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AN EVOLUTION PROBLEM FOR THE SINGULAR INFINITY
LAPLACIAN

PETRI JUUTINEN

ABSTRACT. We review the basic propertles of the degenerate and singular evolution

equation
Dy 2% Du . Du
1Du]) " Du’

which is a parabolic version of the increasingly popular infinity Laplace equation. Our
results include existence and uniqueness results for the Dirichlet problem, interior and
boundary Lipschitz estimates and a Harnack inequality. We also provide interesting
explicit solutions.

1. INTRODUCTION

In these notes, we consider the non-linear, singular and highly degenera.te parabolic

equation
(1.1) ut=A°°'u.,
where

Du Du
1.2 = 2, ). =
(1.2 b= (D) - B

denotes the 1-homogeneous version of the very popular infinity Laplace operator. We will
review some basic results concerning existence, uniqueness and regularity of the solutions
of (1.1) established in a joint work with Bernd Kawohl [21].

The original motivation to study (1.1) stems from the usefulness of the infinity Laplace
operator in certain applications. The geometric interpretation of the viscosity solutions
of the equation —Ayu = 0 as absolutely minimizing Lipschitz extensions, see [3], [4], has
attracted considerable interest for example in image processing and in the study of shape
metamorphism, see e.g. [6], [28], [8]. For numerical purposes it has been necessary to
consider also the evolution equation corresponding to the infinity Laplace operator; here
the main focus has been in the asymptotic behavior of the solutions of this parabolic
problem with time-independent data, cf. [6], [29].

It turns out that (1.1) also has a very interesting theory if viewed by itself and not just as
an auxiliary equation connected to the infinity Laplacian. First, it is a parabolic equation
with principal part in non-divergence form that, unlike for example the mean curvature
evolution equation, does not belong to the class of "geometric” equations (see [7] for the
definition). Nevertheless it is used in such diverse applications as evolutionary image
processing and differential games. Moreover, a time dependent version of the tug-of-war
game of Peres, Schramm, Sheffield and Wilson [27] leads to the backward-in-time version
of (1.1), see [5]. Secondly, in the case of a one space variable, the equation (1.1) reduces
to the one dimensional heat equation, see Remark 2.2 below, and, rather surprisingly,
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there is a connection between these two seemingly very different equations also in higher
dimensions. Roughly speaking, the fact that the infinity Laplacian (1.2) is non-degenerate
only in the direction of the gradient Du (and acts like the one dimensional Laplacian
in that direction) causes (1.1) to behave as the one dimensional heat equation on two
dimensional surfaces whose intersection with any fixed time level ¢ = to is an integral
curve of the vector field generated by Du(:,¢p). We utilize this heuristic idea for example
in the computation of explicit solutions and in some of the proofs.

The results presented in this paper can be summarized as follows. We begin with a stan-
dard comparison principle in bounded domains that implies uniqueness for the Dirichlet
problem. The existence of viscosity solutions with continuous boundary and initial data
is established with the aid of the approximating equations

1
uy = elAu + m(Dzu Du) -Du
and uniform continuity estimates that are derived by using suitable barriers. As regards
regularity, we prove interior and boundary Lipschitz estimates and obtain a Harnack in-
equality for the non-negative solutions of (1.1). Finally, following the work of Crandall et
al. [11}, [12], we show that subsolutions can be characterized by means of a comparison
principle involving a “fundamental solution” of (1.1).

In addition to Caselles, Morel and Sbert [6], the infinity heat equation (1.1) has been
studied at least by Wu [29], who obtained a variety of interesting results closely related to
ours. Another parabolic version of the infinity Laplace equation

= (D*uDu) - Du

has been investigated by Crandall and Wang in [11], and by Akagi and Suzuki in [2], but
we prefer (1.1) over this one because of the closer relationship with the ordinary heat
equation and the more favorable homogeneity. Moreover, (1.1) is the version that appears
in most of the applications. Observe that the classes of time-independent solutions of both
of these equations coincide with the infinity harmonic functions, see Corollary 3.3 below.

2. DEFINITIONS AND EXAMPLES

There is a by now standard way to define viscosity solutions for singular parabolic
equations having a bounded discontinuity at the points where the gradient vanishes. We
recall this definition below, and refer the reader to [16], [7] and [17] for its justification
and the basic properties such as stability etc.

