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1 Introduction
We consider the following reaction-diffusion equation:

(KS) $\{\begin{array}{ll}u_{t}=\nabla\cdot(\nabla u^{m}-u^{q-1}\nabla v), x\in R^{N}, 0<t<\infty,0=\Delta v-v+u, x\in R^{N}, 0<t<\infty,u(x, 0)=u_{0}(x), x\in R^{N},\end{array}$

where $N\geq 1,$ $m\geq 1$ and $q> \{m+\frac{2}{N}, \frac{3}{2}\}$ . The initial data $u_{0}$ is a non-negative function
in $L^{1}\cap L^{\infty}(R^{N})$ with $u_{0}^{m}\in H^{1}(R^{N})$ . This equation was proposed by Keller-Segel [9]
to describe the motion of the chemotaxis molds, and nowadays it is called Keller-Segel
model.

The first equation of (KS) without the perturbation term is written as follows:
$(PM)$ $\psi_{t}(x, t)=\Delta\psi^{m}(x, t)$ .
It is known that (PM) has the exact solution $V(x, t;M)$ with self-similarity, called Baren-
blatt solution.

that $For(KS),forqtheexponentq=>m+\frac{[12}{N}representssoca11edFujita’ sonewhichdividesthesituation2in4$
], $forq=2in[15],andfor\frac{3}{2}<q<2in[l6],itwasshown$

between the global existence and finite time blow-up to a solution of (KS). Specifically, it
was proved in $[14]-[16]$ that under the assumption $q> \frac{3}{2}$ ;
(i) when $q<m+ \frac{2}{N}$ , (KS) is globally solvable without the any restriction on the size of
the initial data, and
(ii) when $m\geq 1$ and $q \geq m+\frac{2}{N}$ , (KS) is globally solvable for small $L^{\frac{N(q-n)}{2}}$ -initial data.
Furthermore, the decay of solution in $L^{p}(R^{N})(1<p<\infty)$ was shown.

In the present article, we shall consider the above case (ii) and obtain the asymptotic
profile of the solution $u(t)$ with a definite convergence rate in $L^{p}(R^{N})$ . More precisely,
we shall show that
(I) for (KS) with $m>1$ , we obtain the optimal convergence rate such as

$\lim_{tarrow\infty}t^{\sigma_{n}(1-\frac{1}{p})}\Vert u(\cdot, t)-V(., t;\Vert u_{0}||_{L^{1}(R^{N})})\Vert_{L^{p}(B_{\ell,R})}=0$ for $1<p<\infty$

with $B_{t,R}$ $:= \{x\in \mathbb{R}^{N};|x|<Rt\frac{Nm-1+21}{}\}$ , where $V(x, t;M)$ is the well-known Barenblatt
solution of (PM) such that $\int_{R^{N}}V(x, t;M)dx=M$ . For detail, see (2.4) in the next
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section.

We also discuss the semi-linear case: $m=1$ of (KS) and
(II) for (KS) with $m=1$ , we prove that

$\lim_{tarrow\infty\ovalbox{\tt\small REJECT}}t^{\frac{N}{2}(1-\frac{1}{p})}||u(\cdot, t)-MG_{t}(\cdot)\Vert_{L^{p}(B_{t,R})}=0$ for $1<p<\infty$ ,

where $G_{t}(x)$ is the heat kernel and $M=\Vert u_{0}\Vert_{L^{1}(R^{N})}$ .
We thus propose the method to prove the asymptotic profile with the optimal conver-

gence rate without “comparison principles and the representation formula of solutions.”
In many systems, it is difficult to show that a comparison principle holds. Our method
could be applied to other nonlinear systems which do not make comparison principles
ensure.

