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ABSTRACT. In this paper, using more general mappmg than Hausdorff metric we obtain
fixed points for a multi-valued mapping.

1. INTRODUCTION

- Fixed point theory has important applications in diverse disciplines of mathematics,
statistics, engineering and economics in dealing with problems arising in approximation
theory, potential theory, game theory, mathematical economics, etc. Many authors [1-
13] have proved some fixed point theorems for various generalizations of contraction
mapping in metric spaces. Extensions of the Banach contraction mapping principle
to multi-valued mapping were initiated independently by Markin [9] and Nadler [10].
Further results on fixed points of contraction type multi-valued mappings were given by
Cirié [3], Dube and Singh [5], Kubiaczyk [7], Kubiak [8], Ray [11] and others.

In 1995, Chang et al. [2] proved the following theorem: Let (X,d) be a complete
metric space and let 7 : X — CB(X) be a multi-valued mapping. If there exists
k € (0,1) such that for all z,y € X

H(Tz,Ty) < kd(z,y) + k | d(z,Tz) — d(y, Ty) |,
then T has a fixed point in X, where CB(X) is the collection of all nonempty bounded
closed subsets of X.
In 1996, Kada-Suzuki-Takahashi [6] introduced the concept of w-distance and, by
using this concept, proved a nonconvex minimization theorem and some fixed point
theorems in complete metric spaces.

In this paper, using more general mapping than Hausdorff metric we obtain fixed
points for a multi-valued mapping.
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2. PRELIMINARIES

Definition 2.1 [6]. Let (X,d) be a metric space. Then a function p : X x X — [0, 00)
is called a w-distance on X if the following are satisfied:
(1) p(z,2) < p(z,y) + p(y, 2) for all z,y,z € X;
(2) for any x € X, p(z,-) : X — [0, 00) is lower semicontinuous;
(3) for any € > 0, there exists § > 0 such that p(z,z) < § and p(z,y) < § imply
d(z,y) <e.

Example 2.2 [6]. Let (X,d) be a metric space. Then clearly d is a w-distance on X

Example 2.3. Let (X, d) be a metric space with a continuous w-distance p and a con-
tinuous w-distance r. Then ¢ : X x X — [0, 00) defined by g(z, y) = max[p(z,y), r(y, )]
for all z,y € X is a w-distance on X.

The following is an easy consequence from the definition of w-distance p.

Lemma 2.4. Let (X,d) be a metric space with a w-distance p. Let {z,} and {yn}
be sequences in X, let {an} and {B,} be sequences in [0,00) converging to 0, and let
z€ X. If p(zn,yn) < an and p(zn,2) < B for any n € N, then {y,} converges to z.

Now we recall the following generalization of Caristi’s fixed point theorem in [6],
which will be used in the proof of our results.

Lemma 2.5 [6]. Let (X,d) be a complete metric space with a w-distance p, let F :

X — X be a mapping and let ¢ : X — [0,00) be a proper lower semicontinuous
function, bounded from below such that

p(z, Fz) < o(x) — p(Fz) for allz € X.7? (2.1)

Then there exists xo € X such that Fxy = zo and p(xgy,zo) = 0.

Definition 2.8. Let (X,d) be a metric space with a w-distance p.
(i) For any z € X and A C X, p(z,A) := inf{p(z,y) : y € A} and p(4,z) :=
inf{p(y,z) : y € A}.
(ii) CBy(X) ={A| A : nonempty closed subset of X and SUP; yc 4 P(Z,Yy) < oo}
(iii) For A, B € CB,(X),

G(A, B) := max{sup p(u, B), sup p(B, u), sup p(v, A), sup p(4, v)}.
u€EA u€A vEB vEB
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Definition 2.7 [2]. Let (X, || -||) be a normed vector space, D a nonempty subset of
X. For any given x € D, the set

Ip(z)={z+a(ly—=z):y € D,a >0}

is called the inwardness set of D at z.
For given x € D and a > 0 we denote

Ipq(z) = {a: +a(y —x):y € D}.

