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1. Introduction

In this paper we discuss about the convergence of the internal transition
layers of the Allen—Cahn type equation with multlple-well potentlal of the
form- .
| Wy + fe(ue) =0 inRYx(0,T) (1.1)

Wlth initial condition | | v
u®(,0) = ug € BUC(RY), (r2)

where f. is of the form | | |
fe(r) _-—sinr—‘ea(l.—l-cosr), - (1.3)

and a is a constant. | : '

.. The equation (1.1) is called the Allen-Cahn equatlon if £.(u) = 2u(u?-1),
Wh.lCh is introduced by [AC] as the equation which describes the motion of
grain boundaries in a material. The function u — 2u(u®—1) is the derivative
of the bistable potential of the form u + (u? —1)2/2. Here “bistable” means

 that the potential has exactly two local minima at u = %1. By tending

& — 0 we have a sharp interface, which is called internal transition layers,
from the solution of the Allen-Cahn equation. The asymptotic analysis as

~ in, for example, [RSK] yields that the internal transition layers approximates
the motlon of interfaces I'; which moves by

V=-H on | "

where V is the normal velocity of I';, and H is the mean curvature in the -
~ direction of the minus of the outer unit normal vector field of I';. The rigorous
proof of the convergence is given by [ESS]. This result is extended to the
case that the interface moves by the mean curvature flow with some driving.
force by, for example, [BSS] or the Neumann boundary va.lue broblems by
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[KKR]. That is also extended to the anisotropic case by,-for example, [E1S1],
[EIPS], [E1S2], [GOS]. The set theoretic approach is provided by [BS]. It is
extended to the Neumann type boundary value problems by [BD].

The function f. is the derivative of the multiple- Well potential F, of the

form
F.(r) = cosu — ea(r +sinr). | (1.4)

This potential has local minima at u = (2k + 1)7 for k¥ € Z. Thereby the
solution u¢ has a lot of internal transition layers in & neighborhood of the sets
{z; u*(z,t) = 2nk} for k € Z. The aim of this paper is to give an brief idea
to prove the convergence of internal transition layers to the interface which -
moves by the mean curvature flow equation with driving force of the form

V=—H+A onl

where A is a constant. We remark that our problem is essentially same as
- that of the Allen—Cahn equation if we assume that the initial data ug satisfies
SUpgw |ug| < 7 because of the comparlson principle. . Therefore we assume
that ug satisfies -

—7 < up < 37w in RV, glfuo < 0, and su}yuo > 2. (1.5)
N S
In this case the internal transition layers appear in a neighborhood of the
sets {z; u(z,t) = 27k} for k = 0 and k =1, respectively.
For the proof, we adjust the method of the generation of interface by
X. Chen in [C], and the construction of supersolutions for estimating the.
internal transition layers by L. C. Evans, H. M. Soner and P. E. Souganidis
in [ESS]. The crucial difference between our problem and the Allen-Cahn
equation is the way to construct a. supersolutmn The usual way to construct
- a supersolution as in [ESS] provides only the estimate of the motion of the
internal transition layers in a neighborhood of {z; u®(z,t) = 27} from above.
This is because of the height of the usual traveling wave. To overcome this
difficulty, we construct a supersolution with twice heights of layers by using
the property of a closedness of a viscosity supersolutions under infimum.
R. Jerrard proved the another type of the convergence result in [J]. He
consider the equation of the form '
1 u®

- Auf + ~‘;_I_er (51—7) =0 inR" x (,O’T).

for 4 € [0,1] instead of (1.1). He proved a locally uniform convergence of
uw = lim,.,ou® provided that v € (0,7o) for some 7o, and u solve the mean
curvature flow equation if v > 0. : : :
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2. Equations
2.1. Allen-Céh’n equation with multi-well potential

Consider the Cauchy problem (1.1) with initial condition (1.2). The usual
theory of viscosity solutions are valid for (1.1)-(1.2). Especially, we have
the comparison principle, the existence and umqueness of viscosity solutions.

