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1 Introduction

In the early 20th century, Radé [20] proved the following theorem for complex
analytic functions.

Theorem 1.1. Let f be a continuous complez-valued function in a domain 2 C C.
If f is analytic in Q\ f~1(0), then f is actually analytic in the whole domain Q.

This result says that a level set is always removable for continuous analytic
functions. Later, an analogous result of Radé’s result for harmonic functions has
been obtained.

Theorem 1.2. [1, 8, 17] Let u be a real-valued continuously differentiable function
defined in a domain Q C R". If u is harmonic in Q \ v~2(0), then it is harmonic
in the whole domain Q.

Such removability problems have been intensively studied. The corresponding
results for linear elliptic equations were proved by Sabat [21]. The case of p-Laplace
equation has been treated in [13, 16]. Recently, Juutinen and Lindqvist [14] proved
the removability of a level set for viscosity solutions to general quasilinear elliptic
and parabolic equations. However, to the best of our knowledge, there are no
results concerning such problems for fully nonlinear PDEs.

In this article, we study this type of removability results for fully nonlinear
equations. The equations which we are concerned with are the following degenerate
elliptic, fully nonlinear equation

F(z,u, Du, D*u) = 0, (1.1)
in 2 C R™, or the parabolic one

Uy + F(t,m,u,Du,Dzu) = 01 (12)
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in @ c R x R". In both equations, D means the derivation with respect to the

space variables, that is,

T 2
Du:=(6u : —?-’L—L—) , D2u:=( Ou

oz,' oz 3x-5m->1<i<n
' " At

Here AT denotes the transpose of a matrix A.
In the elliptic case, our problem is written as follows.

viscosity solution to (1.1) in the whole domain Q?

Problem: Let 2 C R" be a domain. If a function u defined in
is a viscosity solution to (1.1) in © \ u~!(0), then is it actually a

(1.3)

The problem for the parabolic case is similar. We shall obtain the removability
results for (1.1) and (1.2). We also establish this type of removability result for

singular equations, that is, equations where F is singular at Du = 0.

In the following section, we give some notations and state main results of this
article. In section 3, we describe the definition and basic properties of viscosity
solutions. Our main results are proved in section 4. We extend those removability

results to the singular equations in section 5.

2 Notations and main results
We prepare some notations which are used in this article.

e S™*" ;= {n X n real symmetric matrix}.

e For X,)Y eS™", X<Y Ly _Xis non-negative definite.
(ie., (Y= X)-£20for all £ € R™.)

e Tor X € S"*",

| X :=max{]A] | Xis an eigenvalue of X.}
= max{|X¢- €| | €] < 1}.

e For §{,n € R", £ ® n denotes the n X n matrix with the entries

(§®n)ij ?"51"’71' (7:7j € {1:'-'an})'
e For z € R" and for 7 > 0,

B.(z):={2€R"||z—z| <r}.

(2.1)

(2.2)

(2.3)
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e For (t,z) € R x R" and for r > 0,
B.(t,z) :={(s,2) eERxR"|(s=t)*+ |z —z|* <r?}. ~ (24)
e Let Q be an open set in R™ or R x R".

USC(Q) := {u: 2 = [~o00,00), upper seim'continuoﬁs}, (2.5)
LSC(2) := {u : 2 - (—00, 0], lower semicontinuous}. (2.6)

e Foru: Qo R,geR", X eS™, e,
(g, X) € J¥+u(s) &5

(g, X) € J>—u(z) <5

U(x)ZU(i)+q-(z—:ﬁ)+%X(m—-i‘)-(x—i:)+o([a:-—:i'|2) as ¢ — &.
(2.8)
e Foru: Q- R, e,

72’+u(a:) = {(g, X) € R™ x S™*" | there exists a sequence - (2.9)
{(Zn,gn, Xa)} C 2 x R™ x S™" such that (g, X5) € J>* u(z,)

- and z, = z,u(z,) = u(z),¢n = ¢, X = X.},
72’-u(w) := {(g, X) € R™ x S™" | there exists a sequence (2.10)
{(zn,qn, X0)} C 2 x R™ x S™" such that (gn, Xn) € J>u(z,)

and z, = z,u(z,) = u(z),qx = ¢, Xn = X.}.