For a symmetric n x n-matrix A, we denote its largest and smallest eigenvalue by A(A)
and A(A), respectively. That is,

A(A) = max (An)-n

and
A(4) = mm in (An) -0

Definition 2.1. Let @ € R™! be an open set. An upper semicontinuous function u :
Q — R is a viscosity subsolution of (1.1) in Q if, whenever (z,%) € Q and ¢ € C%(R) are
such that

(1) u(z,{) = p(%,§),
(2) u(z,t) < p(z,t) for all (z,t) € Q, (z,t) # (&,1)
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then

(2.1) 0e(#,8) < Doop(3,8)  if Dp(2,8) #0,
' pi(&,f) < AM(D%p(&,1))  if Do(2,8) =0

A lower semicontinuous function v : & — R is a viscosity supersolution of (1.1) in § if
—v is a viscosity subsolution, that is, whenever (£,f) € Q and ¢ € C?(Q) are such that

(1) v(&,%) = (&, 9),
(2) v(z,t) > (z,t) for all (z,t) € Q, (a:, t) # (&, 1)

then
(2 2) ‘Pt(i’ﬂ 2 AOO‘P(:%J) if D‘p(i‘)i) 7é 0,
’ oi(8,8) 2 M D?p(&,8))  if Dyp(&,f) = 0.

Finally, a continuous function h :  — R is a viscosity solution of (1.1) in Q if it is both
a viscosity subsolution and a viscosity supersolution.

There are many equivalent variants of the definition above. One of them is given in
Lemma 3.2 below, and it implies, in particular, that in the case Dy(#,t) = 0 we may
assume that D2p(%,t) = 0 as well. Such a relaxation is very useful in some of the proofs
of this paper.

Remark 2.2. In the one dimensional case it easily follows that an upper semicontinuous
function u : @ — R is a viscosity subsolution of (1.1) in @ ¢ R? if and only if u is a
viscosity subsolution of the usual one dimensional heat equation vy = vzz. An analogous
statement holds of course for the viscosity supersolutions and solutions.

Example 2.3. (a) If we look for a solution in the form h(z, t) = f(r)g(t), r = |z|, simple
calculations lead us to the equations

f'(r)+2f(r)=0 and  ¢'(t) + Ag(t) = 0.
It is easy to check that the functions
h(z,t) = Ce *cos(VAlz|), A>0
and
h(z,t) = Ce** cosh(\/plz]), u>0

satisfy the equation (in the viscosity sense) also at the points where the spatial gradient
vanishes. On the contrary, the functions Ce~** sin(v/A|z|) and Cebt sinh(/7 |z|) are only
viscosity sub- or supersolutions, depending on the sign of the constant in front of them.

One can also let
k 1/2
r=(zz?) . ke{L,2...n},

i=1
and obtain solutions depending on k spatial variables only.
(b) Let h(z,t) = f(r) + g(t), where again r = |z|. We must have

g@t)=xr=f"(r),

and thus
h(z,t) = A (%I:r - $o|2 +(t—-to)+ C) .

In particular, h(z,t) = |z|? + ¢ is a solution.
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(c) Next we use the scaling invariance of the equation and seek a solution in the form

jz?

Wzt =g®)f€), €=
Then h is a solution to (1.1) (for t > 0) if

tg'(£)£(€) ~ 20(8)f"(€) = 9(W)E(£'(€) + 4£"(£)).

The right hand side is zero if f(¢) = e~¢/4. By inserting this to the left hand side and
solving for g we find that

(2.3) h(z,t) = _\%e—‘%f

is a solution to (1.1) in R"x (0, 00). This solution should be compared with the fundamental
solution of the linear heat equation.

3. COMPARISON PRINCIPLE AND THE DEFINITION OF A SOLUTION REVISITED

For a cylinder Qr = U x (0,T), where U C R" is a bounded domain, we denote the
lateral boundary by
St =0U x [0,T)
and the parabolic boundary by

0pQr = ST U (U x {0}).

Notice that both St and 8,Qr are compact sets.
The proof of the following comparison principle can be found in [7], but for reader’s
convenience and for later use we sketch the argument below.

Theorem 3.1. Suppose Qr = U x (0,T), where U C R" is a bounded domain. Let u and
v be a supersolution and a subsolution of (1.1) in Qr, respectively, such that

(3.1) ' limsup u(z,t) < liminf v(z,t)
(zst)—(2,9) (=,t)—(2,9)
Jor all (z,8) € 8,Q7 and both sides are not simultaneously co or —oo. Then
u(z,t) < v(z,t) for all (z,t) € Qr.