‘See [CIL] for the proof of them:.
For sufficiently small & > 0, the function f. € C®(R/27Z) has exactly -
three zeros in [—m, 7] at 7 = £m and 7 = .. By s’cralghtforward calculatlon

" we have
fs(ifr) =1, fila) = -1,

and f. satisfies
: fs > 0 in (—Waae)’ fE < 0 in (aE;Tr)'

Therefore the f. satisfies the assumptions for the nonlinear term of the Allen—
Cahn equation in. [—m, 7). Since f, is periodic with the period 2, several
" internal transition layers appear. By the assumption (1.5), the internal tran-
sition layers appear around the sets {z; u®(z,t) = 2k} for k =0, 1.

_ Remark 2.1. In this paper we give an explicit form of fe. Fo'ftunately, we
can eztend the results of this paper to the case that f. = fo+¢€f1, and satisfy
the condition ' ‘ ' o

(Z) f01 fl € COO(R/ZWZ)J

(i) fo(r) has ezactly three zeros in [—m, 7] at 7 = *m andr =0, fi(r) has
exactly two zeros in [—m,m| at v = %, . |

.’(iz'z')‘ fo(£m) > 0 and f(0) <0,
(iv) [T, folr)dr = 0

The important property is that the periods of fo and f; are same.

2.2. Asymptotic expansion

‘To find an interface evolution equatlon for the internal transition layers, we
consider the formal asymptotic expansion of solutions of (1.1) as in [RSK].

Set’

w(z,t) = Q(a,t,e (. 1) — £ %ct) + eP(z,t,e (3, 8) = £~2ct) + 0(52)
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for a neighborhood of I'}(t) := {z; u®(z,t) = 2wk} for k = 0,1. Then we
obtain 1 ' ‘ |
— Auf + g;fe(us-) = 8—210 + 8~1]1 + O(1),

where the order O(1) isas e — 0,

—Vel’Q" — Q'+ fo(Q),
~ |V’P" — cP'+ fo(Q)P + Q (1 = Ap) — 2(VQ, Vip) + fl(Q)

Q" = Q, and P’ = P, for Q= Q(:z:, t,o) and P = P(x,t,0), respective_ly. The
equation (1.1) yields that Iy = I; = 0. We now assume that Q(z,t, £o0) =
7 + 27k for k£ = 0,1. Then the methods in [RSK, Section 3] yields that

- (V2%Vp, V . j
oo — Aip+ 4 TstP w}—AHchI:Oa

where

f7r+27rlc ( )du

7r+27rk
fm(qlc (0’))2d0' K

and gi is the solution of the ordinafy differential equation of the form
ge(E£o0) =t 7 + 27k,
dk (0) =27k.

A = — (2.1)

We remark that g = go + 27k and [~ “:fg:k fl(u)du = [ fi(u)du, which |

ylelds A = Ag =: A.

Here and hereafter we consider the level set equatlon forV=-H +Aof
the form :
uy — Au+ (ViuVu, Vu)._ AlVu|=0 inRY x (0,T) (2.2)
|Vul? | - | S
with initial condition | | |
| u(-,0) =uy in RV, - (2.3)

- The usual methods for viscosity solution are valid for (2.2). See [CGG] [ES]
or [G] for more precise properties.
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3. Convergence result‘

’We prepare some notations to state our main result.
" Let u be a solution of (2.2)~(2.3). For k = 0,1, we define

IF = {z; u(z,t) > 27rk}>,
0 {z; u(z,t) < 2rk},
TF = {z; u(z,t) = 2rk}.

t

We also define for k = 0, 1

IF = {(a: t)y e RY x (0,7); u(z, t)>27rk}
- OF = {(z,t) e RN x (0,T); u(z,t) < 2mk}.

Theorem 3.1. Let u® ‘be a viscosity solution of (1.1) with u€(-,0) = uo.
Assume that the initial data ug satisfies (1.5). Let u be a vzscoszty solution
of (2.2) with u(:, 0) = uo. Then we have the followings.

(i) Fork=0,1 and any‘ compact subset K € I*, we have

lim sup uf(z, t) (2k + 1)7.
e~+0 (z,t)eK

(i) For k=0,1 and any compact subset k € Ok, we have

lim inf ut(z,t) < (2k — 1)7r
e—0 (z,t)eK

By Theorem 3.1 and the comparison principle it is easy to obtain

Corollary 3.2. Under the same hypothész's of Theorem 8.1 we havc
ut — (2k + 1)m  in I* N OF*!
for k.= —1,0,1 locally uniformly as € — 0.