Here we state the result concerning the removability of a level set for solutions
to (1.1).

Theorem 2.1. Let Q be a domain in R". We suppose that F = F(z,r,q,X)
satisfies the following conditions.

(A1) F is a continuous function defined in Q x R x R" x S§™*n.
(A2) F is degenerate elliptic, i.e.,

F(z,r,q,X) > F(z,r,q,Y) (2.11)
Joreveryz e Q, reR, qeR", X,)Y eS"™*" with X <Y.
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(A3) F(z,0,0,0) =0 for every z € Q.

(A4) There ezists a constant a > 2 such that for every compact subset K @ §) we
can find positive constants €,C and a continuous, non-decreasing function
wk : [0,00) = [0, 00) which satisfy wk(0) = 0 and the following:

F(y) S,jlm - yla—2(m - y)1Y) - F(‘T’T7j|$ - yla-Z(m - y)1X) (2‘12)
S wi(lr— s +jlz — y*7" + |z — )

whenever z,y € K, r,s € (—¢,¢), 72 C, X,Y € S"*" and

-+ (o= Dle = y1*%) Ion < ()O( _OY) (2.13)

« Q- . o — Iﬂ _Iﬂ
< (jla =)z - yI*? +25(a — 1)’z — yI**) (__I In)

holds.

If u € C}(Q) is a viscosity solution to (1.1) in Q\ u~1(0), then u is a viscosity
solution to (1.1) in the whole domain Q.

Remark 2.1. We remark about the regularity assumption on u. This theorem
also holds if we only assume that u is continuously differentiable on some neigh-
borhood of {u = 0} instead of assuming that u € C?(f2). However, one can not
weaken the differentiability assumption. More precisely, if we replace u € C'(Q)
by u € C%(Q), the conclusion fails to hold. Define the function u by

u(z) = |z1], 2= (z1,...,%n) € =By ={|z| < 1}. (2.14)

It is easily checked that u satisfies —Au = 0 in Q\ u~1(0) = B, \ {z; = 0} in the
classical sense as well as in the viscosity sense. But u does not satisfy —Au =0
in B, in the viscosity sense. '

In Theorem 2.1, the conditions (Al) and (A2) are quite natural, and it is neces-
sary to assume (A3) since the function » = 0 must be a solution to (1.1). However,
the condition (A4) seems to be complicated and artificial. For the particular case
that F can be expressed as F(z,7,q, X) = F(g, X) or F(g, X)+ f(r), the hypothe-
ses can be simplified as follows.

Corollary 2.2. Let Q be a domain in R*. We suppose that F = F(q, X) and
[ = f(r) satisfy the following conditions.

(B1) F is a continuous function defined in R™ x ™" and f is a continuous
function defined in R.
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(B2) F is degenerate elliptic.
(B3) F(0,0) + £(0) = 0.
If u € CY(Q) is a viscosity solution to
F(Du, D?u) + f(u) =0 (2.15)
in O\ u~1(0), then u is a viscosity solution to (2.15) in the whole domain .
Next we state our removability result for parabolic equations (1.2).

Theorem 2.3. Let O be a domain in R x R*. We suppose that the conditions
given below are satisfied.

(C1) F is a continuous function defined in @ x R x R™ x S"*n,

(C2) F is degenerate elliptic.

(C3) F(t,z,0,0,0) =0 for every (t,z) € O.

(C4) There exists a constant o > 2 such that for every compact subset K € O we
can find positive constants €,C and a continuous, non-decreasing function
wk : [0,00) = [0,00) which satisfy wx(0) = 0 and the following: '

F(t,y s, 5lz - y|*Hz —y),Y) - Ft,z,7,jlz - y|* "z - y), X) (2.16)
Swi(ft =t +|r— sl +jlz —y[*™ + |z - y])
whenever (t,z),(t',y) € K, r,s € (—¢,e), 1 > C, X,Y € S"*" and

— ([ +ile=1)le-y|**) Ln < (g _OY) (2.17)

. - : = L. -5
< (jla-1)jz -y 2+ 2j(0 - 1)%z — y|>>~*) ("‘In I, )

holds.

