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Abstract
In this paper, we study mathematical program with vector equi-

librium constraint problems in reflexive Banach spaces. In 2006, Suf-
ficient conditions to obtain closedness of the solutions mapping for
a parametric vector equilibrium problem are established; see [5]. In
2005, an existence result of optimal solutions on non-compact set in
reflexive Banach space has been established by Liou and Yao; see
[7]. On the result, weakly closedness of the constraint set for upper-
level problem are required. Therefore sufficient conditions to obtain
wealsly closedness of the graph of the solutions mapping are mainly
investigated.
Keywords: Vector equilibriumproblem, vector variational inequality
problem, Stackelberg problems, MPEC, upper semicontinuity.
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1. INTRODUCTION

Throughout the paper, we assume that every topological space is Hausdorff and
every field of vector space is real, and int $A$ denotes the topological interior of a set
$A$ .

Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of a topological space $X$ and a topological
vector space, (in short, t.v.$s.$ ), $Y$ , respectively. Let $Z$ be a t.v. $s.$ , and int $C(x)\subset Z^{\sim}$

be a domination structure generated by set-valued mapping $C$ : $\Omega_{1}arrow 2^{Z}$ at $x\in\Omega_{1}$ ,
such that $C$ has solid pointed convex cone values. Suppose that the constraint map
$\Omega$ is a set-valued mapping from $\Omega_{1}$ to $2^{\Omega_{2}}\backslash \{\emptyset\}$ . Let $g$ be a vector-valued function
from $\Omega_{1}\cross\Omega_{2}x\Omega_{2}$ to $Z$ . We consider the following parametric vector equilibrium
problem (PVEP): for a given $x\in\Omega_{1}$ ,

. finding $y^{*}\in\Omega(x)$ such that
(PVEP)

$g(x, y^{*}, v)\not\in$ -int $C(x)$ for all $v\in\Omega(x)$ ,

whose solution mapping $S_{E}$ is a set-valued mapping from $\Omega_{1}$ to $2^{\Omega_{2}}$ defined by.

$S_{E}(x)=$ {$y\in\Omega(x):g(x,$ $y,$ $v)\not\in$ -int $C(x)$ , for all $v\in\Omega(x)$ }. (1)
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If $\Omega,$ $C$ , and $g$ have a constant value for $x\in\Omega_{1}$ , respectively, then the problem
(PVEP) is reduced to an ordinary vector equilibrium problem. Liou et al. [6] intro-
duce a weak PVVI as follows: for a given $x\in\Omega_{1}$ ,

finding $y^{*}\in\Omega(x)$ such that
(PVVI)

$\nabla_{y}\varphi(x, y^{*})(y^{*}-v)\not\in$ -int $C$ for all $v\in\Omega(x)$ ,

where $\varphi=(\varphi_{1}, \ldots, \varphi_{p})$ : $\Omega_{1}\cross\Omega_{2}arrow \mathbb{R}^{p},$ $\varphi(x, \cdot)$ is differentiable in $\Omega(x)$ for a given
$x\in\Omega_{1}$ and int $C\subset Z$ is a domination structure generating a partial ordering on $Z$ ;
see Yu [11]. It is clear that PVVI is a special case of PVEP.

The purpose of this paper is to establish some existence results for PVEP and give
some applications of PVEP, particularly to the mathematical programs with vector
equilibrium constraints. To this end, we will give some preliminaries which will be
used for the rest of this paper in Section 2. We will establish some existenoe results
and closedness of the graph of the solution map for PVEP In Section 3. Finally we
will establish some existence results for the mathematical program with equilibrium
constraints as applications of PVEP.

2. PRELIMINARIES

We recall the cone-convexity of vector-valued functions by TanaJta [9]. Let $X$ be a
vector space, and $Z$ also a vector space with a partial ordering defined by a pointed
convex cone $C$ . Suppose that $K$ is a convex subset of $X$ and that $f$ is a vector-valued
function from $K$ to. $Z$ . The mapping $f$ is said to be C-convex on $K$ if for each
$x_{1},$ $x_{2}\in K$ and $\lambda\in[0,1]$ , we have

$\lambda f(x_{1})+(1-\lambda)f(x_{2})\in f(\lambda x_{1}+(1-\lambda)x_{2})+C$.
As a special case, if $Z=\mathbb{R}$ and $C=\bm{R}+then$ C-convexity is the same as ordinary
convexity.