3. MAIN RESULTS

Theorem 3.1. Let (X,d) be a complete metric space with a continuous w-distance p
and T : X — CBy(X) be a multi-valued mapping such that

G(T:c,Ty) <k ma-x[p(w’ y)’p(y’ m)]
| + k | max[p(z, T'z), p(T'z, z)]

— max[p(y, Ty), p(Ty, y)} | (3.1)
for all z,y € X and some k € (0,1),
inf {maxlp(z, u), p(u, 2)]} < max{p(z, 4), p(4, )] (32)

for all A € CBy(X) and each x € X, and
z v max[p(z, Tx),p(Tz,x)] foralze X, (3.3)

18 lower semicontinuous.
Then T has a fized point in X.

Proof. If max[p(x,Tx),p(Tz,x)] = 0 for some z € X, then, by Lemma 2.4, T has a
fixed point in X. Next we may assume that max{p(z,T'z),p(Tz,z)] > 0 for all z € X.
Take o > 1 such that a- k < 1. By (3.2), for each £ € X there exists z, € Tz such that

0 < max[p(z, 25),P(2z, )] < - max[p(z,Tz), p(Tz, z)].

Since
max[p(2z, T2 ), P(T 2z, 2z)] <G(Tx,T2;)
<k- ma.x[p(:z:, 2z), P(22, T))
+ k | max[p(z, Tz), p(Tz, z)]
— max([p(2z, T2z), (T2, 2)] |,
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we have

max|[p(zg, T2z), P(T 2z, 22)| <a - k - max[p(z, Tz), p(Tz, :c)]
+ k | max[p(z, Tz), p(Tz, x)] (3.4)
— max([p(2z,T2z), p(T 2z, 22)] | -

Suppose that
max([p(z, Tz), p(Tz, x)] < maxb_(zz, T23), p(T 2z, 2],
Then, by (3.4), we obtain 1 < a - k, which is a contradiction. Thus we have
max(p(zz, Tzz), (T2, 2)] < max[p(z, Tz), p(Tx, x)]
and
max(p(z, %), p(z2, 2)] < (1+K)(; — k)™ { maxlp(a, T), (T, o)
— max[p(2z, T'2z), P(T 2z, 2)]}-
Define a function ¢ : X — [0, 00) by

. _
plx) =01+ k)(a‘ - k)‘l{ma.x[p(a:, Tz),p(Tx, .'L‘)]}.
for all z € X. Define a mapping F' : X —+ X by Fz = z, for all ¢ € X. Then, we have |
max[p(z, Fz),p(Fz,z)] < ¢(z) — o(Fzx)

for all x € X. Since all conditions of Lemma 2.5 are satisfied, there exists u € X such
that u = Fu = 2, € Tu. Therefore T has a fixed point in X. O

Corollary 3.2 [2]. Let (X,d) be a complete metric space and let T : X — CB(X) be
a multi-valued mapping. If there exists k € (0,1) such that for all z,y € X

H(Tz,Ty) < kd(z,y) + k | d(z, Tx) — d(y, Ty) |,
then T has a fized point in X.

Proof. Since the metric d is a w-distance and all conditions of Theorem 3.1 are satisfied,
Corollary 3.2 follows from Theorem 3.1. O

The following simple example shows that Theorem 3.1 is more general than Theorem
2 of Chang et al. [2].
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Example. Let X = [0, 1] be the closed bounded interval with the usual metric and let
p: X x X — [0,00) be a mapping defined by p(z,y) = y for all 2,y € X. Suppose that
T : X — CBp(X) is a multi-valued mapping such that Tz = {£z} for all z € X, where
k is a fixed element of (0,1). Then all conditions of Theorem 3.1 are satisfied but not
satisfied all conditions of Corollary 3.2, since p is a w-distance but not a metric.

Theorem 3.3. Let (X,|| - ||) be a Banach space, d be a metric on X induced by the
norm || - || as d(z,y) = ||z — y|| with a continuous w-distance p, and D be a nonempty
closed subset of X. Assume that the w-distance p satisfies

(i) for any z € X, p(z,y) = p(z — y,0) = p(0,y — z),
(ii) for any x € X and for any a > 0, plaz, ay) = ap(z,y).
(iii) for each s € X,

vlgg{max[p(s, v), (v, 8)]} < max[p(s, D), p(D, 3)].

