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.Abstract o

In this paper, we study mathematical program with vector equi-
librium constraint problems in reflexive Banach spaces. In 2006, Suf-
ficient conditions to obtain closedness of the solutions mapping for
a parametric vector equilibrium problem are established; see [5]. In
2005, an existence result of optimal solutions on non-compact set in
reflexive Banach space has been established by Liou and Yao; see
[7]. On the result, weakly closedness of the constraint set for upper-
level problem are required. Therefore sufficient conditions to obtain
weakly closedness of the graph of the solutions ma.pplng are mainly
investigated.
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1. INTRODUCTION

Throughout the paper, we assume that every topologlcal space is Ha.usdorﬁ' and
every field of vector space is real, and int A denotes the topologlcal interior of a set
A.

Let ©; and 92 be two nonempty subsets of a topological space X and a topological
vector space, (in short, t.v.s.), Y, respectively. Let Z be a t.v.s., and intC(z) C Z
be a domination structure generated by set-valued mapping C : Q; — 22 at z € Qy, -
such that C has solid pointed convex cone values. Suppose that the constraint map
Q is a set-valued mapping from Qg to 2% \ {0}. Let g be a vector-valued function
from Q) x Qg x Q2 to Z. We consider the following parametric vector equilibrium
problem (PVEP) for a given z € y, ‘

finding y* € Q(z) such that

(PVEP) g(a;,y ,v) ¢ —1nt'C(3}) for all v G Q(E),

whose solution mapping Sg is a set-valued mapping from 3 to 292 defined by.

Se(z) ={y € Qz) : g(a:, Y v) ¢ —int C(z), for allv € Q(z)}. - (1)
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If Q,C, and g have a constant value for © € €, respectively, then the problem
: (PVEP) is reduced to an ordinary vector equilibrium problem. Llou et al. [6] intro-
duce a weak PVVI as follows: for a given z € (,

finding y* € Q(x) such that
Vyp(z,y*)(y* — v) ¢ —int C for all v € Q(z),

where ¢ = (p1,...,¢p) : 1 X Q2 — RP, ¢(zx,-) is differentiable in Q(x) for a given
z € Q) and int C C Z is a domination structure generating a partial ordering on Z;
see Yu [11]. It is clear that PVVI is a special case of PVEP. . '
~ The purpose of this paper is to establish some existence results for PVEP and g1ve

some applications of PVEP, particularly to the mathematical programs with vector
equilibrium constraints.” To this end, we will give some preliminaries which will be
used for the rest of this paper in Section 2. We will establish some existence results
. and closedness of the graph of the solution map for PVEP In Section 3. Finally we
will establish some existence results for the mathematical program w1th equilibrium
constramts as applications of PVEP.

(PVVI)

2. PRELIMINARIES

We recall the cone-convexity of vector-valued functions by Tanaka [9]. Let X be a
vector space, and Z also a vector space with a partial ordering defined by a pointed
convex cone C. Suppose that K is a convex subset of X and that f is a vector-valued
- function from K to Z. The mapping f is said to be C-convex on K if for each
x1,z2 € K and )\ € [0, 1], we have
| Af(@1) + (L~ Nf(@2) € Fz1 + (1 — Nz2) +C.

As a special case, if Z = R and C = R, then C-convexity is the same as ordinary
convexity.

Definition 1 (C-quasiconvex, |2, 8, 9]). Let X be a vector space, and Z also a vector
space with a partial ordering defined by a pointed convex cone C. Suppose that K
is a convex subset of X and that f is a vector-valued function from K to Z. Then,
f is said to be C-quasiconvez on K if it satisfies one of the followmg two equivalent

conditions:
(i) for each xl,a:g' € K and X € [0,1],

f(Aau + (1= X)z2) € z— C, for all z € C(f(x1), f(x2)),
where C(f(x1), f(z2)) is the set of upper bounds of f (z1) and f (:132), ie.,
C(f(x1), f(x2)) :={z € Z: 2 € f(z1) + C and 2 € f(z2) +C}.
(ii) for each z € Z, _
A(z)={ze€eK: f(z) e z—-C}
is convex or empty. '

First statement is defined by Luc [8] and the second is by Ferro [2].
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Remark 1 (See Tanaka [9]). Some readers recall the following Helbig’s definition which
is stronger than Luc and Ferro’s definition. When Z is locally convex space and C is
closed, the definition is equivalent to C-naturally quasiconvex defined by Tanaka [9].