Deflnition 1 (C-quasiconvex, [2, 8, 9]). Let $X$ be a vector space, and $Z$ also a vector
space with a partial ordering defined by a pointed convex cone $C$. Suppose that $K$

is a convex subset of $X$ and that $f$ is a vector-valued function from $K$ to $Z$ . Then,
$f$ is said to be C-quasiconvex on $K$ if it satisfies one of the following two equivalent
conditions:

(i) for each $x_{1},x_{2}\in K$ and $\lambda\in[0., 1]$ ,
$f(\lambda x_{1}+(1-\lambda)x_{2})\in z-C$ , for all $z\in C(f(x_{1}), f(x_{2}))$ ,

where $C(f(x_{1}), f(x_{2}))$ is the set of upper bounds of $f(x_{1})$ and $f(x_{2})$ , i.e.,

$C(f(x_{1}), f(x_{2})):=$ {$z\in Z:z\in f(x_{1})+C$ and $z\in f(x_{2})+C$}.
(ii) for each $z\in Z$ ,

$A(z)$ $:=\{x\in K : f(x)\in z-C\}$

is convex or empty.

First statement is defined by Luc [8] and the second is by Ferro [2].
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Remark 1 (See Tanaka [9]). Some readers recall the following Helbig’s definition which
is stronger than Luc and Ferro’s definition. When $Z$ is locally convex space and $C$ is
closed, the definition is equivalent to C-naturally quasiconvex defined by Tanaka [9].

Definition 2 (Helbig’s C-quasiconvexity, [4, 9]). Let $X$ be a vector space, and $Z$ also
a locally convex spaoe with a partial ordering defined by a closed pointed convex cone
$C$ . Suppose that $K$ is a convex subset of $X$ and that $f$ is a vector-valued function from
$K$ to $Z$ . Then, $f$ is said to be (Helbig’s) C-quasiconvex on $K$ if for every $x_{1},$ $x_{2}\in X$

and $\lambda\in[0,1]$ , and each $\varphi\in C^{*},$ $\varphi(f(\lambda x_{1}+(1-\lambda)x_{2})\leq\max\{\varphi(f(x_{1})), \varphi(f(x_{2}))\}$ ,
where $C^{*}$ stands for the topological dual cone of $C$ .
Example 1. $f$ : $\mathbb{R}arrow \mathbb{R}^{2}$ is defined by $f(x)=(x, -|x|)$ for $x\in[-1,1]$ and $C=$
$\{(x, y)\in \mathbb{R}^{2} : y\geq|x|\}$ . Then we can see that $f$ is Luc and Ferro’s C-quasiconvex,
but not Helbig’s.

Deflnition 3 (C-properly quasiconvex, [9]). Let $X$ be a vector space, and $Z$ also a
vector space with a partial ordering defined by a pointed convex cone C. SuPpose
that $K$ is a convex subset of $X$ and that $f$ is a $vecto\triangleright valued$ function from $K$ to
$Z$ . Then, $f$ is said to be C-properly quasiconvex on $K$ if for every $x_{1},x_{2}\in K$ and
$\lambda\in[0,1]$ we have either

$f(\lambda x_{1}+(1-\lambda)x_{2})\in f(x_{1})-C$,
or

$f(\lambda x_{1}+(1-\lambda)x_{2})\in f(x_{2})-C$.
Definition 4 (C-continuity, [8, 10]). Let $X$ be a topological space, and $Z$ a topo-
logical vector space with a partial ordering defined by a solid pointed convex cone
$C$ . Suppose that $f$ is a vector-valued function from $X$ to $Z$ . Then, $f$ is said to be
C-continuous’ at $x\in X$ if it satisfies one of the $f_{0}n_{oW}ing$ three equivalent conditions:

(i) $f^{-1}(x+intC)$ is open.
(ii) For any neighbourhood $V_{f(x)}\subset Z$ of $f(x)$ , there exists a neighbourhood $U_{x}\subset$

$X$ of $x$ such that $f(u)\in V_{f(x)}+C$ for all $u\in U_{x}$ .
(iii) For any $k\in$ int $C$ , there exists a neighbourhood $U_{x}\subset X$ of $x$ such that

$f(u)\in f(x)-k+intC$ for all $u\in U_{x}$ .
Moreover a vector-valued function $f$ is said to be C-continuous on $X$ if $f$ is C-
continuous at every $x$ on $X$ .
Remark 2. Whenever $Z=\mathbb{R}$ and $C=R+,$. C-continuity and $(-C)$-continuity are the
same as ordinary lower and upper semicontinuity, respectively. In. [10, Definition 2.1
(pp.314-315)] corresponding to ordinary functions, C-continuous function is called
C-lower semicontinuous function, and $(-C)$-continuous function is called C-upper
semicontinuous function.

Deflnition 5 (see [1]). Let $X$ and $Y$ be two topological sPacoe, T.: $Xarrow 2^{Y}$ a
set-valued mapping.