If u € CY(O) is a viscosity solution to (1.2) in O\ u=1(0), then u is a viscosity
solution to (1.2) in the whole domain O. -

Remark 2.2. For F of the form F(g, X) + f(r), a level set of a viscosity solution
to (1.2) is always removable if we assume the continuity of ' and f, the degenerate
ellipticity of F, and F(0, O) + f(0) =0 only, as in the elliptic case.
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Example 2.1. Utilizing Theorem 2.1 or Corollary 2.2, and Theorem 2.3, one sees.
that our removability results can be applied to many well-known equations. Here
are the examples.

(i) Laplace equation —Au =0, cf. [1, 8, 17].
(i) The heat equation uy — Au = 0.

(ili) Poisson equation —Au = f(u), where f(0) = 0 and f is continuous, for
example, f(u) = JulP~ u (p > 0).

-

(iv) Linear elliptic equations

- z aij(z) Diju(z) + Zb,-(a:)D,—u(z) + e(z)u(z) =0, (2.18)

i,j=1 i=1
cf. Sabat [21].

(v) Quasilinear elliptic equations

- i a4;(z, u, Du) Diju(z) + b(z,u, Du) = 0, (2.19)

i,j=1

such as the minimal surface equation — div(Du/ \/1T|D—ﬁ|—2) = 0, p-Laplace
equation —Ayu := — div(|DulP~2Du) = 0 (p > 2) and oco-Laplace equation

ij=1 DiuDjuDiju = 0, cf. Juutinen and Lindqvist [14], We note that our
result does not contain theirs, but that is because they utilize the quasilinear

nature of the equation.

(vi) Quasilinear parabolic equations, such as p-Laplace diffusion equation u; —

Apu =0.

(vii) Pucci’s equation, which is an important example of fully nonlinear uniformly
elliptic equation,

—MiA(D*) = f(u),  —M5A(D*) = f(u), (2.20)

where M:\’ A» M3 5 are the so-called Pucci extremal operators with parame-
ters 0 < A < A defined by

MEAX) =AY e+AD e, MO () =23 e+AD e, (221)

>0 e;<0 >0 <0

for X € §™xm (see [2, 19]). Here e,,...,e, are the eigenvalues of X.
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(vili) Monge-Ampere equation
det D*u = f(u). (2.22)
When we are concerned with (2.22), we look for solutions in the class of
convex functions. It is known that the equation (2.22) is not elliptic on all
C? functions; it is degenerate elliptic for only C? convez functions. In this
case, the condition (A2) is not satisfied. However, modifying our argument

below appropriately, one can also apply Theorem 2.1 to (2.22) and obtain
the removability result.

(ix) The parabolic Monge-Ampeére equation u, — (det D?u)'/" = 0.
(x) k-Hessian equation
Filu] = Sk(M, .-+, An) = f(u), (2.23)

where A = (A1,...,As) denotes the eigenvalues of D*u and Sk (k = 1,...,n)
denotes the k-th elementary symmetric function, that is,

Se(A) =Xy Ag, (2.24)

where the sum is taken over increasing k-tuples, 1 < 4; < ..+ < 4 < n. Thus
Fi[u] = Au and F,[u] = det D?u, which we have seen before. This equation
has been intensively studied, see for example [3, 24, 25, 26].

(xi) Gauss curvature equation

det D*u = f(u) (1 + | Du|®®*2/2) (2.25)

(xii) Gauss curvature flow equation u, — det D?u/ (1 + | Dul2)™*/2 =
(xiii) k-curvature equation
Hylu] = Sk(k1,...,%0) = f(u), (2.26)

where K, ..., £, denote the principal curvatures of the graph of the function
u, and Sy is the k-th elementary symmetric function. The mean, scalar
and Gauss curvature equation correspond respectively to the special cases
k'= 1,2,n in (2.26). For the classical Dirichlet problem for k-curvature
equations in the case that 2 < k < n — 1, see for instance [4, 11, 23].

