parameter
$c\in \mathbb{C}$ , is defined by

$G_{4}(s_{1}, s_{2}, s_{4})=262144(s_{1}-4)^{2}c^{2}+1024(27s_{1}^{4}+(-144s_{2}-576)s_{1}^{2}$

$+(384s_{2}+1280)s_{1}\cdot+128s_{2}^{2}-256s_{2}-512s_{4}-768)c$

$+(9s_{1}^{2}+24s_{1}-32s_{2}-48)^{3}=0$.

The number of conjugacy classes corresponding to a point $(s_{1}, s_{2}, s_{4})\in \mathbb{C}^{3}$

equals to the number of possible parameter values $c$ on $g_{4}$ . The following
result is obtained by counting the number of solution $c$ of the defining equation
$G_{4}(s_{1}, s_{2}, s_{4})=0$.

The exceptional set $\mathcal{E}(4)$ is parametrized as follows (see [5]):

$(s_{1}, s_{2}, s_{4})=(4,$ $s,$ $\frac{(s-4)^{2}}{4})$ , $s\in \mathbb{C}\backslash \{6\}$ .

3 Real polynomials and flip relation

For the case of quadratic rational maps or cubic polynomial maps, the real
section of the moduli space coincides with the real moduli space, the space of
conjugacy classes of maps with real coefficients (see [7] and [8]). However, this
phenomena do not succeed to the case $n=4$ . We have the following results.

Theorem 1 ([6])

$\Psi_{4}(M_{4}(\mathbb{R}))=\mathbb{R}^{3}\cap\Sigma(4)\cap$ { $G_{4}(s_{1},$ $s_{2},$ $s_{4})=0$ has a real root}.
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The assertion of Theorem 1 is directly obtained by the following three lem-
mas 1, 2 and 3.

Let $Poly_{4}(\mathbb{R})$ be the space of all complex valued quartic polynomial maps
with real coefficients.

Lemma 1 If $p\in Poly_{4}(\mathbb{R})$ then $\Psi_{4}(\langle p\rangle)$ is in $\mathbb{R}^{3}$ .
Proof. This lemma is clear from the multipliers of $p$ satisfy one of the following
three cases: ‘four real values’, ‘two real and a pair of complex conjugates’, or
‘two pair of complex conjugates’. $\blacksquare$

Figure 1: Both figures indicate the surface where discriminant of
$G_{4}(s_{1}, s_{2}, s_{4})=0$ vanishes, on the space $\mathbb{R}^{3}=\{(s_{1}, s_{2}, s_{4})\}$ .

Lemma 2 For a point $(s_{1}, s_{2,8_{4})}\in \mathbb{R}^{3}\cap\Sigma(4)$ with $s_{1}\neq 4$ , let $(p\rangle$ $\in\Psi_{4}^{-1}(s_{1}$ ,
$s_{2},$ $s_{4}$). Then, the equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ has two oeal rvots if and only if
$\langle p\rangle\in M_{4}(\mathbb{R})$ .
Proof. At first, we renark that $G_{4}(s_{1}, s_{2}, s_{4})=0$ has real coefficients, since
point $(s_{1}, s_{2}, s_{4})$ in $\mathbb{R}^{3}$ .

If $G_{4}(s_{1}, s_{2}, s_{4})=0$ has two real roots, we can choose real values as coeffi-
cients of $p$ . Therefore $\langle p$) $\in M_{4}(\mathbb{R})$ .

Conversely, we suppose $G_{4}(S_{1},82,8_{4})=0$ has a pair of complex conjugate
roots, and let $p=z^{4}+c_{2}z^{2}+c_{1}z+c_{0}$ be a corresponding monic and centered
representative. Then, from the argument of case $c$ . in the proof of Theorem 2
described in below, the coefficient $c_{2}$ is never real and $\langle p\rangle\not\in M_{4}(\mathbb{R})$ . Therefore
$G_{4}(s_{1}, s_{2}, s_{4})=0$ have two real roots, counted including multiplicity. 1

Lemma 3 For each point $(4, s_{2}, s_{4})\in(\{4\}xR^{2})\cap\Sigma(4)$ , the linear equation
$G_{4}(s_{1}, s_{2}, s_{4})=0$ has a real root. That is, there is a unique conjugacy class in
$M_{4}(\mathbb{R})$ corresponding to thi8 point.
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Proof. Let $p(z)=z^{4}+c_{2}z^{2}+c_{1}z+c_{0}$ be a representative such that $\Psi_{4}(\langle p\rangle)=$

$(4, s_{2}, s_{4})$ .
From the transformation formula (2), $s_{1}=4=-8c_{1}+12$ , we have $c_{1}=1$ .
Substituting $s_{1}=4$ to $G_{4}(s_{1}, s_{2}, s_{4})=0$ , we have

$131072(s_{2}^{2}-8s_{2}-4s_{4}+16)c-32768(s_{2}-6)^{3}=0$.