(i) $T$ is said to be lower semicontinuou8 (l.s.$c$ . for short) at $x\in X$ if for each
open set $V$ With $T(x)\cap V\neq\emptyset$ , there is an open set $U$ containing $x$ such that
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for each $z\in U,$ $T(z)\cap V\neq\emptyset;T$ is said to be l.s. $c$ . on $X$ if it is l.s. $c$ . at all
$x\in X$ .

(ii) The graph of $T$ , denoted by $Gr(T)$ is the following set:
$\{(x, y)\in X\cross Y : y\in T(x)\}$ .

Deflnition 6 (Parameterized cone continuity). Let $P$ be a topological space. Let
$X$ and $Z$ be two t.v.8.. Suppose that $C$ is a set-valued mapping from $P$ to $2^{Z}$ such
that $C$ has sol\’id convex cone values, and suppose that $K$ is a set-valued mapping
from $P$ to $2^{X}\backslash \{\emptyset\}$ . Then vector-valued function $f\cdot:PxXx.Xarrow Z$ is said to
be Parametarized C-continuous on $P\cross X$ with respect to $K$ , if for each $p\in P$ and
$x\in K(p)$ such that

$f(p, x, y)\in intC(p)$ for some $y\in K(p)$ ,

there exists a neighborhood $\mathcal{U}$ of $(p,x)$ such that for all $(\tilde{p},\tilde{x})\in \mathcal{U}\cap Gr(K)$

$f(\tilde{p},\tilde{x},\hat{y})\in intC(\tilde{p})$ for $some_{\theta}\hat{y}\in K(\tilde{p})$ .
We denote $f$ is parametarized w-C-continuous on $P\cross X$ with respect to $K$ if we

consider the continuity in weak topology.

Deflnition 7 ($Joint-C(p)$-continuity). For each $(\hat{p},\hat{x},\hat{y})\in\Omega_{1}x\Omega_{2}x\Omega_{2}$ , a neigh-
borhood $\mathcal{V}_{\hat{p}}$ of $\hat{p}$ , and a neighborhood $\mathcal{V}_{\hat{g}}$ of $g(\hat{p},\hat{x},\hat{y})$ , there exist $\mathcal{U}p(\subset \mathcal{V}_{\hat{p}}),$ $\mathcal{U}_{\hat{x}}$ , and

$\mathcal{U}_{\hat{y}}$ such that
$g(p,x, y)\in$ ( $\mathcal{V}g$ -int $C(\hat{p})$ ) for all $(p, x, y)\in \mathcal{U}_{\hat{p}}x\mathcal{U}_{l}xlh$ ,

where $\mathcal{U}_{\hat{p}},\mathcal{U}\ ,$ and, $lh$ stand for neighborhoods of $\hat{p},\hat{x}$ and $\hat{y}$, respectively.

Proposition 1. Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty $su$bsets of two normal spaces, oe-
spectively. Let $Z$ be a normal $t.v.s.$ , and $C$ a set-valued mapping from $\Omega_{1}$ to $2^{Z}$ , such
that $C$ has solid pointed convex cone values. Suppose that $\Omega$ is a set-valud mapping
from $\Omega_{1}$ to $2^{\Omega_{2}}\backslash \{\emptyset\}$ , and that $g$ is a vector-vdued function from $\Omega_{1}x\Omega_{2}\cross\Omega_{2}$ to $Z$ .
Also assume the following conditions:

(i) $gis-C(p)$ -continuous on $\Omega_{1}x\Omega_{2}x\Omega_{2}$ , jointlyj
(ii) $\Omega$ is $l.s.c$ . on $\Omega_{1}$ ;
(iii) the set-valued map $W(p)=Z\backslash$ -int $C(p)$ ha8 closed graph.

Then $g$ is $pammetarized-C$-continuons on $\Omega_{1}x\Omega_{2}$ with respect to $\Omega$ .

Proof. Suppose for each $\hat{p}\in\Omega_{1}$ and $\hat{x}\in\Omega(\hat{p})$ such that $g(\hat{p},\hat{x},\hat{y})\in$ -int $C(\hat{p})$ for
some $\hat{y}\in\Omega(\hat{p})$ .

Then there is a $\hat{z}\in$ -int $C(\hat{p})$ such that $(\hat{z}-c1C(\hat{p}))$ is a closed neighborhood of
$g(\hat{p},\hat{x},\hat{y})$ .

On the other hand $\{\hat{p}\}x(\hat{z}-c1C(\hat{p}))$ is a closed subset of $\Omega_{1}xZ$ such that
$Gr(W)\cap(\{\hat{p}\}\cross(\hat{z}-c1C(\hat{p})))=\emptyset$.

