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Abstract: There are three popular approaches, merit functions approach, nonsmooth
functions approach, and smoothing methods approach, for the second-order cone com-
plementarity problem (SOCCP). In this article, we survey recent results on the most
popular approach, merit functions approach. In particular, we investigate and present
several merit functions for SOCCP We also- propose some open questions for future
'study v
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1 Introduction

The second-order cone complementarity problem (SOCCP), which is a natural extension
~-of nonlinear complementarity problem (NCP), is to find ¢ € IR™ satisfying

(F((),¢)=0, F()ek, C(ek, @

* where (-, -) is the Euclidean inner product, F : R® — IR" is a continuous mappmg, and
K is the Cartesian product of second—order cones (SOC), also called Lorentz cones [1 1]
In other words

K=K"x...x K", (2)

wheremnl, m 21l n 4+ +n, =mn, and
| = {(21,23) € R X R | |lag]| < 21}, )
with || - || denoting the Euclidean norm and K! denoting the set of nonnegative reals
IRy. A special case of (2) is X = IR}, the nonnegative orthant in IR", which corresponds
tom =nand ny = --- = nyp, = 1. If £ = R?, then (1) reduces to the nonlinear

complementarity problem. Throughout this paper, we assume K = K" for simplicity, -
i.e., K is a single second-order cone (all the analysis can be easﬂy carried over to the
general case where has the direct product structure (2))
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There have been various methods proposed for solving SOCCP. They include interior-
point methods [2, 17, 19, 21, 24|, non-interior smoothing Newton methods [9, 14, 135].
Recently in the papers [3, 4, 7], the author studied an alternative approach based on
reformulating SOCCP as an unconstrained smooth minimization problem. For this
approach, it'aims to find a smooth function ¥ : IR* x R™ — IR such that

Ya,y)=0 <= zek" yek® (z,9) =0 (4)

Then SOCCP can be expressed as an unconstra.lned smooth (global) mlmmlzatlon prob-
lem: . :

min f(Q) = 9(F(),Q)- | )

- We call such a f a merit function for the SOCCP.

A popular choice of 1 is the squared norm of Fischer-Burmeister functlon, ie., Ypy:
IR" x R® — IR, associated with second-order cone given by

bn(@0) = Hlom@ I, ®

where ¢, : R™ x ]R" — IR" is the well-known Flscher-Burmelster function (originally
proposed for NCP, see (12, 13]) defined by

¢FB(z1 y) = ((17 + y2)1/2 - —. o . (7)

More spec1ﬁca.11y, for any z = (:1:1, xz) y = (y1,%2) € R x R*, we define their Jordan
product associated with ™ as -

1‘_0'1/ = ((:z:,y) y 1T2 + T1Y2 ) . | (8)

The Jordan product o, unlike scalar or matrix multiplication, is not associative, which
is a main source on complication in the analysis of SOCCP. The identity element under
~ this product is e := (1,0,...,0)7 € IR*. We write 22 to mean o  and wnte z+y

'to mean the usual componentw1se addition of vectors. It is known that 22 € K" for
all z € IR®. Moreover, if £ € K™, then there exists a unique vector in K", denoted by

z1/2, such that (z1/?)? = z'/2 o V2 = z. Thus, b, defined as (7) is well-defined for all
(z, y) € R” x IR® and maps IR® x IR™ to IR”. It was shown in [14] that ¢.,(z,y) =0
if a.nd only if (z,y) satisfies (4). Therefore, 1., defined as (6) induces a merit function
* fop = Yep (F(£),¢)) for the SOCCP.

The function 9, given as in (6) was proved smooth with computable gradient for-
‘mulas and enjoys several favorable properties, nonetheless, it does not have additional
bounded level-set and error bound properties (se¢ [7]). To conquer this, several other
functions associated with second-order cone were considered [3, 4, 7]. The ﬁrst one is

' 1/1“, R™ x ]R" — IR defiried by
Yve (2, y) == vo((z,¥)) +¢Fs(w ) O

where 1 : IR — IR+ is any smooth function satisfying | |
¢o(t) =0 Vt <0 and 1,1)0(t) >0 Vi>0. (10).
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‘The function %, was studied by Yamashita and Fukushima, [25] for SDCP (semi-definite
complementarity problems) case and was extended to SOCCP case in [7] An example of

Yo(t) is Po(t) = 4(max{O t})*. A slight modification of %, yields wYF R”xR" >R
defined by

Py (@) = -H(woy)+||2+¢pa($ Y) (11)

where (- )+ means the orthogonal projection onto the second-order cone IC" The third
function is ¢, : R" x R™ — IR defined by