Definition 2 (Helbig’s C-quasiconvexity, [4, 9]). Let X be a vector space, and Z also
a locally convex space with a partial ordering defined by a closed pointed convex cone
C. Suppose that K is a convex subset of X and that f is a vector-valued function from
K to Z. Then, f is said to be (Helbig’s) C-quasiconvez on K if for every z1,z2 € X
and A € [0,1], and each ¢ € C*, o(f(Az1 + (1 — Mz2) < max{p(f(z1)), p(f(22))},
where C* stands for the topological dual cone of C.

Ezample 1. f : R — R? is defined by f(x) = (z,—|z]) for z € [-1,1] and C =
{(z,y) € R? : y > |z|}. Then we can see that f is Luc and Ferro’s C—quasmonvex,
. but not Helbig’s. : : .

Definition 3 (C-properly quasiconvex, [9]). Let X be a vector space, and Z also a
- vector space with a partial ordering defined by a pointed convex cone C. Suppose .
that K is a convex subset of X and that f is a vector-valued function from K to
Z. Then, [ is said to be C-properly quasiconvezr on K if for every i, 2 e K and
A € [0,1] we have either :

(21 + (1= Nas) € f(z1) - C
or |
FfOzy +(1 — A)z2) € f(za) —

Definition 4 (C-continuity, [8, 10]). Let X be a topological space, and Z a topo-
‘logical vector space with a partial ordering defined by a solid pointed convex cone
~ C. Suppose that f is a vector-valued function from X to Z. Then; f is said to be
C-continuous at ¢ € X if it satisfies one of the following three equivalent conditions:
(i) f~(z +int C) is open.
(ii) For any neighbourhood V}(;y C Z of f(z), there exists a nelghbourhood U, C
X of z such that f(u) € Vi) + C for all u € U.
(iii) For any k € intC, there exists a neighbourhood U, C X of z such that
f(u) € f(z) — k+int C for all u € Uj.
Moreover a vector-valued function f is said to be C-continuous on X if f is C-
continuous at every z on X. '

Remark 2. Whenever Z = R and C = R, C-continuity and (—C)-continuity are the
- same a8 ordinary lower and upper semicontinuity, respectively. In.[10, Definition 2.1 .
(pp.314-315)] corresponding to ordinary functions, C-continuous function is called
C-lower semicontinuous function, and (—C)-continuous function is called C-upper
semicontinuous function.

Definition 5 (see [1]). Let X and Y be two topologlcal spaces, T : X — 2¥ a
set-valued mapping.

(i) T is said to be lower semicontinuous (1s.c. for short) at z € X if for each
open set V with T(a:) NV # 0, there is an open set U contammg z such that -
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for each z € U, T(2) NV # 0; T is said to be Ls.c. on X if it is Ls.c. at all
z € X.
(ii) The graph of T, denoted by Gr(T') is the followmg set:

{(z,y) € X xY : y € T(x)}.

Definition 6 (Parameterized cone continuity). Let P be a topological space. Let
X and Z be two t.v.s.. Suppose that C is a set-valued mapping from P to 2% such
that C has solid convex cone values, and suppose that K is a set-valued mapping
from P to 2X \ {#}. Then vector-valued function f: P x X x.X — Z is said to
be parametarized C-continuous on P x X with respect to K, if for each p € P and
z € K(p) such that

f(p,z,y) € int C’(p) for some y € K(p),
there exists a neighborhood U of (p, z) such that for all (B, %) € U N Gr(K)
f(B,%,9) € int C(p) for somie § € K(p).

We denote f is parametarized w-C-continuous on P x X with respect to K if we
“consider the continuity in weak topology. -

Definition 7 (Jomt —C(p)-continuity). For each (p,%,7) € Q1 x Q2 x Qg, a neigh-
borhood Vp of §, and a neighborhood V; of g(p, £, §J), there exist L{,s(c Vs), Uz, and
Uy such that

g(p,z,y) € (V3 — int C(p)) for all (p,z,y) € Up X Up X Uy,
where U3, Uz, and ug stand for neighborhoods of 3, & and §, respectively

Proposition 1. Let Q1 and Qz be two nonempty subsets of two normal spaces, re-
spectively. Let Z be a normal t.v.s., and C a set-valued mapping from Q; to 2%, such
that C has solid pointed convez cone values. ‘Suppose that Q is a set-valued mapping
from Q1 to 22\ {0}, and that g is a vector-valued function from Q1 x Qg x Q3 to Z.
Also assume the following conditions: |

(i) g is —C(p)-continuous on Ql X (g X Qg, ]ozntly,
(il) Q is Ls.c. on Qg;
(iii) the set-valued map W(p) = Z \ —int C(p) has closed graph.