Since $\Omega_{1}\cross Z$ is normal space and, by condition (iii), $Gr(W)$ is a closed subset of
$\Omega_{1}xZ$ , there exist a neighborhood $\mathcal{V}_{\hat{p}}$ of $\hat{p}$ and a neighborhood $\mathcal{V}_{D}’of(\hat{z}-c1C(\hat{p}))$

such that
$Gr(W)\cap(\mathcal{V}p\cross \mathcal{V}_{D})=\emptyset$ ,
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and so $Gr(W)\cap$ ( $\mathcal{V}_{\hat{p}}\cross$ ( $\hat{z}$ –int $C(\hat{p}))$ ) $=\emptyset$ . Since ( $\hat{z}\cdot$ -int $C(\hat{p})$ ) is a neighborhood
of $g(\hat{p},\hat{x},\hat{y})$ , by condition (i), we can choose $\mathcal{U}_{\hat{p}}(\subset \mathcal{V}_{\hat{p}}),$ $\mathcal{U}_{\hat{x}}$ , and $\mathcal{U}_{\hat{y}}$ such that for all
$(p, x, y)\in \mathcal{U}_{\hat{p}}\cross \mathcal{U}_{\hat{x}}\cross \mathcal{U}_{\hat{y}}$ ,

$g(p, x, y)\in$ ( ( $\hat{z}$ –int $C(\hat{p})$ ) –int $C(\hat{p})$ ) $=$ ( $\hat{z}$ -int $C(\hat{p})$ ),

where $\mathcal{U}_{\hat{p}},\mathcal{U}_{\delta}$ , and $\mathcal{U}_{\hat{y}}$ stand for neighborhoods of $\hat{p},\hat{x}$ and $\hat{y}$ , respectively.
Next by condition (ii) noting $\Omega(\hat{p})\cap l4^{\wedge}\neq\emptyset$, we can choose a neighborhood $\mathcal{U}_{\hat{p}}^{j}$ of

$\hat{p}$ such that
$\Omega(p)\cap \mathcal{U}_{\hat{y}}\neq\emptyset$ for all $p\in \mathcal{U}_{\hat{p}}’$ .

Let $\mathcal{U}=(\mathcal{U}p)\cap \mathcal{U}_{\hat{p}}’x\mathcal{U}_{\delta}$ which is a neighborhood of $(\hat{p},\hat{x})$ . Then for each $(p’,x’)\in$

$\mathcal{U}\cap Gr(\Omega)$ , 8ince $p’\in U_{\hat{p}}’,$ $\Omega(p’)\cap \mathcal{U}_{\hat{y}}\neq\emptyset$ , there exists $y’\in\Omega(p’)\cap \mathcal{U}p$ . Therefore for
the $(p’,x’, y’)$

$g(p’,x’,y’)\in$ ( $\hat{z}$ -int $C(\hat{p})$ ),
and hence.

$(p’,g(p’,x’,y’))\in \mathcal{V}_{\hat{p}}x\mathcal{V}_{D}$ .
Consequently, $(p’,g(p’,x’,y’))\not\in Gr(W)$ and hence

$g(p’, x’,y’)\in$ -int $C(p’)$ .
口

Deflnition 8 (KKM-map). Let $X$ be a topological vector space, and $K$ a nonempty
subset of $X$ . Suppose that $F$ is a multifunction from $K$ to $2^{X}$ . Then, $F$ is said to be
a KKM-map, if

co $\{x_{1}$ ,:.. $x_{n} \}\subset\bigcup_{i=1}^{n}F(x_{i})$

for each finite subset $\{x_{1}, \ldots,x_{n}\}$ of $X$ .
Remark 3. Obviously, if $F$ is a KKM-map, then $x\in F(x)$ for each $x\in K$ .
Lemma 1 (Fan-KKM; see [3]). Let $X$ be a topological vector space, andK a nonempty
subset of $X$ ; and let $G$ be a multifunction from $K$ to $2^{X}$ . Suppose that $G$ is a KKM-
map and that $G(x)$ is a closed subset of $X$ for each $x\in K$ . If $G(\hat{x})$ is compact for at
least one $\hat{x}\in K_{f}$ then $\bigcap_{x\in K}G(x)\neq\emptyset$ .

3. EXISTENCE RESULTS FOR PVEP AND WEAKLY CLOSEDNESS OF SOLUTIONS
GRAPH

Throughout the rest of the paper, let $Y$ and $Y$ be two real reflexive Banach spaces,
and $Z$ a real Hausdorff topological vector space.