Yz (2,y) = ¢o((w ) +¢(w, y), | - (12)
where 1 : R” x R® — IR, satisfies ' _ i ‘
$@9)=0, (@) <0 > zek" yek®, (zy)=0.  (13)

The function v is the same as the above and examples of 1:5 are ,
, , : ~ 1, o
@) = (P I )  md ) = GlenEnE 08

which were recently mvestlgated in [4]. The function '%l’m was proposed by Luo and -
Tseng for NCP case in [18] and was extended to the SDCP case by Tseng in [23]. The -

last function t/)m, R" x R™ — IR, a slight variant of 1., is defined by

Yo (T, y) = —ll(w °y)+|I* + 9(z, y) (15)

where ¢ is given as in (13).
Each of the above functions naturally induces a merit function as follows:
foQ) = Ye(FEQ,0O, |
FeQ) = $a(FQ.0), 6)
f2Q) = ()0, : |
fL'r (C) = wLT(F(C)’C)

It was shown that fve Provides error bound [7, Prop. 5] if F is strongly monotone and
‘Jvr has bounded level set [7, Prop. 6] if F' is monotone as well as SOCCP ‘is strictly

feasible. The same results hold for- fw [3, Prop. 4.1 and Prop. 4.2], for f.. [4, Prop. 4 1.
-and Prop. 4.3], and for fm- (4, Prop. 4.2 and Prop. 4.4].

Next we also investigate the followmg one~parametrlc class of functlons, ¢, :IR™ x
— IR™ defined as

8. (@) = [(z—y>'2+>\(woy)] ~(@+), oan
where Aisa ﬁxed ‘parameter such that A € (0,4). It can be verified that for any z,y € ]R"

- (z - y)2+)\($oy)

2+ (A - 2_)(2:voy)+y -
o+ O] +[1- )y . (18)
2+ (2] + 227 |

, .

I

It

Zxn
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where the inequality holds b.e‘cause A € (0,4). Therefore, ¢, is well-defined. Further-
more, we let ¥, : R" X R" — IR be :

@) = sl @yl | (19)

We will see that ¢, is a differentiable merit function, with compﬁtable gradient for-
mulas, for SOCCP. In other words, the SOCCP can be expressed as an unconstrained
differentiable global minimization problem :

min (0 =9(F),C0) (20
Moreover, we.wi.ll also show that every. stationa.ry point of (20) solves the SOCCP when
VF and —VG@G are column monotone (see Prop. 3.2). Indeed, we say that M, N € R**"
are column monotone if, for any u,v € R*, Mu+ Nv =0 = uTv > 0. In Prop. 3.2,
we assume that

| VF((), fVG(C) are column monotone V(€ R". (21)

Notice that ¢, reduces to the FB function ¢., when A = 2, whereas it becomes a multiple
of the natural residual function ¢, when A — 0. Thus, this class of merit functions
covers the most two important merit functions for SOCCP so that a closer look and’
study of this new class of functions is worthwhile. .In fact, this study is motivated by
the work [16] where the function 1, was considered for the NCP.

Finally, we introduce another two important merit functions for the SOCCP, which
are not variants of FB function. The first one is the Implicit Lagrangian funct1on ¢Ms
IR"” x R" — IR, defined by

s = @) + 2 (10— )l = ol + 10— a2)e P~ o), (22

where a > 1 and (-); is the orthogonal projection onto X*. "The function Yys WBS
introduced by Mangasarian and Solodov in [20] for the NCP. The other one is based on
the NCP- functlon proposed by Evtushenko and Purtov in [10] It is ¢Ep lR"xIR" — R,
defined by

o) = S, )
where ¢, : R" x R — IR" is given by

buel@d)i=—@on) + e +ufl  O<pSL (@)

Throughout this paper, IR" denotes the space of n-dimensional real column vectors
- and T denotes transpose. For any differentiable function f : R® — IR, V f(z) denotes

the gradient of f at z. For any dlﬁ'erentlable mapping F' = (F,... m)T R™ —» R™;

VF(z) = [VFi(z) -+ VFn(z)] is a n x m matrix denoting the tra.nspose Jacobian of
F at x. - :
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2 Jordan product and spectral factorization

For any z = (z1,2;) € R x R™!, its determinant is defined by det(z) := =3 — |l$2“2
In general, det(z o y) # det(x)det(y) unless z, = yo. A vector z = (z1,22) € R x R"!

is sald to be invertible if det(x) # 0. If z is invertible, then there exists a unique
= (y1,72) € R x R"*! satisfying zoy = yoz = e. We call this y the inverse of z and

denote it by z~1. In fact, we have z1 = m(zl , —I3). 'Therefore, T€E mt(IC")
2_ ;

“if and only if z7! € 1nt(IC”) Moreover, if ¢ € int(K®), then z=% = (z*)~1 is also well-
~ defined. For any x € K", it is known that there exists a unique vector_in K™ denoted

by z'/2 such that (z'/?)? = z'/2 0 x1/2 = z. More speciﬁcé,lly gt/ =(s , %1) where

8 = \/ 1 (x1 +4/z} — ||:1:2||2) In the above formula, the term mg/s is deﬁned to be the

-zerovectorlfxg—Oa.nds—-O ie,z=0.