In the last section, we also prove the removability of a level set for solutions to
the singular equations such as p-Laplace diffusion equation where 1 < p < 2. See
Theorems 5.2 and 5.4, and subsequent remarks.
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3 The notion of viscosity solutions

In this section we recall the notion of viscosity solutions to the fully nonlinear
equations, (1.1) and (1.2). The theory of viscosity solutions to fully nonlinear
equations was developed by Crandall, Evans, Ishii, Jensen, Lions and others. See,
for example, [6, 7, 9, 12].

First we define a viscosity solution to (1.1).

Definition 3.1. Let Q be a domain in R". Assume that (Al) -and (A2) in Theo-
rem 2.1 are satisfied. '

(i) A function u € USC(Q) is said to be a viscosity subsolution to (1.1) in Q if
u # —oo and for any function ¢ € C?() and any point zo € Q which is a
maximum point of u — ¢, we have

F(zo:u(mo)’D¢(30)1D2¢(?’0)) <0 (3'1)

(ii) A function u € LSC(f) is said to be a viscosity supersolution to (1.1) in
if u # oo and for any function ¢ € C%(2) and any point zo € Q which is a
minimum point of u — ¢, we have

F (2o, u(20), Dip(20), D*¢(20)) 2 0. (3.2)

(iii) A function u € C%(Q) is said to be a viscosity solution to (1.1) in § if it is
both a viscosity subsolution and supersolution to (1.1) in .

We omit the proof of the following proposition.

Proposition 3.2. Let Q be a domain in R" and assume (A1) and (A2) in The-
orem 2.1 are satisfied. If u € USC(Q) (resp. u € LSC(QN)) is a viscosity sub-
solution (resp. wiscosity supersolution) to (1.1) in §, then F(a‘:,zgga‘:),q, X)<0
(resp. F(&,u(%),q,X) > 0) for every & € Q and every (¢, X) € J ' u(Z) (resp.
(9, X) € T u(3)). |

Next we introduce another notion of viscosity solutions to the elliptic equation
(1.1), which we call relaxed viscosity solutions. The difference between the defini-
tion of viscosity solutions and the following one is that nothing is required if the
test function ¢ satisfies Dip(zq) = 0.

Definition 3.3. Let {2 be a domain in R". Assume that (Al) and (A2) in Theo-
rem 2.1 are satisfied.

(i) A function u € USC(Q) is said to be a relazed viscosity subsolution to (1.1)
in Q if u # —oo0 and for any function ¢ € C?(f) and any point ¢ € 2, which
is a maximum point of u — ¢ and satisfies Dy(z) # 0, we have

F (o, u(za), Dy(z0), D2p(20)) < 0. - (33)
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(ii) A function u € LSC(€) is said to be a relazed viscosity supersolution to (1.1)
(in Q if u # oo and for any function ¢ € C%(Q) and any point z¢ €  which is
a minimum point of 4 — ¢ and satisfies Dyp(z0) # 0, we have

F (2o, u(zo), De(0), D*p(z0)) > 0. - (34)

(iii) A function u € C°(Q) is said to be a relazed viscosity solution to (11) in Q if
it is both a relaxed viscosity subsolution and supersolution to (1.1) in €.

It is trivial that if u is a viscosity solution, then it is a relaxed viscosity solution.
We shall show in the following section that under some assumptions, the notion of
viscosity solutions and that of relaxed viscosity solutions are equivalent, which is
proved for the case of quasilinear equations in [14]. Namely, we require no testing
at all at the points where the gradient of ¢ vanishes in the definition of viscosity
solutions. See Proposition 4.1. ' |

Furthermofe, utilizing this definition, we can define the notion of viscosity so-
lutions to singular equations in the sense that F(z,r,q, X) in (1.1) is defined and
degenerate elliptic only on {g # 0}, for example, p-Laplace equation in the case
1 < p < 2. In section 5, we state the Radé type removability result for singular
equations.

In the last part of this section, we recall the definition of viscosity solutions to
the parabolic equation (1.2).

Definition 3.4. Let © be a domain in R x R". We assume (C1) and (C2) are
satisfied.