Theorem 1. Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of $X$ and $Y_{f}$ respectively. Let
$C$ be a set-valued mapping from $\Omega_{1}$ to $2^{Z}$ , such that $C$ has solid pointed convex cone
values. Suppose. that $\Omega$ is a set-valued mapping from $\Omega_{1}$ to $2^{\Omega_{2}}\backslash \{\emptyset\}$ and that $g$

is a vector-valued function ffom $\Omega_{1}x\Omega_{2}\cross\Omega_{2}$ to Z. Also we assume the folloutng
conditions:

(i) $\Omega$ has closed convex values for each $x\in\Omega_{1}$ ;
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(ii) for each $(x, y, v)\in\Omega_{1}\cross\Omega(x)\cross\Omega(x)$ satisfying $g(x, y, v)\in$ -int $C(x)$ , there
exists an weak neighborhood $\mathcal{U}_{y}$ of $y$ such that for all $y’\in(\mathcal{U}_{y}\cap\Omega(x))$

$g(x, y’,v’)\in-intC(x)$ for some $v’\in\Omega(x)$ .
(iii) $g(x, y, \cdot)$ is $C(x)$ -quasiconvex on $\Omega(x)$ for each $x\in\Omega_{1},$ $y\in\Omega(x)$ ;
(iv) $g(x, y, y)\not\in$ -int $C(x)$ for each $x\in\Omega_{1},$ $y\in\Omega(x)$ .
(v) for each $x\in\Omega_{1}$ there exist $\hat{v}\in\Omega(x)$ , and a weakly compact set $B\subset Y$ such

that $\hat{v}\in \mathcal{B}$ and
$g(x, y, v)\in$ -int $C(x)$ for all $y\in(\Omega(x)\backslash \mathcal{B})$ .

Then the problem $(PVEP)$ has at least one solution for each $x\in\Omega_{1}$ .
Proof. Let

$G(v):=$ { $y\in\Omega(x)$ : $g(x,$ $y,$ $v)\not\in$ -int $C(x)$ } $v\in G(v)$ ,
for each $x\in\Omega_{1}$ . First, we show that $G(v)$ is a KKM-map, for each $x\in\Omega_{1}$ . Suppose
to the contrary that there exists $\alpha_{i}\in[0,1],$ $y_{\iota’}\in\Omega(x)(i=1, \ldots,n)$ such that

$\sum_{i=1}^{n}\alpha_{i}y_{i}=y\not\in\bigcup_{i_{\neg}^{-}1}^{n}G(y_{i})$ .

Then we have $y\in\Omega(x)$ because, by condition (i), $\Omega(x)$ is convex. Hence
$f(x, y,y_{i})\in$ -int $C(x),$ $i=1,$ $\ldots$ , $n$ .

This means that
$f(x, y, \sum_{i=1}^{n}\alpha_{i}y_{i})$. $=f(x,y, y)\in$ -int $C(x)$ ,

because of condition (iii), and contradicts condition (iv).
Next, from conditions (i) and (ii), for each $v\in\Omega(x),$ $G(v)$ is a weakly closed

set, and by condition (iv), $G(v)\neq\emptyset$ , and also from condition (v), $G(\hat{v})$ is a weakly
compact set. Thus we can apply Lemma 1, to get

$S_{B}(x)=$ $\cap$ $G(v)\neq\emptyset$ ,
$v\in\Omega(x)$

for each $x\in\Omega_{1}$ , where $S_{E}$ denotes the solutions map defined by (1). 口

Condition (ii) can be replaced as follows: $g(x, \cdot, v)$ is $weakly-C(x)$-continuous on
$\Omega(x)$ for each $x\in\Omega_{1},v\in\Omega(x)$ ; and if we assume $\Omega$ has weakly compact value8, then
condition (v) can be removed. Hence we also obtain the following corollary.

Corollary 1. Let $\Omega_{1}$ and $\Omega_{2}$ be. two nonempty subsets of $X$ and $Y$ , respectively.
Let $C$ be a set-valued mapping from $\Omega_{1}$ to $2^{Z},$ $.such$ that $C$ has solid pointed convex
cone values. Suppose that $\Omega$ is a set-valued mapping from $\Omega_{1}$ to $2^{\Omega_{2}}\backslash \{\emptyset\}$ and that

$g$ is a vector-valued function from $\Omega_{1}x\Omega_{2}\cross\Omega_{2}$ to Z. Also we assume the folloutng
conditions:

(i) $\Omega$ has weakly compact convex values for each $x\in\Omega_{1}$ ;
(ii) $g(x, \cdot, v)$ is $weakly-C(x)$ -continuous on $\Omega(x)$ for each $x\in\Omega_{1},$ $v\in\Omega(x)$ ;
(iii) $g(x,y,y)\not\in$ -int $C(x)$ for each $x\in\Omega_{1},y\in\Omega(x)$ .
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Then the problem (PVEP) has at least one solution for each $x\in\Omega_{1}$ .