Then g is parametarized —C -continuous on ;1 x Qo with respect to .

Proof. Suppose for each p € Q; and £ € Q(p) such that g(%, £, y) € —int C(p) for
some § € Q(p).
Then there is a 2 € —intC () such that (£ —clC(p)) is a closed neighborhood of

9(d, %, 9)-
On the other hand {p} x (2 —clC(p)) is a closed subset of 1 x Z such that

Gr(W) N ({p} x (2 —clC(p))) =
Smce Q; x Z is normal space and, by condition (iii), Gr(W) is a closed subset of
- ; x Z, there ex1st a neighborhood V; of p and a neighborhood Vp ‘of (2 — ch’(p))

such that
Gr(W) N (Vﬁ X VD) =
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and so Gr(W) N (Vs x (2 — int C(p))) = 0. Since (2.— int C(p)) is a neighborhood
of g(p, Z,§), by condition (i), we can choose Uy(C Vp), Uz, and Uy such that for all
(p,z,y) € Up x Uz x Uy,

9(p,2,3) € (2 — nt C(5)) — int C(p)) = (2 — imt C(5)),

where Up,uﬁ, and Uy stand for neighborhoods of , £ and 7, respectively.
Next by condltlon (ii) noting Q(P) NUy # O, we can choose a ne1ghborhood Uy of
p such that
Q(p) Ny # 0 for all p € Uj.
Let U = (Up) N U X Uﬁ which is a neighborhood. of (3, .'z:) Then for each (p’ Ve
U N Gr(R), since p € Uz, Q(p') NU; # 0, there exists y' € Q(p") NUy. Therefore for
the (¢/,2',¢/) |
97, 7',y) € (2 - int C(p)),
and hence. .
(p”'g(p’ax’: y,)) € vf? X VD
Consequently, (¢/,g(p',2,y’)) ¢ Gr(W) and hence
9w, z',y) € —int C(p').
O

Definition 8 (KKM-map). Let X be a topoldglcal vector‘space, and K a nonempty -
subset of X. Suppose that F is a mulmfunctlon from K to 2X Then, F is said to be
a KKM-map, if

co{z1,"..,zn} C _Ul F(}z:i)
==
for each finite subset {z;,...,2,} of X.
Remark 3. Obviously, if F' is a KKM-map, then =z € F(z) for each z € K.

Lemma 1 (Fan-KKM; see (3]). Let X be a topological vector space, and K a nonempty
subset of X; and let G be a multifunction from K to 2X. Suppose that G is a KKM-
map and that G(z) is a closed subset of X for each x € K. If G(&) is compact for at

least one & € K, then ()} G(z) # 0.
z€K

3. EXISTENCE RESULTS FOR PVEP AND WEAKLY CLOSEDNESS OF SOLUTIONS
GRAPH

Throughout the fest of the paper, let Y and Y be two real reflexive Banach spaces,
and Z a real Hausdorff topological vector space.

Theorem 1. Let Q1 and Q2 be two nonempty subsets of X and Y, respectively. Let
C be a set-valued mapping from Q; to 2%, such that.C has solid pointed convex cone
values. Suppose.that Q is a set-valued mapping from Q; to 22 \ {0} and that g
is a vector-valued functzon from Q4 x Q x Sy to Z. Also we assume the following
conditions:

(i) Q has closed convez values for each x € Qy;
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(ii) for each (z,y,v) € Q1 x Q(z) X Q(z) satisfying g(z,y,v) € —int C(z), there
erists an weak neighborhood Uy, of y such that for all y' € (Uy N Q(x))
g(z,y,v') € —intC(z) for some v’ € Q(z).
- (iii) g(=,y,-) is C(z)-quasiconvex on Q(x) for each x € Qy,y € Q(z);
(iv) g(z,y,y) ¢ —int C(x) for each x € Qy,y € Q(z). '
(v) for each x € Q there exist & € Q(z) and a weakly compact set B C'Y such
that veB and

‘ g(a:, y,v) € —int C(z) for all y € (Q(z) \ B).
| Then the problem (PVEP) has at least one solution for.each z € Q;.