2 Results
Throughout this article, we deal with the weak solution of (KS). Our definition of

the weak solution now reads:

Definition 1 Let $m\geq 1,$ $q>1$ and let $u_{0}\in L^{1}\cap L^{\infty}(R^{N})$ with $u_{0}^{m}\in H^{1}(R^{N})$ and
$u_{0}\geq 0.$ A pair $(u, v)$ of non-negative functions defined in $R^{N}\cross[0, T$) is called a weak
solution of (KS) on $[0,T$) if
i) $u\in L^{\infty}(O, T;L^{1}\cap L^{\infty}(R^{N})),$ $\nabla u^{m}\in L^{2}(0, T;L^{2}(R^{N}))$ ,

ii) $v\in L^{\infty}(O, T;H^{1}(R^{N}))$ ,

iii) $(u, v)$ satisfies the equations in the sense of distmbution, $i.e.$ , that

$\int_{0}^{\infty}\int_{R^{N}}(\nabla u^{m}\cdot\nabla\varphi-u^{q-1}\nabla v\cdot\nabla\varphi-u\varphi_{t})$ dxdt $= \int_{R^{N}}u_{0}(x)\varphi(x, 0)dx$ ,

$\int_{R^{N}}(\nabla v\cdot\nabla\psi+v\psi-u\psi)(t)dx=0$ for $a.a$ . $t\in(O, T)$

for all functions $\varphi\in C_{0}^{\infty}(R^{N}\cross[0, T))$ and $\psi\in C_{0}^{\infty}(R^{N})$ .

We introduce the existence and decay property of a weak solution $(u, v)$ . The follow-
ing proposition is a direct consequence of $[10],[14]-[16]$ .

Proposition 2.1 ([10],[14]-[16]) Let 1 $\leq p<\infty,$ $N\geq 1,$ $m\geq 1,$ $q> \frac{\theta}{2}$ and $q\geq$

$m+ \frac{2}{N},\ell\geq\frac{N(q-m)}{exis^{2}t}(\geq 1).Supposethattheinitialdatau_{0}isnon- negativeeverywhereThen,thereanabsoluteconstantMandapositivenumber\epsilon dependingonlyon$

$M,p,$ $N,$ $m,$ $\ell$ such that if $u_{0}\in L^{1}\cap L^{\ell}(R^{N})$ satisfies that

(2.1) $\Vert u_{0}||_{L^{1}(R^{N})}=M$ , $||u_{0}||_{L^{\ell}(R^{N})}\leq\epsilon$ ,

then (KS) has a weak solution $(u, v)$ on $[0, \infty$) with the following decay property: there ex-
ists a constant $C_{p}$ depending only on $p$ , Il $u_{0}\Vert_{L^{p}(R^{N})}$ together with $N,$ $m,$ $q,$ $M,$ $\Vert u_{0}||_{L^{(N+2)q}(R^{N})}$
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such that

(2.2) $\Vert u(t)||_{L^{p}(R^{N})}+\Vert v(t)||_{L^{p}(R^{N})}\leq C_{p}(1+t)^{-d}$ for all $0<t<\infty$ ,

where

(2.3) $d= \sigma_{m}(1-\frac{1}{p})$ , $\sigma_{m}=\frac{N}{N(m-1)+2}$ .

Remark 1 (i) The decay rate $d$ depends on $m,$ $N$ but not on $q$ .
(ii) The above convergence rate $d$ seems to be optimal. In fact, for $m=1$ , we find that
$\sigma_{m}=\frac{N}{2}$ whose decay rate $d$ coincides with the $L^{1}- L^{p}$ estimate for the linear heat equation.

We introduce the self-similar solution $V(x, t;M)$ by Barenblatt [1]:

(2.4) $V(x,t;M)$ $:= \frac{1}{t^{\sigma_{m}}}(\beta^{2}M^{\frac{2\sigma_{m}(n-1)}{N}}-\frac{\sigma_{m}(m-1)}{2mN}$ . $\frac{|x|^{2}}{t^{2\sigma}\#})_{+}^{\frac{1}{m-1}}$ ,

where $\beta$ is the parameter. In this article, we take $\beta$ in such a way that $V(x, t;M)$

satisfies $\int_{R^{N}}V(x, t;M)dx=M$ for all $t>0$ . We call the above function $V(x, t;M)$ the
Barenblatt solution. Moreover, it is known that $V(x, t;M)$ is the weak solution for the
Cauchy problem of (PM) corresponding to the initial data $\delta M$ , where $\delta$ is the Dirac mass
at the origin.