Theorem 2. Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of two topological spaces,
respectively. Let $C$ be a set-valued mapping from $\Omega_{1}$ to $2^{Z}$ , such that $C$ has solid
pointed convex cone values. Suppose that $\Omega$ is a set-valued mapping from $\Omega_{1}$ to
$(2^{\Omega_{2}}\backslash \{\emptyset\}),$ $g$ is a vector-valud function from $\Omega_{1}\cross\Omega_{2}\cross\Omega_{2}$ to $Z$, and $S_{E}$ is a set-valued
mapping from $\Omega_{1}$ to $2^{\Omega_{2}}$ defined by (1). Also we assume that the following conditions:
Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of two topological spaces, respecttvely. Let
$C$ be a set-valued mapping from $\Omega_{1}$ to $2^{Z},$ $such$ that $C$ has solid pointed convex cone
values. Suppose that $\Omega$ is a set-valued mapping from $\Omega_{1}$ to $(2^{\Omega_{2}}\backslash \{\emptyset\}),$ $g$ is a vector-
valud function from $\Omega_{1}\cross\Omega_{2}\cross\Omega_{2}$ to $Z$ , and $S_{E}$ is a set-valued mapping from $\Omega_{1}$ to

$2^{\Omega_{2}}$ defined by (1). Also we assume the following conditions:
(i) $\Omega_{1}$ is a weakly closed set;
(ii) $\Omega$ has weakly closed graph;
(iii) $g$ is pammetarized $w-(-C)$ -continuous on $\Omega_{1}x\Omega_{2}$ with respect to $\Omega$;
(iv) $S_{E}(x)\neq\emptyset$ for each $x.\in\Omega_{1}$ .

Then the 8olution set $S_{E}(x)$ of pmblem (PVEP) has weakly closed graph.

Proof. Let $(x_{\alpha}, y_{\alpha})\in Gr(S_{E})$ with $(x_{\alpha}, y_{\alpha})arrow(x, y)$ . Then by conditions (i) and (ii),
$x\in\Omega_{1}$ and $y\in\Omega(x)$ . Therefore suppose to the contrary that $y\not\in S_{E}(x)$ , there exists
$v\in\Omega(x)$ such that

$g(x,y,v)\in$ -int $C(x)$ .
Because of condition (iii), there is a weak neighborhood $\mathcal{U}$ of $(x, y)\dot{s}uch$ that for all
$(\tilde{x},\overline{y})\in \mathcal{U}$ , there is $\tilde{v}\in\Omega(\tilde{x})$ such that $g(\tilde{x},\tilde{y},\tilde{v})\in$ -int $C(\tilde{x})$ . Then there exists $\overline{\alpha}$

such that for all $\alpha\geq\overline{\alpha},$ $y_{\alpha}\not\in S_{E}(x_{\alpha})$ . This is a contradiction. $\square$

Theorem 3. Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of $X$ and $Y,$. respectively. $L$et
$C$ be a set-valued mapping from $\Omega_{1}$ to $2^{Z}$ , such that $C$ has solid pointed convex cone
values. Suppose that $\Omega$ is a set-valu$ed$ mapping from $\Omega_{1}$ to $(2^{\Omega_{2}}\backslash \{\emptyset\}),$ $g$ is a vector-
valud function from $\Omega_{1}x\Omega_{2}\cross\Omega_{2}$ to $Z$, and $S_{E}$ is a set-valued mapping from $\Omega_{1}$ to

$2^{\Omega_{2}}$ defined by (1). Also we assume that the following conditions:
(i) $\Omega_{1}$ is a weakly closed set;
(ii) $\Omega$ has weakly closed graph;
(iii) $g$ is pammetarized $w-(-C)$ -continuous on $\Omega_{1}\cross\Omega_{2}$ with respect $to.\Omega$ ;
(iv) $g(x, y, \cdot)$ is $C(x)$ -quasiconvex on $\Omega(x)$ for each $x\in\Omega_{1}$ and $y\in\Omega(x)$ , and

$g(x, y)y)\not\in$ -int $C(x)$ for each. $x\in\Omega_{1}$ and $y\in\Omega_{2}$ ;
(v) for each $x\in\Omega_{1}$ there exist $\hat{v}\in\Omega(x)$ and a weakly compact set $\mathcal{B}\subset Y$ such

that $\hat{v}\in \mathcal{B}$ and

$g(x, y,v)\in$ -int $C(x)$ for all $y\in(\Omega(x)\backslash \mathcal{B})$ .
Then the pmblem (PVEP) has at least one solution, and $S_{E}$ has weakly closed graph.