~ (i) A function u € USC(O) is said to be a viscosity subsolution to (1.2) in O if
u # —oo and for any function ¢ € C*(O) and any point (to, To) € © which is
a maximum point of u — ¢, we have

e(to, Zo) + F(to, To, u(to, o), Dep(to, Zo), D*(to, 20)) < 0. (3.5)

(ii) A function u € LSC(O) is said to be a viscosity supersolution to (1.2) in O if
~ u # oo and for any function ¢ € C%(®) and any point (¢, Zg) € © which is a
minimum point of v — ¢, we have

(Pg(to, :Eo) + F(to, Zo, ’u(to, .’L'o), D(p(to,lxo), ngo(to, Zo)) 2 0. (36)

(iii) A function u € C°(O) is said to be a viscosity solution to (1.2) in O if it is
both a viscosity subsolution and supersolution to (1.2) in O. '
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‘4 Proof of the main results

In this section we prove Theorem 2.1 and Corollary 2.2. The proof of Theorem
2.3 is similar to that of Theorem 2.1, so that we omit the proof of Theorem 2.3.
See [22] for the detail.

First we show the removability of a level set for solutions to (1.1), Theorem 2.1.
Our idea of the proof is adapted from that of Juutinen and Lindqvist [14].

We shall show that u is a viscosity subsolution to (1.1) in the whole domain
1. To the contrary, we suppose that there exist a point g € Q and a function
© € C?(Q) such that

u(z0) = (o), | (4.1)

u(z) < p(z) for z € O\ {zo}, | (4.2)
aﬁd that
B = F(xo,u(:co),Dcp(xo), D2(P($o)) > 0. (43)

Here we note that u(zp) must be 0 since u is a viscosity-subsolution to (1.1) in
Q\ v=1(0).

We assume that Dy(zo) # 0. Then it holds from (4.1) and (4.2) that
Du(zo) = Dy(zg) # 0. Here we used the assumption that u is a differentiable
function.

Therefore it follows from the implicit function theorem that {u = 0} and {¢ = 0}
are a C'-hypersurface and a C?-hypersurface in some neighborhood of zy, respec-
tively. This fact, together with (4.1) and (4.2), implies that there exist positive
constants p and p’' € (0, p/2) and a point z € {¢ < 0} such that

By(z) c {¢ <0}N B,,(a:q) C {u < 0} N B,(zo) (4.4)

and Zo € 0B,(z) (see [14, Figure 3.1}). Without loss of generality, we may assume
that o =0 and 2 = (0,...,0, p').
For ¢ € (0,p'), we define ¢s by

5 ‘
Ys(z) = o(z) — (62:1:" - §|9’|2) . (4.5)
Then wj; := u —1); satisfies the following:
(1) Dnws(0) = Dn(u — ¢)(0) + 62 = §2 > 0.

(i) ws(0) = u(0) — (0) = 0.
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(ili) if 6%z, = 6|z|?/2, i.e., z € 8B;(0,...,0,d), then
wi(@) = u(e) ~ p(a) <0, @)
Thus there exists a point 5:;; € B;s(0,...,0,0) such that
sup{ws(z) | = € B5{0, -, 0,8)} = ws(Zs). (4

Since £5 € B;(0,...,0,8) C By(2z) C {u < 0} and wu is a viscosity subsolution to
(1.1) in 2\ ©~1(0), we have :

F(%5,u(%s), Dys(s), D*s(25)) < 0. (4.8)

We see that Z; — 0 as § — +0. And furthermore,
u(Z5) — u(0) =0, (4.9)
Dys(%5) = Dp(i;) — 6%(0,...,0,1)7 + 65 — Dy(0), (4.10)
D*ys(25) = D*¢(%5) + 61, — D*p(0). (4.11)
as § — +0. Taking § — +0 in (4.8), we obtain by the condition (A1) that
| F(0,0, Dg(0), D*(0)) = u < 0, (4.12)

which is contradictory to (4.3).

We assume that Dy(zg) = 0. As is mentioned in the previous section,
under some hypotheses we need no testing at all if Dy = 0 in the definition of
viscosity solutions. Indeed we have the following proposition.

Proposition 4.1. Suppose that (A1) and (A2) in Theorem 2.1 and the conditions
given below are satisfied.