We denote the heat kernel $G_{t}(x)$ by $G_{t}(x)$ $:= \frac{1}{(4\pi t)^{\frac{N}{2}}}$ exp $(- \frac{|x|^{2}}{4t})$ .

We now give two main theorems. The first one is for the quasilinear case of $m>1$ .

Theorem 2.2 (asymptotic profile: Barenblatt solution) Let the same assumption
as that in Proposition 2.1 hold. In addition, let $m>1$ and $q>m+ \frac{2}{N}$ . Then, the weak
solution $u$ obtained in Proposition 2.1 satisfies that

(2.5) $\lim_{tarrow\infty}t^{\sigma_{m}(1_{p})}-1\Vert u(\cdot, t)-V(\cdot, t;\Vert u_{0}||_{L^{1}(R^{N})})\Vert_{L^{p}(B_{t,R})}=0$ , $1<p<\infty$

for all $R>0$ , where $\sigma_{m}$ is the exponent defined in (2.3) and $B_{t,R}$ is the ball defined by

(2.6) $B_{t,R}$ $:=\{x\in R^{N};|x|<Rt^{\frac{1}{N(m-1)+2}}\}$ .

Remark 2 (i) The solution of (PM) has the similar property as Theorem 2.2. Indeed,
for the solution $\psi$ of (PM), it holds

(2.7) $\lim_{tarrow\infty}t^{\sigma_{m}(1-\frac{1}{p})}\Vert\psi(\cdot, t)-V(\cdot,t;||\psi(0)||_{L^{1}(R^{N})})\Vert_{L^{p}(R^{N})}=0$

for any $1\leq p\leq\infty$ . (we refer to B\’enilan [2], Friedman-Kamin [5], Kamin [7], Kamin-
Vazquez [8], V\’eron [17].) Hence, Theorem 2.2 implies that $\triangle u^{m}$ is dominant to $\nabla(u^{q-1}\nabla v)$
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in the case of $q>m+ \frac{2}{N}$ and small initial data“,

(ii) Proposition 2.1 includes the case of $q=m+ \frac{2}{N}$ . On the other hand, Theorem 2.2
excludes the case of $q=m+ \frac{2}{N}$ .

The next theorem is for the semi-linear case of $m=1$ .
Theorem 2.3 (asymptotic profile: heat kernel) Let the same assumption as that in
Proposition 2.1 hold. In addition, let $m=1$ and $q>1+ \frac{2}{N}$ . Then, the weak solution $u$

obtained in Proposition 2.1 satisfies that

(2.8) $\lim_{tarrow\infty}t^{\frac{N}{2}(1-\frac{1}{p})}||u(\cdot, t)-||u_{0}||_{L^{1}(R^{N})}G_{t}(\cdot)||_{L^{p}(B_{t.R})}=0$, $1<p<\infty$

for all $R>0$ , where $B_{t,R}$ is the ball defined in (2.6).

Remark 3 The asymptotic profile as (2.8) (in the whole domain) was firstly obtained by
Nagai-Syukuinn-Umesako [12] for Keller-Segel model of parabolic-parabolic type. Their
argument is based on the representation formula of solutions. On the other hand, we
study the Keller-Segel model of parabolic-elliptic type and give another proof without
using any representation formula of solutions.

To prove our main theorems, we make fully use of the scaling argument. Let us
introduce rescaled functions $w_{k}$ and $z_{k}$ defined by

$w_{k}(x, t)=k^{N}u(kx, k^{N(m-1)+2}t)$ and $z_{k}(x, t)=k^{N}v(kx, k^{N(m-1)+2}t)$ for $k\geq 1$ .