Therefore, the unique root $c$ is always real valued. Hence, we can choose real
value $c_{2}$ with $c_{2}^{3}=c$ . Then, $c_{0}$ is also real valued from the transformation
formula. Thus we have the assertion. $\iota$

We remark that, the intersection of the plane $\{(4, s_{2}, s_{4})\}$ and the locus
where the discriminant of $G_{4}$ is vanished coincides with the set $\{(4, s, \frac{(\epsilon-4)^{2}}{4})\}$ .
This set corresponds to

$\mathcal{E}(4)\cup\{(4,6,1)\}$ .
Now, we introduce the following “flip relation” between two classes, to prove

Theorem 2.

Deflnition 2 Two conjugacy classes $\langle p\rangle$ and ($q\rangle$ $\in M_{4}$ are under flip rela-
tion, denoted by ($p\rangle$ $\mapsto\langle q\rangle$ , if there exist two representatives $p\in\langle p\rangle$ , $q\in(q\rangle$

such that $p(\overline{z})=\overline{q(z)}$ .

The flip relation is not an equivalence relation, because ($p\rangle$ $\not\simeq\langle p\rangle$ in general.

The following theorem contrasts with Theorem 1.

Theorem 2 ([6]) Suppose that two classes $\langle p\rangle$ and $\langle q\rangle$ with $\langle p\rangle\neq\langle q\rangle$ satish
$\Psi_{4}(\langle p\rangle)=\Psi_{4}(\langle q\rangle)\in \mathbb{R}^{3}$ . Then, the following two are equivalent.

(1) $\langle p\rangle\mapsto\langle q\rangle$ .
(2) The equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ has no real root.

Remark 1 In the case of $s_{1}\neq 4,$ $G_{4}(s_{1}, s_{2}, s_{4})=0$ is a quadratic equation.
Therefore the condition (2) in Theorem 2-equivalents to the condition “The
equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ has negative discriminant”. As we see later, for every
point $(s_{1}, s_{2}, s_{4})$ in $\Psi_{4}(M_{4}(\mathbb{R}))$ , the corresponding equation $G_{4}(s_{1}, s_{2}, s_{4})=0$

has real coefficients. Hence, if one of the roots is real, the other is also real.

The flip relation correlates between periodic cycles of $p$ and $q$ by symmetric
relation for real axis. The property of a periodic cycle of $q$ , attracting, repelling
etc., implies the same one of $p$ . (See Figure 2.) We will show this fact as the
following proposition.
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Figure 2: The left figure indicates the dynamics of $p_{1}(z)=z^{4}+iz^{2}+iz$ (upper),
and $p_{2}(z)=z^{4}-0.39685iz^{2}+iz-0.66933$ (lower). $\Psi_{4}(\Phi_{1}\rangle)=\Psi_{4}((p_{2}\rangle)=$

$(12-8i, 30-64i, 125-48i)$ . The map $p_{1}$ has a parabolic fixed point at the
origin with multiplier $i$ . The right figure indicates the dynamics of $q_{1}(z)=$

$z^{4}-iz^{2}-iz$ (upper), and $q_{2}(z)=z^{4}+0.39685iz^{2}-iz-0.66933$ (lower).
$\Psi_{4}(\langle q_{1}\rangle)=\Psi_{4}(\langle q_{2}\rangle)=(12+8i, 30+64i, 125+48i)$ . The map $q_{1}$ has a parabolic
fixed point at the origin with multiplier $-i$ . These maps satisfy $\langle p_{1}\rangle\mapsto\langle q_{1}\rangle$

and $\langle p_{2}\rangle\angle_{\nabla}\langle q_{2}\rangle$ , and dynamics of these maps are symmetry for the real axis.
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Proposition 1 Suppose $p \oint q,$ $i.e$ . $\langle p\rangle\neq\langle q\rangle$ , and $\langle p\rangle\angle_{\nabla}\langle q\rangle$ . And suppose two
representatives $p$ and $q$ are chosen as (3). If $z_{0}$ is a periodic point of $P$ of $peri\cdot od$

$n$ with multiplier $\mu$ , then ca is a periodic point of $q$ of peri$odn$ with multiplier
$\overline{\mu}$ . Therefore, the dynamics of $p$ and $q$ are symmetr3t for the real axis.