Let T : D — CBy(X) be a multi-valued mapping satzsfymg (8.1), (3.2), (3.8) and
the following condition: there ezists a constant § € [0, 1T 1=k) such that

he(o ll{zséqum ’lz max[p((1 — h)x + hz,D),p(D, (1 — h)x + hz)]}

< é - max(p(z, Tz), p(Tz,z)] (3.5)

for each x in D.
Then T has a fized point in X.

Proof. Assume that max[p(z, Tz),p(Tz,z)] > 0 for all z € D. Let g, n,a € (0,1) be
such that ¢ < 1 1+k —-0,n=q+b6andk<a< —_’_-g Then we obtain k < 1—4_—3 By (3.5),
for any € € (0,q) and z € D, there exists h € (0, 1] such that

sup {max[p((1 — h)z + hz,D),p(D, (1 — h)z + h2)]}

z€Tx

< h{6 - max[p(z, T'z), p(Tz, z)]
+(g—¢) . max[p(x, T'z), p(Tz, )]}

= h(n — €) - max[p(z, T'z), p(Tx, z)]. (3.6)
By (3.2), choosing z € Tz such that
max[p(z, 2),p(2, ¢)] < (1 + he) max|p(z, Tz), p(Tm,F:c)] (3.7)

and for this z, taking y € D in (3.6) from (iii), we have

max[p((1 — h)x + hz — y,0),p(0, (1 — h)z + hz — y)]
~ < h(n — €) max[p(z, Tx), p(Tz, ). (3.8)
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From (3.8) and z € Tz, we get y # x. Letting u = (1 — h)z + hz, we obtain

ma.x[p(u, y)yp(% u)] <h-7n- max[p(a:,Tx),p(Tac, .’L‘)]
— h - e-max[p(z,Tz), p(Tz,z))
<h - n - max[p(z, 2), p(z, T)]
— h - e-max[p(z, Tz), p(Tz, )]

=n - max(p(u, z), p(z, u)]
— h - € max[p(z, Tz), p(Tz, ). (3.9)

Thus we have

max[p(z, y), p(y, z)] < max[p(z, u), p(u, z)]
+ max(p(u, y), p(y, v))
<(1 + n) max[p(z, u), p(u, Z)]. (3.10)

From (3.1) and k < a, we get

| =a - max[p(z,y), p(y, z)] + k | max[p(z, T'z), p(Tz, )
— max(p(y, Ty), p(Ty,y)] | -G(Tz,Ty) > 0.

By (3.2), there exists b € T’y such that
max|p(z,b),p(b, 2)] < G(Tz,Ty) +1. (3.11)
Thus we have

max[p(y, Ty), p(Ty, y)] < max[p(y,b), p(b, y)]
< max[p(y, u),p(u, y)]
+ ma.x[p(u, z),p(z,u))
+ max[p(z,b), p(b, 2)). (3.12)

Using (3.7), (3.9), (3.11) and (3.12), we obtain

max[p(y, Ty), p(Ty,y)] <(n - 1) - max|p(z, u), p(u, )]
+ max[p(x, Tz), p(Tz, )]
+a- max[p(a:, y)’p(y, z)]
+ k | max[p(z, Tz), p(Tz,z)]
— max[p(y, Ty), p(Ty,y)] | -



150

From (3.10) and n < 1, we get

max[p(y, Ty). o(Ty,v)] <(o + 17 ) maxip(z, ), p(y, )]

+ max[p(z, Tz), p(T'z, z)]
+ k | max[p(z, Tz), p(Tz, x)]
— max[p(y,Ty),P(Ty, y)] l .

Suppose that
max[p(z, T'z), p(Tz, z)] < max[p(y, Ty), p(Ty, y)l-

Then we have

maxip,T2), (70, 1)] < g (o + 1) maip(z, 1), (0,

+ ma.x[p(m, T:v),p(Ta:, (L‘)]
< max[p(z, Tz), p(Tz,x)).