" The proof of Theorem 3.1 is devided into two steps, which are described
in the following two lemmas. |
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Lemma 3.3. Let u® be a viscosity solution of (1.1) with ue(-, 0) = ug. As-

sume that uy satisfies (1.5). Then, for any b > 0 and m > 0, there exist
positive constants € = &(b,m) and 1o = 7o(b) such that
u®(z, 7oe?|loge|) > (2k + 1)m — be

ifz € {y € RY; woly) > 2k + m},
u (z, 7oe%| loge|) < (2k— 1)m + be

ifz € {y € RY; uo(y) < 21k ~ m}

(3.1)
(3.2)

- fork=0,1 provided that € € (0.£).

Lemma 3.4. Let u be a viscosity solﬁtz’on of (2.2) with u('-., 0) = wg €
 BUC(RM). LetT, = {z; u(z,t) = C} with C € R and d(z,t) be a function
defined by

Az t) = - dist(z,Ty) fze{y u(wt)2C)
28 =\ _dist(z.T:) ifz € {v; u(v,t) < C}.

For any B > 0, there exist a constant €9 = £(6) > 0 and a viscosity superso-
lution v = v%° of (1.1) provided that € € (0,€&p) satisfying

(i) Y'v(‘x, t) 2 3 if (z,t) satisfies d(z,t) > B,
(m) v(z,t) < -1 +eC if- (z,t) satisfies d(z,t) < -0,

where C is a positive constant.

We remark that we can construct a viscosity subsolution satiéfying (i) and
(ii) of Lemma 3.4 by similar way, so that we only mentioned about the -

construction of a supersolution.
The crucial observation for our problem is Lemma 3.4, In the method

of the construction as in [ESS] we consider the traveling wave ¢: R — R
satisfying |
¢"+cd = f;( ) in R, o (3.3)

where c is a constant determined only by f.. By applying the method as
in (AW, Section 4], we obtain the existence and uniqueness of (g,c) with
g(£o0) = 2k £ 7 for k € Z. When we try to construct a supersolution as -
in Lemma 3.4, we attempt to consider the traveling wave ¢ satisfying (3.3)

with the boundary condition

a(~00) = —, g(o0) =37
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instead of q(ioo) o7k + 7. Unfortunately, however, there is no such a
solution if a = 0, i.e., f = —sinu (see [O]). To overcome this dlfﬁculty, we

adjust the method in [ESS] for our problem.
Let g be a traveling wave satisfying (3.3) with q(:l:oo) i7r. Let 1 be a
truncating function as in [ESS] satisfying n € C=(R),

(0) = c—6 ifa>d/2,

MOT=N -5 ifo<d/4

0<y <C,inR,

[n"| < Cp/nin R

for 6 > 0, where C, is a numerical constant. Define 1/)” RN x [0,00) = R
by

n(d(z,t)) + K1t + jb
€

w;,b( 1) =q ( ) + 27r,(1 -7) +E(K2+jb)-

We remark that g(s) + o is a solution of (3.3) with g(£o0) = 27r + . By
give more precise estimates in the proof of [ESS, Theorem 3.2], we obtain’
~ the following lemma. :

Lemma 3.5. Under the hypothesis on above, for 6 > 0, there exist positive
constants by = bo(d), K1 = K;(6) and K, = Ky(d) such that, for any b €
(0, by), there exists € = £(6,b) such that 'z/);’b is a viscosity supersolution of
(1.1) provided that € € (0,€) and j =0, 1.

We define v(z, t) by |

v(z,t) = { min{yg’(z,t), ¥ (z,t)} if n(d(z,t)) + Kit < —b/2,
U L@ - if p(d(z, t)) + Kt > —b/2.

‘Since g(o) — % exponentially fast as 0 — 00, we observe that

5 < U5 on {(5,9); M(d(v, 5)) + Kas € [~3b/4, ~b/4]}

for sufficiently small b and €. Then we observe that v is a v1scos1ty superso—
.lut1on of (1.1). Moreover we observe. that

o(z1) > 31 for (3,8) € {(4,); n(dy, )+ Kas > b/4},
v(z,t) < -7+ eC for (z,2) € {(y,9); n(d(y, s)) + K1s < ~5b/4},

where C is a positive constant.
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