Proof. Let

6) = {4 € Ae)  9(e,u,0) ¢ —mk O(@)} v e GO,
for each z € Q;. First, we show that G(v) is a KKM-map, for each = € ;. Suppose
to the contrary that there exists o; € [0,1], y; € Q(z) (i = 1,...,n) such that

Yawm=velJ Gly).

i=1 i=1 '
Then we have y € Q(z) because, by condition (i), Q(z) is convex. Hence
f(a:, Y, yt) € —int C(.‘E), t=1,...,n
This means that

f(a’a Y Z az'yz,) - f(.’l?, ya y) € —int C(SC),

i=1
beca.use of condition (iii), and contradicts condition (iv).
Next, from conditions (i) and (ii), for each v € Q(z), G(v) is a weakly closed
set, and by condition (iv), G(v) # 0, and also from condition (v), G(9) is a weakly
compact set. Thus we can apply Lemma 1, to get

Se@)= ) ) #0,

veEQx)
for each z € 3, where SE denotes the solutions map defined by (1). O

Condition (ii) can be replaced as follows: g(z, -, v) is weakly —C|(z)-continuous on
Q(z) for each z € ©;,v € Q(x); and if we assume Q has weakly compact values, then
condition (v) can be removed. Hence we also obtain the following corollary.

Corollary 1. Let 3 and Q2 be two nonempty subsets of X and Y, respectively.
Let C be a set-valued mapping from Q; to 2%, such that C has solid pointed convex
" cone values. Suppose that Q is a set-valued mapping from Qy to 2% \{(0} .and that
g is a vector-valued functzon from Q1 x Q2 x s to Z. Also we assume the following
conditions: ,
(i) Q has weakly compact convex values for each € y;
(ii) g(z,-,v) is weakly —C(x)-continuous on Q(z) for each x € Q1,v € Q(x);
(iii) g(z,y,y) ¢ —int C(z) for each z € Q1,y € Q(z). . '
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Then the problem (PVEP) has at least one solution for each x € §};.

Theorem 2. Let ;1 and 2 be two nonempty subsets of two topological spaces,
respectively. Let C be a set-valued mapping from Q1 to 22, such that C has solid
pointed convex cone values. Suppose that Q is a set-valued mapping from 2 to
(2°%2\{0}), g is a vector-valud function from Q1 x Q2 x Qs to Z, and Sg is a set-valued
mapping from Q; to 22 defined by (1). Also we assume that the following conditions:

-Let Qy and Qg be two nonempty subsets of two topological spaces, respectively. Let
C be a set-valued mapping from Q1 to 2%, such that C has solid pointed convez cone
values. ‘Suppose that Q is a set-valued mapping from Q; to (292\ {B}), g is a vector-"
valud function from Q1 x Qg x to Z, and Sk is a set-valued mappmg from Q4 to
2% defined by (1). Also we assume the followmg conditions:

(i) Q1 is a weakly closed set;

(i) © has weakly closed graph;
(iii) g is parametarized w-(—C)-continuous on Q; x Qg with respect to Q;
(iv) Se(z) # 0 for each z.€ Q.

Then the solution set SE(m) of problem (PVEP) has weakly closed graph

Proof Let (za,Ya) € Gr(SE) with (Za, Ya) = (2, 7). Then by condltlons (i) and (ii),
x € ; and y € Q(z). Therefore suppose to the contrary that y ¢ Sg(x), there exmts
v € Q(z) such that _
g9(z,y, v) € —int C(z).

Because of condition (iii), there is a weak neighborhood ¥ of (z,y) such that for all
(&,§) € U, there is © € Q(&) such that g(,§,?) € —int C(&). Then there exists &
such that for all @ > &, ya ¢ Sg(za). This is a contradiction. O

‘Theorem 3. Let Q) and Q2 be two nonempty subsets of X and Y, respectively. Let
C be a set-valued mapping from Q1 to 22, such that C has solid pomted convex cone
values. Suppose that Q2 is a set-valued mapping from Q; to (22 \ {0}), g is a vector-
valud function from Q1 x Q3 X Q2 to Z, and Sg is a set-valued mapping from Q; to
2 defined by (1). Also we: assume that the following conditions:

(i) Q1 is @ weakly closed set;
(i) Q has weakly closed graph;
(iii) g is parametarized w-(—C)-continuous on 1 x Qg with respect to Q;
(iv) g(z,y,-) is C(x)-quasiconvez on Q(z) for each z € Q1 and y € Q(x), and
9(z,y,y) ¢ —int C(z) for each-z € O and y € Qp;
(v) for each z € Q; there exist © € Q(z) and a weakly compact set B C Y ‘such
that 9 € B and ‘

9(z,y,v) € —int C(x) for all y € (Q(x) \ B). |
Then the problem (PVEP) has at least one solution, and Sg has weakly closed graph.
Proof. The result follows from Theorems 1 and 2. ' O

Theorem 4. Let Q; and Q2 be two nonempty subsets of X and Y, respectively. Let
 C be a set-valued mapping from 0 to ZZ , such that C has sohd pomted convex cone
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values. Suppose that § is a set-valued mapping from Qy to (2%2\ {0}), g is a vector-
valud function from Q1 X Q2 x Q2 to Z, and Sg is a set-valued mapping from Q to
2% defined by (1). Also we assume that the following condztzons

(i) Q1 isa closed set;
(ii) Q has closed convez graph;
(iii) int (Ngen,C(z)) is nonempty; :
(iv) g is parametarized (—C)-continuous on Q; x Q2 with respect to Q;
(v) g(z,y,:) is C(z)-quasiconver on Q(z) for each x € Uy and y € Q(z), and
g9(z,y,y) ¢ —int C(z) for each x € Q1 and y € Qy;
- (vi) for each z € Q there exist & € Q(x) and a compact set B C Y such that

€ B and
g(z,y,v) € —int C’(aﬁ) forally € (Q(:z:) \ B).

(vii) g(-,+,v) is C-properly . quasiconcave on Q1 x Q2 for eachv € Qg , where C :=
Nge, C(z). :

" Then the problem (PVEP) has at least one solutzan Jor. each z €8y, the gmph of .S’E

is weakly closed in 23 x §s.

Proof Usmg the same way with Theorem 1 and Theorem 2, we obtam nonemptyness
of Sg(z) for each z € Q; and closedness of Gr(Sg). Moreover by condltlons (iv) and
(1x), Gr(SE) is a convex set. Hence Gr(Sg) is weakly. closed. O

4. MATHEMATICAL PROGRAM WITH VECTOR EQUILIBRIUM CONSTRAINTS

As an application of weakly closedness result of solutions map for (PVEP), we
investigate the existence of solution for a MPEC. Consider the following MPEC:

(MPEC) min{f(z,y) : y € Sg(z)},
where f : @) x 3 — (—00,00) and Sg : Q1 — 2 is a set-valued mapping such .
that for each z € Qy, Sg(z) is teh solution set of the followmg PVEP, consisting in
~ finding y € Q such that.

g(m,y, v) ¢‘ —int C(a:) for all v € (z),

where g is a vector-valued function from Q1 xQyx Qs to Z, C(z) C Z is a domination
structure generated bu set-valued mapping C’ O 2% atzreQ,and Q:Q; —
22 \ {(} stands for a constraint map. |

Definition 9 (see [7]). Let K be a nonempty subset of a real Banach space E and
h a function from K to [—oo0, 00]. |
(i) h is called proper if -k is not identically equal to 400, or h is not identically

equal to —o0.
(11) h is called weakly sequentially lower semicontinuous on K if for each z G K

and each sequence {.’L‘n} in K, in weak topology,

Ty — T > h(a:) < 11m1nf h(wn)
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(iii) h is called weakly coercive if in weak topology,
h(z) — +o0, as ||lz|lg — oo on K,
where || - ||z denotes the norm of E.

Lemma 2 (Theorem 2,[7]). Let f be a function from X xY to (—oo,infty]. Suppose
that
(i) f is proper and weakly sequentially lower semicontinuous on Gr(S);
(ii) f is weakly coercive; :
(iii) Gr(SE) is weakly closed.
Then MPEC has at least one solution.

We have the following existence of MPEC.