For any z € IR", we always have 2% € IC“ (1 e, 2 = . O) ‘Hence, there exists
a umque vector (:vz’)l/2 € K" denoted by |z|. It is easy to verify that |z| >, 0 and
z? = |z|% for any z € R™. It is also known that |z| =, = and that |z| and z are related
to each other just like the cases of nonnegative orthant IR and positive semi-definite
cone 8. For any z € R, we define [z], to be the nearest point (in Euclidean norm,
since Jordan product does not induce a norm) projection of z onto K", which is the
same definition as in IR}. In other words, [:z:]+ is the optimal solution of the parametric
SOCP: [z], = argmin{ Hx -yl |y € IC"} It is well known that [z], = 1 (z + |x]).

Now, for any = = (z1,2) € R X B" 1 we deﬁne a linear mappmg from R" to R®
as o ,
S L,: R — R"
T

' — | T T2
| y —_ ny.—l:x-z xlj]y.
It is easily verified that xoy = Ly, Yy € R* , and L, is positive definite (and hence’
invertible) if and only if z € int(K"). However, L7y # z7! oy, for some z € int(K™)
and y € R", ie., L;! # L,-1. From the a,bove definition, we have the following:
Lyry = L, +Ly,:z:>-,c,. 0 < L, = O; :r;>-,c,, y(-i)L = L, as well as Ly, L,z
commute. General speaking, L] = LyLy # Lga , L' # Ly-1 and sz/z # Ll/2

In addition, we recall from [14] that each z = (z1,2;) € R x ]R”"1 admlts a spectral -
factorlza.tlon, a.ssocmted with IC", of the form :

r = Alu(l) + /\2'&(2)

where Ay, Ao and u®,u® are the spectral values and the assoclated spectral vectors of

 z given by
Ao =z 4 (=1,

i T2 ) . £ 0
]2"‘(1, (—1) m) if T2 # O,

u® =
%(1, (-;)fwz) if 75 = 0,
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for i = 1,2, with wy being any vector in IR™! satlsfymg lwe|| = 1. If z3 # 0, the
factorization is unique.

'3 Recent results

Proposition 3.1 [5, Prop. 8.2] Let ¢, ¢, be given by (7) and (17), respectively. Then
¥, given by (19) is differentiable at every (z,y) € R™ x R". Moreover, V9,(0,0) =

V,¥,(0,0) = 0. Let z := (z — y)*> + Mz o y). If(x y) # (0,0) and (cc Y2+ ANzoy) €
1nt(IC“) then

V:ch(x:y) = [(Lm+ 5_%'%Ly) zl/a - :I¢A(x7y)) ‘

2 | "
Vilh(@y) = [(L + A—é——L ) s - ] H@y). (25)
If (z,y) # (0,0) and (z — y)* + A(z 0 y) 3 int(lC“), then =3 + 2 + (A — 2)z1y1 # 0 and
- [ 1 + 252 | |
Vm A\ = m -1 A\ T
Wen = s o-em 20 |
VufbA (z,y) = ntgm —1{ ¢, (z,9). - (26)

\/31 + 3+ (A =2z

In particular, when A = 2, the above farmulas for gradient of v, reduce to .

Vz'p,\(xay) = [L L(m2+y2)1/2 - ]¢FB($ Y),
Vi, (z,y) = [L L($2+y351/2 ]¢pn (z,v), (27)

for (z,y) # (0,0) with 2% + 4% € int(K"); and reduce to

I ‘
Vothi(2,y) = |—=—=—1| (. ¥),
» )] '

Vylbal(x,y) "= m“i Pes (T, Y), | | (28)
for (z,y) # (0,0) with 22 + 3 & int(K™).