Proof. The equation $\overline{p^{n}(z)}=q^{n}(\overline{z})$ holds by $\overline{p(z)}=q(\overline{z})$ .
Since $z_{0}$ is a periodic point of $p$ of period $n$ , we obtain $\overline{z_{0}}=q^{n}(\overline{z_{0}})$ . The

fact of a relation between two multipliers is given by

$\overline{\mu}=\overline{\{p^{n}(z_{0})\}’}=\{\overline{p^{n}(z_{0})}\}’=\{q^{n}(\overline{z_{0}})\}’$ .

I

Remark that the coefficients of the $z$ , i.e. $c_{1}$ or $\overline{c_{1}}$ , are invariant under the
action of cube roots of unity.

Rom now on, we assume that $p$ and $q$ are monic and centered representative
quartic polynomial maps. If necessary, we consider $p$ or $q$ are the map that is
taken conjugate by $zrightarrow\omega z$ .

If $\langle p\rangle\mapsto\langle q\rangle$ , we can choose two representatives with following forms:

$p=z^{4}+c_{2}z^{2}+c_{1}z+c_{0}$ , $q=z^{4}+\overline{c_{2}}z^{2}+\overline{c_{1}}z+\overline{c_{0}}$. (3)

Lemma 4 Under the condition that $\langle p\rangle\mapsto\langle q\rangle$ with $\langle p\rangle\neq\langle q\rangle$ , if $\Psi_{4}(\langle p\rangle)=$

$\Psi_{4}(\langle q\rangle)=(s_{1}, s_{2}, s_{4})$ , then $(s_{1}, s_{2}, s_{4})\in \mathbb{R}^{3}$ .

Proof. By the condition ($p\rangle$ $\mapsto\langle q\rangle$ , the following is directly given by the
transformation formula (2) (cf. Figure 2),

$\langle p\rangle\in\Psi_{4}^{-1}(s_{1}, s_{2}, s_{4})$ and $\langle q$) $\in\Psi_{4}^{-1}(\overline{s_{1}},\overline{s_{2}},\overline{s_{4}})$ .

Therefore, the assertion is clearly obtained. (See Figure 3.) 1

Proof of Theorem 2. First, we suppose that {$p\rangle$ $\mapsto\langle q\rangle$ . From Lemma 4, we
have $(s_{1}, s_{2}, s_{4})\in \mathbb{R}^{3}$ . Hence, $G_{4}(s_{1}, s_{2}, s_{4})=0$ has real coefficients.

As $s_{1}\in \mathbb{R}$ , each representative corresponding to the point $(s_{1}, s_{2}, s_{4})$ has a
real coefficient of $z$ . Therefore, two representatives $p$ and $q$ are $give\bm{n}^{-}as$ follows:

$p=z^{4}+c_{2}z^{2}+c_{1}z+c_{0}$ , $q=z^{4}+\overline{c_{2}}z^{2}+c_{1}z+\overline{c_{0}}$ $(c_{1}\in \mathbb{R})$ .

Now, we need to consider the following three cases.

$a$ . The equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ has multiple roots:
In this case, there is a unique conjugacy class corresponding to the point
$(s_{1}, s_{2}, s_{4})$ . While, from the assumption ($p\rangle$ $\neq\langle q\rangle$ and $\Psi_{4}(\langle p\rangle)=\Psi_{4}((q\rangle)=$

$(s_{1}, s_{2}, s_{4})$ , we have $\#\Psi_{4}^{-1}(s_{1}, s_{2}, s_{4})=2$ . This result contradicts with
$\#\Psi_{4}^{-1}(s_{1}, s_{2}, s_{4})=1$ .
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Figure 3: The left figure indicates the dynamics of $p(z)=z^{4}+(1.04113-$
0.28573$\dot{j}$ ) $z^{2}+0.82627z+(0.41265-0.10426i)$ . The map $P$ has two attracting
fixed points at $0.33745+0.71902i$ and 0.$21049-0.61365i$ with multiplier 0. $8i$

$and-0.8i$ respectively. The right figure indicates the dynamics of $q(z)=z^{4}+$

$(1.04113+0.28573i)z^{2}+0.82627z+(0.41265+0.10426i)$ . We remark that,
$\Psi_{4}(\langle p\rangle)=\Psi_{4}(\langle q\rangle)=(5.38983, 7.80949, 4.58847)\in \mathbb{R}^{3}$, and $\langle p\rangle\mapsto\langle q\rangle$ .