(A3)’ F(z,r,0,0) =0 for every z € Q and everyr € R.
(A4)’ There ezists a constant a > 2 such that for every compact subset K € QxR

we can find a constant C > 0 and a continuous, non-decreasing function
wg : [0,00) = [0, 00) which satisfy wx(0) = 0 and the following:

F(y’ s,j[a: - yla-2(z - y)’Y) - F(z,r,j]:z: - yla—Z(m - y))X) (4'13)
Sw(lr — sl +jlz —y|* + |z —y])
whenever (z,7),(y,8) € K, j 2 C, X,Y € ™" gnd

—(i+ile-1)lz-y*?) In < (g _OY) (4.14)

. - . : _ I, -1
< (J(a — 1z — y|*? + 2j(a — 1)}z — y|> ) (-—I I n)
. n ”n

holds.



24

Then u € C(R) is a relazed viscosity subsolution (resp. supersolution, solution) to
(1.1) if and only if it is a viscosity subsolution (resp. supersolution, solution) to

(1.1).

Proof. We prove the subsolution case only. Other cases can be proved similarly.
The “if” part is trivial.

To prove the “only if’ part, we argue by contradiction. We suppose that there
exist a point o € Q and a function ¢ € C?(f) such that

Dy(zo) =0, | (4.15)
u(z0) = ¢(z0), (4.16)
u(z) < p(z) forz € D\ {zo}, . (4.17)
and that

p 1= F(zo,u(Z0), Dep(0), D2<P($o)) > 0. (4.18)

Fix a constant R > 0 such that Bg := Bg(zo) € Q.
We use the technique that we double the number of variables and penalize the
doubling, as discussed in [7]. For j € N, we define ¥; = ¢;(z,y) by

Yi(z,y) = %I.w -y|* | (4.19)
and set
wi(@,y) = u(®) — p(y) - ¥;(z,). (4.20)

Then there exists (z;,y;) € Br x Br which satisfies

WikZT5, Y;) = max wilT,Y). 4.21
523 15) (z.v)€BrxBr (=) ( )
One can show the following; |
. J .
,llﬂ al""f —yl* =0, J.liﬂ(mj,yj) = (%0, %0), | (4.22)

see [7, Proposition 3.7). Thus (z;,y;) € Br x Bp for sufficiently large j. From now
on we assume j is sufficiently large. Since w;(z;,y) < w;(z;,y;) for every point
y € Bpr, we have

e(y) = o(¥s) +¥i(zs,95) — Yi(=;,9). (4.23)

for all y € Br. We denote the right hand side of (4.23) by ¥;(y).
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It follows from (4.23) and the equality ¢(y;) = ¥;(y;) that
De(y;) = D¥;(y;) = jlz; — y;|* (25 — ), (4.24)
Dp(y;) 2 D*¥;(y;) (4.25)
= —jle; - 4|*7*In
= jla = 2)|z; — y1* (e — 45) ® (z; — yy).
We first deal with the case that z; = y; for infinitely many j’s. Passing to a
subsequence if necessary, we may assume that z; = y; for all j € N. By (3.24) and

(3.25), we obtain that Dyp(y;) = 0 and D?p(y;) > O. Therefore the conditions
(A2) and (A3)’ yield

F(ys, 0(y;), De(ys), D*p(ys)) < F(ys, #(y;),0,0) = 0 (4.26)
for all j € N. As j — oo, it follows from (4.22) and (A1) that
p = F(zo, p(0), Dy(x0), D*¢(0)) < 0, (427)

which contradicts (4.18).

Next we consider the case that there exists jo € N such that z; # y; for all
J 2 Jo. By the maximum principle for semicontinuous functions (see [7]), we have
that there exist X;,Y; € S"" such that

(Dati(25,95), X;) € T u(z;), (4.28)
(=Dys(25,5), Y;) € T o(ws), (4.29)

. X; O 1 '
—'(.7 + ”A]”)IZn < (OJ _},’) < Aj + 344_,'2, (430)

. D2 w.(w. y-) D2 w.(m- y.)