Proposition 3.2 [5, Prop. 4.2] Let ¢,, ¥, be given by (17) and (19), respectively. Let
f, be given by (20), where F and G are differentiable mappings from IR™ to IR™ satisfying
(21). Then, for every ( € R™, either (i) f,({) =0 or (u) V£(©) 79 0. In case (i), if
VG(C) is invertible, then (d(¢), V f,({)) < 0, where

- d(Q) = —(VG() )T Vath (F(C), G(C)).
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Proposition 3.3 (7, Prop. 4] Let ¢, be given by (7), let ., be given by (6), and let
Yyr be given by (9), with 1 : R — [0,00) being any smooth function satisfying (10).
Let f.. be given by (16), where F' and G are differentiable mappings from IR® to R®
satisfying (21). Then, for every ¢ € R™, either (i) f,.({) =0 or (4) Vf,.(¢) #0. In
~case (ii), if VG(() is invertible, then (d,.(¢), Vfyr(¢)) <0, where

dee(€) = =(VG(QO) Y (W (PO, GG + Vet (P(0), G101

k Proposition 3.4 /4, Prop. 3.8 Let fm‘ IR® — Ry be given as (12} (16) with g
satisfying (10) and ¢ satzsfymg (13). Then, the following results hold. .

(a) For all ( € R, we have f:(¢) > 0 and f..(¢) = 0 if and only if ¢ solves the
SOCCP. _

(b) If vo,¥ and F,G are diﬁ’erentiable, then so is f,, and

Vial) = %((F©O,GON|[VFOGE) + VGOF(E)]

+VFQOVLB(F(C),G(0)
+IGOV,BF(C), G(Q))-

!

(c) Assume F,G are differentiable on IR™ and ¢ belongs to U, (respectively, W, )-
' Then, for every { € R"™ where VG({)~ 1V’F(C) is positive definite (respectively, pos-
itive semi-definite), either (i) f,.(¢) = 0 or (i) V f,.(¢) # 0 with {(d({), V£, ({)) <

- 0, where

4) = =(VGO) ™) [P, GONGE) + VoH(F), G-

Proposxtlon 3. 5 [4, Prop. 8.4] Let f_ : R — R, be gwen as (15) (16). Then, the
followmg results hold.

(a) For allz € R™, we have fm(C) > 0 and fLT(C) = 0 if and only if C solves the
' SOCCP. .

(b) If¢ and F,G are dzﬁ’emntzable, then so is fm

Vi) = [VF(C)LG@)WG«)LF@] (PQ) oGO

+VF()VH(F(C),G($))
+VG(c)VyJ(F(C),_G(<)).

Propos:tlon 3.6 /6, Prop 3.2] Let 5, Vg, be defined as in (22) and (23), respectwely
Then, the follo'wzng results hold:
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(a) s 15 continuously differentiable eve'r"gwhere with
: 1 » _
Vet (@9) = y+ |y — o] - (g ez,
. 1 S
Vibhe@y) = o+ =|@—a2) -y - @-ap).

(b) Ygp 18 coniz'nuously differentiable everywhere Moreover,

Vm'gbmp(zy y) = -'0¢Ep(-77 y) ¢EP($ y)7

VwaP (IE, y) = U¢Ep(z y) ¢EP($7 y)
where - |
. _1 ) ] -
Vz¢mp_(zry) = L 2,31 [ (.'E1 gyl) 0 ] y. ,lf' -772 +y2=0;
‘ | 2z twm). 0] . |
V,y¢gp (xay) = "'La: + EE [ ($1 -(’)_yl) 0 ] I} lf,’ $2}‘+ Y2 = 0;
~ and otherwise | | | ,
| o dmtw)t ]
Vebi(@,y) = ~Ly+m| b Tz + ol N
' EP .26, C($2 + yz) ol + (b _ )(.'272 -+ yz)(xz + yz) ),
el T T
[ = ozt 1p)T
Vb (z,y) = —L +—1-- ’ llz2 + y2|) : B
yree ™ 126, | oz + u2) (zz+y2) (@2 +92)T |’
— al+(b— a) 5
L [zl ez + 2l J

witha = B0 b () (), e = (a)e — () and X = (o1 + 1) +
(1) |22 + ygﬂ being spectral values of z +y. :

4 Open questions

‘There are several unresolved questions related to these merit functions introduced in

o this paper. We propose them as future research topics.

Q1. When A\ = 2 ¥, reduces v, and it was shown [7] that Y, i smooth everywhere
Is ¢.\, A€ (0 4) smooth everywhere? ,

Q2. In SDCP case, the gradient of v,, was shown Lipschitz continuous in [22] Is it
still true for the SOCCP case? , , '

Q3. Which ment function performs best in numerical implementations for the merit
function approach? How about for the other approaches?

Q4. Are'there weaker conditions for properties of bounded level lets and} error bounds?
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