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Spontaneous Order of Self-organizing Systems*

Mau-Hsiang Shiht and Feng-Sheng Tsait

As Paul Adams wrote in the Journal of Theoretzcal Biology in 1998 [1], “T'wo of the
most influential books in the history of biology are Darwin’s On the Origin of Species -
and Hebb’s The Organization of Behavior,” Donald Hebb’s classic book [6 [6] is to have a
profound impact upon how populations of neurons interact collectlvely to perform in-
tegrative activity underlying brain process. He postulated that the changes of synaptic
strengths based on coincidence detection could sustain persistent reverberatory activ-
ity in cortical circuits. The circulating neural impulses between populations of neurons
would continue to circulate, formmg a diffuse self-a.ssembhng structure called “cell as-
semblies” [6, 13, 15). : K

There is increasing empirical support for Hebb’s contribution to neuropsychological -
theory [3, 5, 11] and there also stimulates an intensive effort to promote the building
of computer or network models of the brain based on Hebbian synaptic plasticity (the
coincidence-detection rule) (2, 4, 7, 9, 14, 16]. But there still lacks a complete mathemat-
ical explanation, a rigorous proof, that eonfirms the relatlon between Hebbian synaptlc
‘plasticity and cell-assembly postulate.

The main problem concerning the relation between Hebbian synaptic plasticity and
cell-assembly postulate can be formulated as follows:

The Consolidation Problem ,
Are there any bryam’zing principles underlyz‘ng the dynamical-combinatorial process of
- the evolutionary'networlc that allow one to describe neural populations underlying plas-
ticity and to probe their time- and activity-dependent interactions capturing the charac-
teristic property of the entire ensembles of cell-assemblies?

'The model of the evolutionary network we are concerned with consists of a population
 of distinct integrate-and-fire processing units. (McCulloch-Pitts neurons or neurons) [10,
12]; each. constantly integrates all incoming signals transferred from synapses on its cell
body and dendntes and fires action potentials to send signals to other neurons: when
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the combined effort reaches its threshold.f' Name those neurons 1,...,n and denote by
the ordered pair (3, 7) the evolutionary coupling linking neuron j to neuron i. To each
neuron % there is associated the threshold b; and the active state variable z; = 0 or 1,
and to each evolutionary coupling (4, j) there is associated the coupling strength variable
a;;. The phase space of the evolutionary network of n éoupled neurons is denoted by
{0,1}", the binary code consisting of all 01-strings z,2 - - - Zn Of fixed-length n. The
function hea is the Heav151de function: hea(u) = 1 for u > 0, otherwise 0. The nonlinear
. dynamical system of the n coupled neurons is then modeled by the following nonlinear
parametric equations: ’

z(t+1) = Fyplzt)), t.=0,1,;‘.., : (1)
Alt+1) = A(t)v_*'Dz(t)-‘-»z(H-l)A, t=0,1,..., ' (2)

where w(t) = (:tl(t); .., Zn(t)) is the neuronal active state at time ¢, A(t) = (ai;())nxn |
is the evolutionary coupling state at time ¢, s(¢) denotes the neurons that adjust their
activity at time ¢, and F,y).(z) is the time-and-state varymg functlon encoding the
dynamics, whose ith component is defined by
[Foa(@)l = zi if i & s(t),
otherwise
| [F st (@)]i = he“(z Gij (t - ).
j=1
The éth row and jth column Dw) —o(e41y%ij Of the parametric matrix D sey—aesny A 18 called
the ultraderivative of the evolutionary coupling state at the evolutionary coupling (3, ),
which varies with respect to the neuronal active states changing from z(t) to z(¢ + 1).
* The ultraderivatives quantify pla.st1c1ty of evolutionary couplings that allows the system

. as a whole to undergo spontaneous organization.
As the evolutionary network evolves, there are associated subsets A(t), Q(t) of the

~ space {1,2,.,.,n}x{1,2, ..,n} such that _
A(t) = {(7".7)) x(e)-—»m(t+1)a"] > 0}’

(t) = {(7".7)’ o(t)—a(t+1) Fij 2 0}
That raises the search for the algorithm that dictates the existence of T' > 0 and a_
subset V' of {1, :..,n} such that the condition 1(z(t)) = V holds true for a,ll t>T,
- where 1(z(t)) denotes the collection of all active neurons at time ¢, and that
o) >V =<V o | JA®.
_ t>T T |
In this case, we say that the neurons in the subset V are synchrom'zed with respect to
z(t), accompanying a spontaneously organized distribution of the positive and negative
ultraderivatives to bind themselves into a single operational unit.