$b$ . The equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ has two real roots:
Let $c_{2}^{3}$ and $\tilde{c}_{2}^{3}$ be two real roots of $G_{4}(s_{1}, s_{2}, s_{4})=0$ . In this case we can
choose two real values $c_{2},\tilde{c}_{2}$ . Then, two values $c_{0},\tilde{c}_{0}$ are also real values,
since $s_{2}=4c_{2}^{3}-16c_{0}c_{2}+18c_{1}^{2}-60c_{1}+48$ . Hence the relation $\langle p\rangle\not\simeq\langle q\rangle$

is obtained, and this result contradicts with the assumption. (Moreover,
$p \oint q$ is clear from $c_{2}^{3}\neq\tilde{c}_{2}^{3}.$ )

$c$ . The equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ has a pair of complex conjugate roots:
Let $c_{2}^{3},\tilde{c}_{2}^{3}$ be a pair of complex conjugate roots. We can choose two
values $c_{2},\tilde{c}_{2}$ as $c_{2}=\overline{\tilde{c}_{2}}$ by $c_{2}^{3}=\overline{\tilde{c}_{2}^{3}}$ . Then, $c_{0}=\overline{\tilde{c}_{0}}$ is given by $s_{2}=$

$4c_{2}^{3}-16c_{0}c_{2}+18c_{1}^{2}-60c_{1}+48$ .
Therefore the equation $G_{4}(s_{1}, s_{2}, s_{4})=0$ has negative discriminant.

Conversely, suppose the following quadratic equation,

$262144(s_{1}-4)^{2}c^{2}+1024(27s_{1}^{4}+(-144s_{2}-576)s_{1}^{2}+(384s_{2}$

$+1280)s_{1}+128s_{2}^{2}-256s_{2}-512s_{4}-768)c+(9s_{1}^{2}$

$+24s_{1}-32s_{2}-48)^{3}=0$,

has negative discriminant, i.e.
$1073741824(54s_{1}^{5}+(-81s_{2}-27s_{4}-135)s_{1}^{4}+(36s_{2}^{2}-144s_{2}-1008)s_{1}^{3}$

$+(-4s_{2}^{3}+360s_{2}^{2}+(144s_{4}+2976)s_{2}+576s_{4}+4192)s_{1}^{2}+(-160s_{2}^{3}$

$-2176s_{2}^{2}+(-384s_{4}-6400)s_{2}-$ 1280s4 – $5376$) $s_{1}+16s_{2}^{4}+448s_{2}^{3}$

$+(-128s_{4}+2176)s_{2}^{2}+(256s_{4}+3840)s_{2}+256s_{4}^{2}+768s_{4}+2304)<0$.
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Then, for a monic and centered representative $p\in\langle p\rangle=\Psi_{4}^{-1}(s_{1}, s_{2}, s_{4})$ , the
term of degree one, i.e. $c_{1)}$ is given by $c_{1}=-\frac{s-1}{8}\underline{2}$ . Because the equation
$G_{4}(s_{1}, s_{2}, s_{4})=0$ has negative discriminant with real coefficients, there exists
two roots $c=c_{2}^{3},\tilde{c}_{2}^{3}$ satisfying $c_{2}^{3}=\overline{\tilde{c}_{2}^{3}}$ . We can choose $c_{2}=\overline{\tilde{c}_{2}}$ . Then, $c_{0}=\overline{\tilde{c}_{0}}$

holds by $s_{2}=4c_{2}^{3}-16c_{0}c_{2}+18c_{1}^{2}-60c_{1}+48$ . Now we obtain the following two
polynomial maps belonging to $(s_{1}, s_{2}, s_{4})$ :

$p=z^{4}+c_{2}z^{2}+c_{1}z+c_{0}$ , $q=z^{4}+\tilde{c}_{2}z^{2}+c_{1}z+\tilde{c}_{0}=z^{4}+\overline{c_{2}}+c_{1}z+\overline{c_{0}}$.
Thus, $\langle p\rangle\mapsto\langle q\rangle$ holds. 1
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