This is a contradiction. Thus we get

max[p(y, Ty), p(Ty, )] < max[p(z, Tz), p(Tz, )]

and

(75 @) - maxlp(a, ). p,2)]
< max[p(z, Tz), p(Tz, )] — max[p(y, Ty), p(Ty, )] (3.13)
On the other hand, from (3.7), (3.8) and (3.13), there exists a function
F:D—D (3.14)
such that for any z € D, Fx :=y, y # z and
max[p((z, Fz),p(Fz,z)] < p(z) — p(Fz),

where
p(z) = (1+ k)( a) max[p(z, Tz), p(Tz, )].

Thus by Lemma 2.5, there exists v € D such that F'v = v. This is a contradiction. This
completes the proof. [

Using Theorem 3.3, we have the following corollary
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Corollary 3.4 [2]. Let (X,||-||) be a Banach space, d be a metric induced by the norm
as d(z,y) = ||z — y|l, D be a nonempty closed subset of X and T : D — CB(X) be a
multi-valued mapping satisfying the following conditions :

(i) there exists a constant k € (0,1) such that for any x,y € D

H(Tz,Ty) < k||lz — y|| + k | d(z, Tx) - d(y, Ty) |; (3.15)

(ii) there exists a constant § € |0, 15%) such that

1 .
d _ <g. .
k€(0,1) zseuTI; kd((l k)z + kz), D) < 6 - d(z, Tx)

Then T has a fized point in X.

Theorem 3.5. Let (X, || - ||) be a normed space with a continuous w-distance p con-
necting with a metric d induced by the norm || - || as d(z,y) = ||z — y||, D be a convezx
subset of X, x € D and A € CB,(X). Then

1
Onf —
hel(o,ll 21613 h

= il;% sup{max[p(z, ID,a(x))’p(ID,a(m)’z)]}’ (1)
azUz2eA

{max[p((1 — h)z + hz, D), p(D, (1 - h)z + h2)]}

ir;t(')-sup{max[p(z, Ip,q(x)), p(ID,a(m)’vz)]}
azUzecA

2 sup{max|p(z, Ip(2)), p(Ip (), )]} | (i)
Proof. Since
inf sup %{max[p((x ~ h)e + hz, D),p(D, (1 — h)z + hz)]}
= H;fl sup{maXB)(z, ID,a (m))ap(ID,a (.’E), Z)]}
azlzeA
and

max[p(z, Ip,1(<)), p(Ip,1(2), 2)] < max[p(z, Ip 4()), p(ID,q(2), 2)],

for all a € R with 0 < a < 1 and for all z € D, z € A, we obtain (i). By elementary
calculus, we obtain (ii). O

Using Theorem 3.3 and Theorem 3.5 we have the following Theorem.
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Theorem 3.6. Let (X,|| - ||) be a Banach space with a continuous w-distance p con-
necting with a metric d induced by the norm ||-|| as d(z,y) = ||z —y||, D be a nonempty
closed convex subset of X satisfying (iii) in Theorem 3.3 and T : D — CBp(X) be a
multi-valued mapping satisfying (3.1), (3.2), (3.8) and the following condition:

. 1—
there exists a constant & € [0, 1—;%) such that

;1;% zseup {ma-x[P(z Ip a(z))’p(ID,a(x)’ z)]}

<4 - max[p(z,Tx),p(Txz,z)]} forallz € D.
Then T has a fized point in D.
From Theorem 3.6 we have the following corollary.

Corollary 3.7 [2]. Let (X,]| - ||) be a Banach space, D be a nonempty closed convex
subset of X and T : D — CB(X) be a mapping satisfying (8.15) and the following
condition:

o ~3

10.
11.
12.

13.

there exists a constant 0 € | i
1nf sup d(2,Ipq.(z)) < dd(z,Tz) forall z € D.

ze:z:

0, ;ll:) such that

Then T has a ﬁa:ed point in D.
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