Then we see that (KS) can be rewritten as

$w(KS)\{\begin{array}{l}w_{kt}=\nabla\cdot(\nabla(w_{k})^{m}-k^{-N(q-m)}(w_{k})^{q-1}\nabla z_{k})(x, t)\in R^{N}\cross(0, \infty)0=k^{-2}\Delta z_{k}-z_{k}+w_{k}(x, t)\in R^{N}\cross 0w_{k}(x, 0)=k^{N}u_{0}(kx)x\in R^{N}\end{array}$

where $N\geq 1,$ $m>1,$ $q> \frac{3}{2}q\geq m+\frac{2}{N}$ .
It should be noted that $w(KS)$ does not have any invariance under change of scaling

more. However, under the hypothesis $q>m+ \frac{2}{N}$ , it has an advantage since we can gain the
negative $power-N(q-m)$ to $k$ of the coefficient $w_{k}^{q-1}\nabla z_{k}$ which may be regarded as the
small perturbation term. Hence, for $q>m+ \frac{2}{N}$ we [10] proved that the sequence $\{w_{k}\}_{k=1}^{\infty}$

is bounded in $L^{\infty}(R^{N}\cross(\delta,T))$ together with the fact that $\{w_{k}^{m}\}_{k=1}^{\infty}$ is also bounded in
$H^{1}(\delta, T;L^{2}(R^{N}))\cap L^{\infty}(\delta, T;H^{1}(R^{N}))$ for all $\delta>0$ . These bounds and the standard
compactness argument yield a subsequence of $\{w_{k}\}_{k=1}^{\infty}$ , which we denote by $\{w_{k}\}_{k=1}^{\infty}$ itself
for simplicity, and a function $U(x, t)$ such that

(2.9) $||w_{k}(\cdot, t)-U(\cdot, t)||_{L^{p}(B_{R})}arrow 0$ for all $1<p<\infty$ as $karrow\infty$

with the ball $B_{R}$ $:=\{x\in R^{N};|x|<R\}$ . Here, we may take arbitrary $R>0$ . On account
of the negative $power-N(q-m)$ to $k$ in $w(KS)$ as is described above, we see that $U$ is, in
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fact, a weak solution of (PM) with the property that $\Vert U(\cdot, t)||_{L^{1}(R^{N})}=M=;||u0||_{L^{1}(R^{N})}$ .
Furthermore, it turns out that both $U(\cdot, t)$ and $V(\cdot, t;M)$ converge to $M\delta$ in the sense of
distributions as $t\downarrow 0$ , which yields with the aid of uniqueness result due to Pierre [13] that
$U(x, t)\equiv V(x, t;M)$ . Now, taking $k=t^{\sigma_{m}/N}$ in (2.9) and then returning to our original
solution $u$ from the rescaled sequence $\{w_{k}\}_{k=1}^{\infty}$ , we obtain the desired asymptotic profile
such as (2.5).

We will use the simplified notations:
1) $\partial_{t}=\frac{\partial}{\partial t}$ , $\partial_{i}.=\frac{\partial}{\partial x:},$ $\partial_{ij}^{2}=\partial_{i}\partial_{j},$ $\nabla u=(\partial_{1},$ $\partial_{2},$ $\cdots),$ $\nabla^{2}u=(\partial_{11}^{2},$ $\partial_{12}^{2},$ $\cdots)$ ,
2) $||\cdot\Vert_{L^{r}}=\Vert\cdot||_{L^{r}(R^{N})},$ $(1\leq r\leq\infty),$ $\int\cdot dx:=\int_{R^{N}}\cdot dx$ .
3) QT $:=R^{N}\cross(0, T),$ $B_{R}$ $:=\{x\in \mathbb{R}^{N}; |x|<R\}$ .
4) When the weak derivatives $\nabla u,$ $\nabla^{2}u$ and $\partial_{t}u$ are in $L^{p}(Q_{T})$ for some $p\geq 1$ , we say
that $u\in W_{p}^{2,1}(Q_{T}),$ $i.e.$ ,

$W_{p}^{2,1}(Q_{T})$ $:=$ $\{u\in L^{p}(0, T;W^{2,p}(R^{N}))\cap W^{1,p}(0, T;L^{p}(R^{N}))$ ;

$||u\Vert_{W_{p}^{2,1}(Q_{T})}$ $:=||u||_{L^{p}(Q_{T})}+||\nabla u||_{L^{p}(Q_{T})}+||\nabla^{2}u||_{L^{p}(Q_{T})}+||\partial_{t}u||_{L^{p}(Q_{T})}<$ 科科}.