165

| The bewildering complexity with which the evolutionary network identified is in-

herently associated with two simple quantities to measure the driving forces of the
evolutionary network’s dynamics. When a given neuron j is active at time ¢, there
are two classes emerging from the active evolutionary coupling strengths a;;(t) for
t = 1,...,n. The first consists of those with neurons ¢ being quiescent at time ¢
but fired at ¢t + 1, while the second consists of those with neurons i being active
at time t but quiescent at £ + 1. By classifying all the active evolutionary coupling
strengths as the above fired-driven or unfired-driven character, we define the fired-driven
strength F'S(t) to be the sum of all a;;(t)’s in the first class where j is taken over
all active neurons, whereas the unfired-driven strength US(t) the sum of all a;;(t)’s in
the second class where j is taken over all active neurons. The fired-driven strength
FS(t) is not necessarily greater than the unfired-driven strength US(t) over time,
but when the discrete flow z(t) behaves in the way that z(t,) = z(t*) # z(f) with
t. < t < t* (a feedback loop initiated by active neurons at time t.), the fired-driven
strength .and the unfired-driven strength in the period of t. and t* emerge the orderli-
ness: FS(t,) + FS(t. +1)+---+ FS(t* —1) > US(t.) + US(t, + )+ -+US({t* -1).
This gives a fundamental law of pulsedynamics that combines dynanuca,l and structural
complexity of the evolutlona.ry network. :

We introduce what we call the “Hebbian evolving algorithm,” a genera.hzed learning
rule analogous to a coincidence-detection rule of the Hebbian synaptic plasticity that |
provides a representative for the choices of the ultraderivatives in the growth dynamics
of the evolutionary. network. They can be expressed in the formulas: Dy(t)—z(t+1)@i5 = 0
if neurons i and j are active simultaneously at time ¢ + 1, otherwise Dy(t)—a(t41)ai5 < 0,
and further we require that | Dy —a(s41)ij] 2 |De@)—a(e+1)as:| if 6 (t + 1) > d5(t + 1),
where 6;;(t + 1) = 0 or 1 is the indicator that indicates whether the active of neuron j -
at time ¢ has been able to change the active state of neuron i at ¢ +1. -~

Define: Ey(t.,t*) to be Eieu_min({d,-i(t); t =t,,...,t*}), a quantity that measures
the minimal total excitability within the group of neurons U in the period of time %,
and t* with t, < t*, where the coupling strength variable a;; is considered to be a
measure of excitability with respect to the neuron i [8] and; according to the working
of the neuron 4, the increased excitability has a tendency to decrease the threshold for
. generating action potentials. Let us call that the discrete flow :z:(t) generated by (1) '
iterates asynchronously if s(t) is a singlton for all t = 0,1,.

THEOREM. Consider the evolutionary network of n coupled neurons that subjects
to the dynamics (1) and obeys the Hebbian evolving algorithm. Given any initial neu-
ronal active state £(0) in the phase space {0,1}", if z(t) iterates asynchronously and the
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minimal total excitability satisfies the assembling coordination:

EU(t,.,,t ) > > max({ay(t) — aj(t) = 0; t=t.,...,t*}U{0}) (3)

_ 3,jeU '
for each non-empty subset U of {1, 2,...,n} and for egch t,,t* = 0,1,... with ¢, < t*,
then there exist T > 0 and a subset V of {1,2,...,n} such that 1(z(t)) =V for all
t > T and that | | -

| (2@ >V xV > JAw).
t>T t>T
Consequently, starting with an initial neuronal active state :c(O) the Hebbzan evolvzng :

" algorithm can be used to search a group of synchronized firing neurons, and the synchro-
nized activity leads to a spontaneously organized distribution of the positive and negative
ultraderivatives that feed back to reinforce the neurons to fire in synchrony, with positive

- feedbacks conspiring to produce a cascade of sync- dependent neuml circuits, giving rise

to the consolidation of neuml circuitry.

The above theorem is to formulate a consolidation problem of evolutionary net-
works concerning the relation between Hebbian synaptic plasticity and Hebbian cell-
assembly postulate, and to demonstrate a dominant theme of connectionist unraveling
~ a dynamical-combinatorial process in a huge, interconnected system, in which the on-
going changes of the nodal-and-coupling dynamics underlying plasticity are guaranteed
to result in group synchrony and sync-dependent circuits. Our proof of the theorem
shows a potential role of pulsedynamics in the stability of a nonlinear eirolut_iohary net-
worked system, concerning the “driving forces” derived from the evolutionary network’s
nodal and coupling act1v1ty, without invoking any physncal “energy” to control system
dynamics. .
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