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As Paul Adams wrote in the Joumal of Theoretical Biology in 1998 [1J, ‘Two of the
most influential books in the history of biology are Darwin’s On the Origin of Sp.ecies .
and Hebb’s The Organization of $Beha\tau\dot{n}or$,“ Donald Hebb’s classic book [6] is to have $a$ .

profound impact upon how populations of neurons interact collectively to perfom in-
tegrative activity underlying brain process. He postulated that the changes of synaptic
$strengh_{8}$ based on coincidence detection could sustain persistent reverberatory activ-
ity in cortical circuits. The circulating neural impulses between populations of neurons
would continue to circulate, forming a diffuse self-assembling structure called “cell as-
semblies” [6, 13, 15].

There is increasing empirical support for Hebb’s contribution to neuropsychological
theory [3, 5, 11] and there also stimulates an intensive effort to promote the building
of computer or network models of the brain based on Hebbian synaptic plasticity (the
coincidence-detection rule) [2, 4, 7, 9, 14, 16]. But there still lacks a complete mathemat-
ical explanation, a rigorous proof, that eonfirms the relation between Hebbian synaptic
plasticity and cell-assembly postulate.

The main problem concerning the relation between Hebbian synaptic plasticity and
cell-assembly postulate can be formulated as follows:

The Consolidation Problem
Are there any organizing principles underlying the dynamical-combinatori$al$ process of

the evolutionary network that allow one to describe neural populations underlying plas-
ticity and to probe their time- and activity-dependent interactions capturing the charac-
teristic property of the entire ensembles of cell-assemblies?

The model of the evolutionary network we are concerned with consists of a Population
of distinct inteyate-and-ffie Processing units (McCulloch-Pitts neurons or neurons) [10,
12]; each constantly integrates all incoming signals transferred from synaPses on its cell
body and dendrites, and fires action Potentials to send signals to other neurons when
–
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the combined effort reaches its threshold. Name those $neuron81,$ $\ldots,$
$n$ and denote by

the ordered pair $(i,j)$ the evolutionary coupling linking neuron $j$ to neuron $i$ . To each
neuron $i$ there is associated the threshold $b_{i}$ and the active state variable $x_{i}=0$ or 1,
and to each evolutionary coupling $(i,j)$ there is associated the coupling strength variable
$a_{ij}$ . The phase space of the evolutionary network of $n$ coupled neurons is denoted by
$\{0,1\}^{n}$ , the binary code consisting of all Ol-strings $x_{1}x_{2}\cdots x_{n}$ of fixed-length $n$ . The
function hea is the Heaviside function: $hea(u)=1$ for $u\geq 0$ , otherwise $0$ . The nonlinear
dynamical system of the $n$ coupled neurons is then modeled by the following nonlinear
parametric equations:

$x(t+1)$ $=F_{s(t),t}(x(t))$ , $t=0,1,$ $\ldots$ , (1)

$A(t+.1)$ $=A(t)+D_{x(t)arrow x(t+1)}A$ , $t=0,1,$ $\ldots$ , (2)

where $x(t)=(x_{1}(t), \ldots , x_{n}(t))$ is the neuronal active state at time $t,$ $A(t)=(a_{ij}(t))_{n\cross n}$

is the evolutionary coupling state at time $t,$ $s(t)$ denotes the neurons that adjust their
activity at time $t$ , and $F_{\epsilon(t),t}(x)$ is the $tim\triangleright \bm{t}d$-state varying function encoding the
dynamics, whose ith component is defined by

$[F_{s(t),t}(x)]_{i}=x_{i}$ if $i\not\in s(t)$ ,

otherwise
$[F_{\epsilon(t),t}(x)]_{i}=hea( \sum_{j=1}^{n}a_{ij}(t)x_{j}-b_{i})$ .

The ith row and $jth$ column $\mathcal{D}oe(t)arrow x\langle t+1)a_{ij}$ of the parametric matrix $\mathcal{D}_{i(t)arrow\alpha(t+1)}A$ is called
the ultraderivative of the evolutionary coupling state at the evoIutionary coupling $(i,j)$ ,
which varies with respect to the neuronal active states changing from $x(t)$ to $x(t+1)$ .
The ultraderivatives quantify plasticity of evolutionary couplings that allows the system
as a whole to undergo spontaneous organization.

As the evolutionary network evolves, there are associated subsets $\Lambda(t),$ $\Omega(t)$ of the
space $\{1, 2, \ldots, n\}\cross\{1,2, \ldots, n\}$ such that

$\Lambda(t)$ $=$ $\{(i,j);\mathcal{D}ae(t)arrow x(t+1)\alpha_{j}>0\}$ ,

$\Omega(t)$ $=$ $\{(i,j);\mathcal{D}_{x(t)arrow\alpha(t+1)}a_{ij}\geq 0\}$.
That raises the search for the algorithm that dictates the existence of $T\geq 0$ and a
subset $V$ of $\{1, \ldots, n\}$ such that the condition $1(x(t))=V$ holds true for all $t\geq T$ ,
where 1 $(x(t))$ denotes the collection of all active neurons at time $t$ , and that

$\bigcap_{t\succeq T}\Omega(t)\supset VxV\supset.\bigcup_{t\geq T}\Lambda(t)$
.