where A; = D¥,(x;,y;) = | 2= 7\"91 907 ayri\Tir 9
’ s{s43) Dii(zi,u5)  Diys(s,u5)

defined by (4.19), so that we can calculate the last inequality (4.30) as

C X; O '
—(F+ile=1)|z; —y;|* ) faa < (OJ —Y-) | (4.31)
J

. In this case ¥; is

. a— - I, -1,
<3 (lz5 — u31°7% + 2|25 - y;)**) (I __In)
+ (e = 2) (Jz; — yj|*™* + 2alz; — y;>*~°)

o [ (@ ~u) ® (25 —y) —(z;— ;) ® (a5 — y:'))
—(zi-y;) ® (zi —4;) (3 — ;) ® (z; — vj)

. a— . - I _In
< (o = Dlzs — 35172 + 2o~ 1Py — y*4) (r" _zn)'
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Next, since z; # y, for j > jo, it holds that
D.y;(e5,95) = —Dyt(e5,55) = jla; — y;1*2(z; — vs) # 0, (4.32)

for j > jo. From (4.18), (4.28), (4.29) and the fact that u is a relaxed viscosity
subsolution to (1.1), it follows that

F(z;,u(z;), jle; — ;1" (2; ~ v3), X;) <0, - (433)
F(yj, oy, dlzs = wl* (25 —yi), Y5) 2 (4.34)

for j > jo. Moreover, by (4.15), (4.22) and (4.24) |
dlzs — y;1°~*(z; — 95) = Dp(ys) = Dep(zo) =0 as j — oo, (4.35)
and thus
jlzi—y|* 1 =0 asj— . (4.36)
Finally, by (4.16), (4.22), (4.33), (4.34), (4.36) and the condition (A4)’, we obtain
w < Flys, o), dlz; — yi1* (25— 9;), i) (4.37)

— F(z;,u(z;), jlz; — y5]° 2 (x5 — 95), X;)
< wi(|u(z;) — (yi)| + jlzs — v + |z — y5]) = 0

as j — oo. We reach a contradiction. O

Let us mention again that if u is assumed to be a viscosity subsolution to (1.1) in
{u # 0}, then u(zo) and ¢(zo) must be 0. Therefore, in our setting the inequalities
(4.27) and (4.37) hold if we only assume (A3) and (A4) instead of (A3)’ and (A4)’.
Thus we conclude that u is a viscosity subsolution to (1.1) in the whole domain Q

and it can be proved by analogous arguments that u is a supersolution to (1.1) in
). This completes the proof of Theorem 2.1.

Next we prove Corollary 2.2. It is enough to check that (A1), (A2), (A3) and
(A4) are satisfied when we set F(z,r,q,X) = F(q,X) + f(r). It is trivial that
our conditions (B1), (B2) and (B3) imply (A1), (A2) and (A3) respectively. (A4)
follows from the conditions (B1) and (B2), and the fact that (2.13) implies X < Y.

5 Removability results for singular equations

In this section we focus on the fully nonlinear equations (1.1), (1.2) which are
singular in the sense that F' is not defined on {Du = 0}. Typical examples are
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p-Laplace equation —Ay,u = 0 and p-Laplace diffusion equation u; — Apu =0
where 1 < p < 2, and the mean curvature flow equation '

— | Dul div ( Ig I) =0 | (5.1)

which says that every level set I, := {u(t,) = ¢} moves by its mean curvature
provided |Du| # 0 on I'.. It is important to study singular equations because such
equations appear in physics and geometry. ‘

Hereafter we deal with the particular case that F depends only on Du and D%u
variable. The equations we consider are

' F(Du, D*u) =0, (5.2)

uy + F(Du, D*u) = 0. (5.3)

Let us remark that F is not necessarily geometric in the sense of [5]. The notion
of viscosity solutions to singular equations, (5.2) and (5.3), is due to Ohnuma
and Sato [18] (see also [10, 15]). Let us recall the definition. We introduce some

notations and state the assumptions on F.
We define F(F) and T by

F(F) = {1 € CH([0,00)) | £0) = F(0) = £'(0) = (5.4)
f"(r) >0 for all r > 0, and lim F(Df(Jal), sz(lxl)) =0},
E = {0 € C'(R) | #(0) = o’(0) = 0, d(t) —o(~t)>0forallt >0}. (5.5)
We suppose that F = F(q, X) satisfies the following:

(D1) F is a continuous function defined in (R™ \ {0}) x S"*".
(D2) F is degenerate elliptic.
(D3) F(F) # 0, and if f € F(F) and a > 0 then af € F(F).