Theorem 5. Let Q; and Qg be two nonempty subsets of X and Y, respectwely Let
C be a set-valued mapping from Qy to 22, such that C has solid poited convez cone
values. Suppose that Q is a set-valued mapping from Qq to 22 \ {0}, that g is a
vector-valued function from Q1 x Q2 X Q3 to Z, and that S is a set-valued mapping
from Q1 to 2 defined by 1, and suppose that f is a vector-valued function from
Q1 x Qg x Qg to Gr(SE), where Gr(Sg) stands for the graph of Sg. Also we assume
that the following conditions:

(i) f is proper and weakly sequentially lower semicontinuous on Gr(S );
(ii) f is weakly coercive;
(iii) Q1 is a weakly closed set;
(iv) Q has weakly closed graph;
(v) g is parametarized w-(—C)-continuous on 1 x Qg with respect to Q;
(vi) g(x,y,) is C(x)-quasiconvez on Q(z) for each x € 1 and K € Q(:z:), and
9(z,y,y) ¢ —int C(x) for each x € Q; and y € Qa;
(vii) for each x € Qy there ezist ¥ € Q(z) and a weakly compact set B C Y such
that 0 € B and ~

|  g(z,y,v) € —int C(z) for all y € (Ax) \ B).
Then the (MPEC) has at least one solution.

Proof. By Theorems 3, we have SE(:E) # 0 and Gr(Sg) is weakly closed. Then we
can apply, by condition (i) and (ii), Lemma 2, and so the MPEC has at least one
solution. ‘ 0

Theorem 6. Let 1 and Q2 be two nonempty subsets of X and Y, respectively. Let
C be a solid pointed convexr cone in Z. Suppose that S} i3 a set-valued mapping from
Q1 to (22 \ {#}), g i5 a vector-valud function from (4 x Qp x Qg to Z, and Sg is a
~ set-valued mapping from Ql to 22 defined by (1). Also we assume that the followmy ’
conditions:

(i) f is proper and weakly sequentially lower semicontinuous on Gr(.S’),
(ii) f is weakly coercive;
(iii) Q3 is a closed set;
(iv) Q has closed convex graph;



76

(v) int (Nzen, C(x)) is nonempty;

(vi) g is parametarized (—C)-continuous on Q1 X Qy with respect to ;

(vii) g(z,y,-) is C(z)-quasiconvez on Qzx) for each x € Q; and y € Q(z), and
, g9(z,y,y) ¢ —int C(x) for each x € 0y and y € §2y; '
(viii) for each © € Qy there exist & € Q(z) and a compact set B C Y such that -

v € B and )
g(z,y,v) € —int C(z) for all y € ((z) \ B).
(1x) g(+5+,v) is C-properly quaszconcave on Ql X §22 for each v € Slg, where C :=

nmthc’(m)
Then the (MPEC) has at least one solution.

Proof. By 'Theorem 4 and Lemima 2, we have the result. .0

REFERENCES

[1] C. Berge, Topologzcal Space, (1963) Oliver&Boyd, Edinburgh and London.

[2] F. Ferro, A Minimaz Theorem for Vector-Valued Functions, J. Optim. Theory Appl 60(1),

. +(1989), 19-31.

[3] K. Fan, A Generalization of T’ychonoﬁ' s Fized Point Theorem, Math. Ann, 142, (1961) 305-310.

[4] S. Helbig, On the connectedness of the set of weakly efficient poinis of a vector optimization.
problem in locally convex spaces, J. Optim. Theory Appl. 85(2), (1990), 257-270.

[5] K. Kimura, Y. C. Liou and J. C. Yao, A parametric equlibrium problem with application to
optimization problems under equilibrium constraints, J. Nonlinear Convex Anal. 7(2), (2006), -
237-243.

[6] Y. C. Liou, X. Q. Yang-and J. C. Yao, Mathematical programs with vector optimization con--
straints, J. Optim. Theory Appl. 126(2), (2005), 345-355.

[7] Y. C. Liou and J. C. Yao, Bilevel Dicision via Vanatwna.l Inequalities, Comput Math. Appl. 49 -
(2005), 1243-1253.

'[8] D. T. Luc, Connectedness of the efficient point sets in q‘ua.szconcave vector mazimization, J.
Optim. Theory Appl. 122, (1987), 346-354.

[9] T. Tanaka, Cone-quasiconvezity of vector-valued functions, Sci. Rep Hirosaki Univ. 42 (1995),
1567-163.

[10] T. Tanaka, Generalized semicontinuity  and existence theorems for cone saddle points, Appl.
Math. Optlm 36 (1997), 313-322.

[11] P. L. Yu, Cone convezity, cone extreme points, and nondominated solutwne in decision problems
with multzobjectwes, J. Optim. Theory Appl. 14(3), (1974), 319-377.