3 Outline of proof
Let us recall $w(KS)$ introduced in Section 2. The problem $w(KS)$ does not have any

invariance under change of scaling. However, we can show that the sequence $\{w_{k}\}_{k=1}^{\infty}$ is
uniformly bounded in $R^{N}\cross(\delta,T)$ together with the fact that

(3.1) $\{(w_{k})^{m}\}_{k=1}^{\infty}$ is also bounded in $H^{1}(\delta, T;L^{2}(R^{N}))\cap L^{\infty}(\delta, T;H^{1}(R^{N}))$

for all $0<\delta<T<\infty$ . By (3.1) and the standard compactness theorem, we find that
there exist a subsequence, still denoted by $\{w_{k}\}$ , and a function $U$ on $R^{N}\cross(0, \infty)$ such
that

(3.2) $||w_{k}(t)-U(t)\Vert_{L^{p}(B_{R})}arrow 0$ with $1<p<\infty$ , as $karrow\infty$

for all $0<t<\infty$ and all $R>0$ , where $B_{R}$ $:=\{x\in R^{N};|x|<R\}$ .

On account of the negative power $-N(q-m)$ to $k$ of the coefficient $w_{k}^{q-1}\nabla z_{k}$ , we may
treat $k^{-N(q-m)}\nabla(w_{k}^{q-1}\nabla z_{k})$ as the small perturbation term. As a result, we find that this
function $U$ satisfies (PM) in the following weak sense:

(3.3) $\int_{0}^{\tau}\int_{R^{N}}(U\varphi_{t}+U^{m}\Delta\varphi)dxdt=$ $\int_{R^{N}}U(x, \tau)\varphi(\cdot, \tau)dx-\Vert u_{0}||_{L^{1}(R^{N})}\varphi(0,0)$

for all $C^{\infty}$ functions $\varphi(x, t)$ with compact support in $R^{N}\cross(0, T$], and all $0<\tau<T$ . It
should be noted that the Barenblatt solution $V(x, t;M)$ also satisfies (3.3).

Furthermore, it turns out that

(H1) $U(t)\in L^{1}(R^{N})$ and $\Vert U(t)\Vert_{L^{1}(R^{N})}=||u_{0}\Vert_{L^{1}(R^{N})}$ for all $0<t<\infty$
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with the property that

(H2) $\lim_{t\downarrow 0}\int_{R^{N}}U(x, t)\psi(x)dx=\Vert u_{0}\Vert_{L^{1}(R^{N})}\psi(0)$ .

On the other hand, it is easy to show that

(H3) $\lim_{t}\int_{R^{N}}V(x, t;||u_{0}\Vert_{L^{1}(R^{N})})\psi(x)dx=\Vert_{U_{0}}\Vert_{L^{1}(R^{N})}\psi(0)$

for all $\varphi\in C_{0}^{\infty}(R^{N})$ . Then, by the uniqueness theorem given by Dahlberg-Kenig [4], we
conclude that

(3.4) $U(x, t)=V(x, t;||u_{0}\Vert_{L^{1}(R^{N})})$ for all $(x, t)\in \mathbb{R}^{N}\cross(0,T$].

Combining (3.2) with (3.4), we have

(3.5) $||w_{k}(\cdot, 1)-V(\cdot, 1;\Vert u_{0}\Vert_{L^{1}})\Vert_{L^{\rho}(B_{R})}arrow 0$ , $1<p<\infty$

as $karrow\infty$ for all $R>0$ , where $B_{R}$ $:=\{x\in R^{N};|x|<R\}$ . Now taking $k$ as $k=t^{\sigma}\#$ in
(3.5), we conclude that

$t^{\sigma_{m}(1-\frac{1}{p})}\Vert u(\cdot,t)-V(\cdot,t;||u_{0}||_{L^{1}(R^{N})})\Vert_{L^{p}(B_{t,R})}arrow 0$ with $1<p<\infty$ , as $tarrow\infty$

for all $R>0$ , where $B_{t,R}$ $:=\{x\in R^{N};|x|<Rt^{\frac{1}{N(m-1)+1}}\}$ . Thus, we obtain the optimal
convergence rate.
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