A function u is said to be a viscosity solution to the singular elliptic equation
(5.2) if u is a relaxed viscosity solution, which is defined in Definition 3.3, to (5.2).
More precisely, we give a definition as follows.

Definition 5.1. Let Q2 be a domain in R". Assume that (D1), (D2) and (D3) are
satisfied.

(i) A function u € USC(Q) is said to be a wiscosity subsolution to (5.2) in Q if
u # —oo and for any function ¢ € C%(Q) and any point o € €2, which is a
maximum point of u — ¢ and satisfies Dy(z) # 0, we have

F(D¢(zo), D*¢(20)) < 0. (5.6)
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(i) A function u € LSC() is said to be a viscosity supersolution to (5.2) in
if u # oo and for any function ¢ € C?(Q2) and any point xo € € which is a
minimum point of u — ¢ and satisfies Dy(zp) # 0, we have

F(Dy(z0), D*¢(z0)) 2 0. | (5.7)

(iii) A function u € C%(R) is said to be a viscosity solution to (5.2) in Q if it is
both a viscosity subsolution and supersolution to (5.2) in 2.

Here is our Radé type removability result for (5.2).

Theorem 5.2. Let 2 be a domain in R". We suppose that (D1), (D2) and (D3)
are satisfied. If u € C'() is a viscosity solution to (5.2) in Q\ u~1(0), then u is
a viscosity solution to (5.2) in the whole domain . ‘

Since the proof of this theorem is the same as Case 1 in the proof of Theorem
2.1, we omit the proof. Theorem 5.2 can be applied, for example, to p-Laplace
equation where 1 < p < 2. We note that for p > 2, p-Laplace equation has no
singularity at Du = 0 and has been already covered by Theorem 2.1.

Next we give the notion of viscosity solutions to the singular parabolic equation
(5.3). Let O be a domain in R x R". We say that a function ¢ € C%(0) is
admissible if for any (£,2) € O with Dy(t, %) = 0, there exist f € F(F), c € £
and a constant p > 0 such that B,(£,£) C O and

le(t, ) — o(E, 2) — @e(f, 8)(t — )| < f(lo - 3]) + o(t — D) (5.8)
for all (t, z) € B,(t,%).

Definition 5.3. Let O be a domain in R x R". We assume (D1), (D2) and (D3)
are satisfied.

(i) A function u € USC(O) is said to be a viscosity subsolution to (5.3) in O if
u # —oo and for any admissible function ¢ € C?(O) and any point (to, zo) €
O which is a maximum point of u — ¢, we have

{Sﬂt(to,wo) + F(De(to, z0), D*p(to, 20)) < 0 if Dep(to, zo) # 0,

(5.9
#i(to, o) < O if Dep(to, o) =0 59

(i) A functionu € LSC(O) is said to be a viscosity supersolution to (5.3) in O if
u # oo and for any admissible function ¢ € C%(O) and any point (to, a:o) €O
which is a minimum point of u — ¢, we have

{ ¢+(to, 7o) + F(Dyp(to, o), D*p(to, 7o) = 0  if Dp(to, o) # 0,

5.10
¢e(to, o) = 0 | if De(to, 7o) =0 (510
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(iii) A function u € C%(0O) is said to be a wiscosity solution to (5.3) in O if it is
both a viscosity subsolution and supersolution to (5.3) in O.

We state the removability of a level set for (5.3). The proof of this theorem is
given in [22].
Theorem 5.4. Let O be a domain in R x R*. We suppose that (D1), (D2) and
(D3) are satisfied. If u € C*(O) is a viscosity solution to (5.3) in O\ u~(0), then
u 18 a viscosity solution to (5.3) in the whole domain O.

Remark 5.1. This theorem is applicable to various equations such as p-Laplace
diffusion equation where 1 < p < 2 and the mean curvature flow equation (5.1).
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