Proof. The result follows from Theorems 1 and 2. $\square$

Theorem 4. Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of $X$ and $Y$ , respectively. Let
$C$ be a set-valu$ed$ mapping from $\Omega_{1}$ to $2^{Z}$ , such that $C$ has solid pointed convex cone
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values. Suppose that $\Omega$ is a set-valued mapping from $\Omega_{1}$ to $(2^{\Omega_{2}}\backslash \{\emptyset\}),$
$g$ is a vector-

valud function from $\Omega_{1}\cross\Omega_{2}\cross\Omega_{2}$ to $Z$ , and $S_{E}$ is a set-valued mapping from $\Omega_{1}$ to
$2^{\Omega_{2}}$ defined by (1). Also we assume that the following conditions:

(i) $\Omega_{1}$ is a closed set;
(ii) $\Omega$ has closed convex gmphj
(iii) int $( \bigcap_{x\in\Omega_{1}}C(x))$ is nonempty;
(iv) $g$ is pammetarized $(-C)$ -continuous on $\Omega_{1}x\Omega_{2}$ with respect to $\Omega$ ;
(v) $g(x, y, .’\cdot)$ is $C(x)$ -quasiconvex on $\Omega(x)$ for each $x\in\Omega_{1}$ and $y$

.
$\in\Omega(x)$ , and

$g(x, y, y)\not\in$ -int $C(x)$ for each $x\in\Omega_{1}$ and $y\in\Omega_{2}$ ;
(vi) for each $x\in\Omega_{1}$ there exist $\hat{v}\in\Omega(x)$ and a compact set $\mathcal{B}\subset Y$ such that

$\hat{v}\in \mathcal{B}$ and

$g(x, y,v)\in$ -int $C(x)$ for all $y\in(\Omega(x)\backslash B)$ .
(vii) $g(\cdot, \cdot, v)$ is C-properly quasiconcave on $\Omega_{1}\cross\Omega_{2}$ for each $v\in\backslash \Omega_{2}.$ ’ where $C:=$

$\bigcap_{x\in\Omega_{1}}C(x)$ .
Then the problem (PVEP) has at least one solution for. each $x\in\Omega_{1}$ , the gmph of $S_{E}$

is $w\backslash eakly$ clo8ed in $\Omega_{1}\cross\Omega_{2}$ .
.

Proof. Using the same way with Theorem 1 and Theorem 2, we obtain nonemptyness
of $S_{E}(x)$ for each $x\in\Omega_{1}$ and closedness of $Gr(S_{E})$ . Moreover by conditions (iv) and
(ix), $Gr(S_{E})$ is a convex set. Hence $Gr(S_{E})$ is weakly closed. ロ

4. MATHEMATICAL PROGRAM WITH VECTOR EQUILIBRIUM CONSTRAINTS

As an application of weakly closedness result of solutions map for (PVEP), we
investigate the existence of solution for a MPEC. Consider the following MPEC:

(MPEC) $\min\{f(x, y) : y\in S_{E}(x)\}$ ,

where $f$ : $\Omega_{1}x\Omega_{2}arrow(-\infty, \infty)$ and $S_{E}$ : $\Omega_{1}arrow 2^{\Omega_{2}}$ is a set-valued mapping such
that for each $x\in\Omega_{1},$ $S_{E}(x)$ is teh solution set of the following PVEP, consisting in
finding $y\in\Omega$ such that

$g(x,y,v)\not\in$ -int $C(x)$ for all $v\in\Omega(x)$ ,

where $g$ is a vector-valued function from $\Omega_{1}x\Omega_{2}\cross\Omega_{2}$ to $Z,$ $C(x)\subset Z$ is a domination
structure generated bu set-valued mapping $C:\Omega_{1}arrow 2^{Z}$ at $x\in\Omega_{1}$ , and $\Omega$ : $\Omega_{1}arrow$

$2^{\Omega_{2}}\backslash \{\emptyset\}$ stands for a constraint map.

Deflnition 9 (see [7]). Let $K$ be a nonempty subset of a real Banach space $E$ and
$h$ a function from $K$ to $[-\infty, \infty]$ .

(i) $h$ is called proper if $h$ is not identically equal $to+\infty$ , or $h$ is not identically
equal to-oo.

(ii) $h$ is called weakly sequentially lower semicontinuous on $K$ if for each $x\in K$

and each sequence $\{x_{n}\}in\cdot K$ , in weak topology,

$x_{n}-x \Rightarrow h(x)\leq\lim_{narrow}\inf_{\infty}h(x_{\mathfrak{n}})$ .
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(iii) $h$ is called weakly coercive if in weak topology,
$h(x)arrow+\infty$ , as $\Vert x\Vert_{E}arrow\infty$ on $K$,

where $||\cdot||_{E}$ denotes the norm of $E$ .
Lemma 2 (Theorem 2,[7]). Let $f$ be a function from $XxY$ to ( $-\infty$ , infty]. Suppose
that

(i) $f$ is proper and weakly sequentially lower semicontinuous on $Gr(S)$ ;
(ii) $f$ is weakly coercive;
(iii) $Gr(S_{E})$ is weakly closed.