In this case, we say that the neurons in the subset $V$ are synchronized with $re8pect$ to
$x(t)$ , accompanying a spontaneously organized distribution of the positive and negative
ultraderivatives to bind themselves into a single operational unit.
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The bewildering complexity with which the evolutionary network identified is in-
herently associated with two simple quantities to measure the driving forces of the
evolutionary network’s dynamics. When a given neuron $j$ is active at time $t$ , there
are two classes emerging from the active evolutionary coupling strengths $a_{1j}(t)$ for
$i=1,$ $\ldots,n$ . The first consists of those with neurons $i$ being quiescent at time $t$

but fired at $t+1$ , while the second consists of those with neurons $i$ being active
at time $t$ but quiescent at $t+1$ . By classifying all the active evolutionary coupling
strengths as the above fired-driven or unfired-driven character, we define the fired-driven
strength $FS(t)$ to be the sum of all $a_{ij}(t)s$ in the first class where $j$ is taken over
all $act\dot{i}ve$ neurons, whereas the unfired-driven strength US$(t)$ the sum of all $a_{1j}(t)s$ in
the second class where $j$ is taken over all active neurons. The fired-driven strength
$FS(t)$ is not necessarily greater than the unfired-driven strength US$(t)$ over time,
but when the discrete flow $x(t)$ behaves in the way that $x(t.)=x(t$“

$)$ $\neq x(t)$ with
$t_{*}\leq\hat{t}<t^{*}$ (a feedback loop initiated by active neurons at time $t_{*}$ ), the fired-driven
strength and the unfired-driven strength in the period of $t_{*}\bm{t}dt^{*}$ emerge $\cdot the$ orderli-
ness: $FS(t_{*})+FS(t_{*}+1)+\cdots+FS(t^{*}-1)>US(t_{*})+US(t_{*}+1)+\cdots+US(t^{*}-1)$.
This gives a fundamental law of pulsedynamics that combines dynamical and structural
complexity of the evolutionary network.

We.introduce what we call the “Hebbian evolving algorithm,” a generalized learning
rule analogous to a coincidence-detection rule of the Hebbian synaptic plasticity that
provides a representative for the choices of the ultraderivatives in the growth dynamics
of the evolutionary network. They can be expressed in the formulas: $D_{x(t)arrow x(t+1):j}a\geq 0$

if neurons $i$ and $j$ are active simultaneously at time $t+1$ , otherwise $D_{x(t)arrow x(l+1)}a_{1j}<0$,
and further we require that $|D_{x(t)arrow x(t+1)}a_{1j}|\geq|D_{x(t)arrow x(t+1)}a_{ji}|$ if $\delta_{ij}(t+1)>\delta_{ji}(t+1)$ ,
where $\delta_{ij}(t+1)=0$ or 1 is the indicator that indicates whether the active of neuron $j$

at time $t$ has been able to change the active state of neuron $i$ at $t+1.-$

Define $\cdot$ $E_{U}(t_{*},t^{*}.)$ to be $\sum_{i\in U}\min(\{a_{ii}(t);t=t_{*}, \ldots,t^{*}\})$ , a quantity that measures
the minimal total excitability within the group of neurons $U$ in the period of time $t$.
and $t^{*}$ with $t_{*}\leq t^{*}$ , where the coupling strength variable $a_{ii}$ is considered to be a
measure of excitability with respect to the neuron $i[8]\bm{t}d^{\backslash }$, according to the working
of the neuron $i$ , the increased excitability has a tendency to decrease the threshold for
generating action potentials. Let us call that the discrete flow $x(t)$ generated by (1)
iterates asynchronously if $s(t)$ is a singlton for all $t=0,1,$ $\ldots$ .

THEOREM. Consider the evolutionary network $ofn$ coupled neurons that subjects
to the dynamics (1) and obeys the Hebbian evolving algorithm. Given any initial neu-
ronal active state $x(O)$ in the phase space $\{0,1\}^{n}$ , if $x(t)$ iterates asynchrvnously and the
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minimal total excitability satisfies the assembling coordination:

$E_{U}(t_{*}, t^{*}) \geq\sum_{i,j\in U}\max(\{a_{ij}(t)-a_{ji}(t)\geq 0;t=t_{*}, \ldots, t^{*}\}\cup\{0\})$ (3)

for each non-empty subset $U$ of $\{1, 2, \ldots, n\}$ and for each $t_{*},t^{*}=0,1,$ $\ldots$ with $t_{*}\leq t^{*}$ ,
then there e.xist $T\geq$

.
$0$ and a subset $V$ of $\{1, 2, \ldots,n\}$ such that $1(x(t))=V$ for all

$t\geq T$ and that
$\bigcap_{t\succeq T}\Omega(t)\supset VxV\supset\bigcup_{t\geq T}\Lambda(t)$

.

Consequently, starting with an initial neuronal active state $x(O)$ the Hebbian evolving
algorthm can be used to search a gmup of synchronized firing neurons, and the synchro-
nized activity leads to a spontaneously organized distribution of the positive and negative
ultraderivatives that feed back to reinforce the neurons to fire in synchrvny, with positive

feedbacks conspiring to produce a cascade of sync-dependent neural circuits, giving rise

to the consolidation of neuml circuitry.

The above theorem is to formulate a consolidation problem of evolutionary net-
works concerning the relation between Hebbian synaptic plasticity and Hebbian cell-
assembly postulate, and to demonstrate a dominant theme of connectionist unraveling
a dynamical-combinatorial process in a huge, interconnected system, in which the on-
going changes of the nodal-and.-coupling dynamics underlying plasticity are guaranteed
to result in group synchrony and syncsdependent circuits. Our proof of the theorem
shows a potential role of pulsedynamics in the stability of a nonlinear evolutionary net-
worked system, concerning the “driving forces” derived from the evolutionary network’s
nodal and coupling activity, without invoking any physical “energy” to control system
dynamics.
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