Then MPEC has at least one solution.

We have the following existence of MPEC.

Theorem 5. Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of $X$ and $Y$ , respectively. Let
$C$ be a set-valued mapprng from $\Omega_{1}$ to $2^{Z}$ , such that $C$ has solid poited convex cone
values. Suppose that $\Omega$ is a set-valued mapping from $\Omega_{1}$ to $2^{\Omega_{2}}\backslash \{\emptyset\}$ , that $g$ is a
vector-valued function ffom $\Omega_{1}x\Omega_{2}\cross\Omega_{2}$ to $Z$ , and that $S$ is a set-valued mapping
ffoni $\Omega_{1}$ to $2^{\Omega_{2}}$ defined by 1, and suppose that $f$ is a vector-valued function fbvm
$\Omega_{1}x\Omega_{2}x\Omega_{2}$ to $Gr(S_{E})$ , where $Gr(S_{E})$ stands for the gmph of $S_{E}$ . Also we assume
that the following conditions:

(i) $f$ is proper and weakly sequentially lower semicontinuous on $Gr(S)$ ;
(ii) $f$ is weakly coercive;
(iii) $\Omega_{1}$ is a weakly closed set;
(iv) $\Omega$ has weakly closed gmph;
(v) $g$ is pammetarized $w-(-C)$-continuous on $\Omega_{1}x\Omega_{2}$ with respect to $\Omega$ ;
(vi) $g(x, y, \cdot)$ is $C(x)$ -quasiconvex on $\Omega(x)$ for each $x\in\Omega_{1}$ and $y\in\Omega(x)$ , and

$g(x, y,y)\not\in$ -int $C(x)$ for each $x\in\Omega_{1}$ and $y\in\Omega_{2}$ ;
(vii) for each $x\in\Omega_{1}$ there exist $\hat{v}\in\Omega(x)$ and a weakly compact set $\mathcal{B}\subset Y$ such

that $\hat{v}\in \mathcal{B}$ and
$g(x, y, v)\in$ -int $C(x)$ for all $y\in(\Omega(x)\backslash \mathcal{B})$ .

Then the (MPEC) has at least one solution.

Proof. By Theorems 3, we have $S_{E}(x)\neq\emptyset$ and $Gr(S_{E})$ is weakly closed. Then we
can apply, by condition (i) and (ii), Lemma 2, and $\backslash so$ the MPEC has at least on\‘e
solution. $\square$

Theorem 6. Let $\Omega_{1}$ and $\Omega_{2}$ be two nonempty subsets of $X$ and $Y$, respectively. Let
$C$ be $a$ 8olid pointed convex cone in Z. Suppose that $\Omega$ is a set-valued mapping from
$\Omega_{1}$ to $(2^{\Omega_{2}}\backslash \{\emptyset\}),$ $g$ is a vector-valud function from $\Omega_{1}\cross\Omega_{2}\cross\Omega_{2}$ to $Z$ , and $S_{E}$ is a
set-valued mapping from $\Omega_{1}$ to $2^{\Omega_{2}}$ defined by (1). Also we assume that the following
conditions:

(i) $f$ is proper and weakly seq$u$entially lower semicontinu$0$us on $Gr(S)$ ;
(ii) $f$ is weakly coercive;
(iii) $\Omega_{1}$ is a closed set;
(iv) $\Omega$ has closed convex graph;
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(v) int $( \bigcap_{x\in\Omega_{1}}C(x))$ is nonempty;
(vi) $g$ is pammetarized $(-C)$ -continuous on $\Omega_{1}\cross\Omega_{2}$ with respect to $\Omega$ ;
(vii) $g(x, y, \cdot)$ is $C(x)$ -quasiconvex on $\Omega(x)$ for each $x\in\Omega_{1}$ and $y\in\Omega(x)$ , and

$g(x, y, y)\not\in$ -int $C(x-)$ for each $x\in\Omega_{1}$ and $y\in\Omega_{2}$ ;
(viii) for each $x\in\Omega_{1}$ there exist $\hat{v}\in\Omega(x)$ and a compact set $B\subset Y$ such that

$\hat{v}\in B$ and
$g(x, y, v)\in$ -int $C(x)$ for all $y\in(\Omega(x)\backslash B)$ .

(ix) $g(\cdot, \cdot, v)$ is C-properly quasiconcave on $\Omega_{1}\cross\Omega_{2}$ for each $v\in\Omega_{2_{f}}$ where $C:=$

$n_{x\in\Omega_{1}}C(x)$ .
Then the (MPEC) has at least one solution.

Pmof. By.Theorem 4 and Lemma 2, we have the result. 口
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