Proof. By moving to a suitable subdomain, we may assume that OU is smooth, u < v+¢
on G,Qr (u and v defined up to the boundary), u is bounded from above and v from
below. All this follows from (3.1) and the compactness of the parabolic boundary 8,Qr.
Also, by replacing v with v(z,t) + % for € > 0, we may assume that v is a strict
supersolution and v(z,t) — oo uniformly inz ast — T'. .
The proof is by contradiction. Suppose that

(3.2) sgp(u(m, t) —v(z,t)) >0

and let ) .

wj(z,t,9,8) = u(z,t) — v(y, 8) - Flo - yl* — Lt - o)2.
Denote by (z;,t;,y;,s;) the maximum point of w; relative to U x [0,T] x U x [0,T]. It
follows from (3.2) and the fact that u < v on 8,Qr that for j large enough z;,y; € U and

tj,s; € (0,T), cf. {10], Prop. 3.7. From now on, we will consider only such indexes j.
Case 1: If z; = y;, then v — ¢, where

] j
o(v,8) = ~los — vl - Z(t; - 9)%,
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has a local minimum at (y;, s;). Since v is a strict supersolution and D¢(y;,s;) = 0, we
have

0 < ¢:(yj, 85) — MD?(yj, 85)) = 3(ts — 85)-

Similarly, u — %, where _ .
(@) = Zle - uil* + 5t~ 25)",

has a local maximum at (z;,t;), and thus

0 > Yu(zj, t;) — A(D*P(z5,t5)) = j(t; — ;).
Subtracting the two inequalities gives

0<j(tj —s5)— J(tJ -8) =
a contradiction.
Case 2: If z; # y;, we use jets and the parabolic maximum principle for semicontinuous

functions. There exist symmetric n x n matrices Xj,Y; such that Y; — X; is positive
semidefinite and

. . =2,

(3t ~— ), dlzs — wil2(z5 — ¥3), X5) € P T ula, b)),
. , =2,—

(3t — 83), 3125 — w3l (25 — 13), Y3) € P vy 85)-

See [10], [25] for the notation and relevant definitions. Using the facts that u is a subso-
lution and v a strict supersolution, this implies

v0<9(t,-sj)_( (e = w))_(wj—yj)

ey — gl Taj = vl
. (zj —yi)\ (=5 —¥j)
—-— t- — + X- .
gts = o)+ ( ’le'-yjl) lz5 — sl
=_«Y_Xﬂwrﬂw)ﬁw—w)
7 lz; —y;1 /125 — vl
<0,
again a contradiction. : : O

The proof of the comparison principle shows that we may reduce the number of test-
functions in the definition of viscosity subsolutions. This fact will become useful for ex-
ample in the proof of Theorem 7. 1 below.

Lemma 3.2. Suppose u :  — R is an upper semicontinuous function with the property
that for every (&,t) € Q and ¢ € C*(R) satisfying

(1) u(@,1) = o(2,1),

(2) u(z,t) < p(z,t) for all (z,t) € Q, (m t) # (%,1),
the following holds:

(3.3) ee(#,9) < Boop(8,))  if Dp(#,1) # 0,
. @r(8,8) <0 if Dp(#,£) = 0 and D*p(#,7) = 0.

Then u is a viscosity subsolution of (1.1).

The novelty in Lemma 3.2 is that nothing is required in the case Dy(&,f) = 0 and
D?p(%,t) # 0. This implies, in particular, that if u fails to be a viscosity subsolution of
(1. 1), then there exist (#,7) € Q and ¢ € C?() such that (1) and (2) above hold, and
either

Dy(2,1) #0 and ¢y(,8) > Awop(2,1),
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or
Dy(#,t) =0, D*p(£,1) =0 and 4(%,%) > 0.

On the other hand, it is clear that one cannot further reduce the set of test-functions to
only those with non-zero spatial gradient at the point of touching. Indeed, with such a
definition, any smooth function u(z,t) = v(t) would be a solution of (1.1).

Proof. Sﬁppose u is not a viscosity subsolution but satisfies the assumptions of the lemma.
Then there exist (z,7) € Q and ¢ € C%(R) such that (1) and (2) above hold, Dp(£,{) =0,
D?p(#,t) # 0, and

(3.4) oi(#,f) > A(D?p(3,1)).

As in the proof of Theorem 3.1 above, we let -
w;(2,t,9,8) = u(@,) — @y, 8) — Jlz — vl* = 5t~ 9",

and denote by (z;,t;,y;,s;) the maximum point of w; relative to @ x Q. By [10], Prop.
3.7 and (1), (2), (zj,tj,vj,8;) = (&,%,2,1) as j — oco. In particular, (z;,t;) € Q2 and
(yj,85) € 2 for all j large enough. : '
Again we have to consider two cases. If z; = Yi then ¢ — ¢, where
J J
¢(y$ 8) = —Zlmj - y|4 - '2'(t.1' - 3)2,

has a local minimum at (y;, s;). By (3.4) and the continuity of the mapping

(z,t) = A(D?p(z, 1)),
we have

wi(z,t) > MD?p(z, 1))

in some neighborhood of (%, £). In particular, since @:(y;, 85) = ¢¢(y;, 8;) and D3p(yj, 85) 2
D?¢(y;, sj) by calculus, we have

0 < ¢e(yj» 5) — MD*¢(yj, 85)) = i(t; — 85)
for j large enough. Similarly, u — 1, where
$(a,t) = Zlo — wilt + (0 — 5%
has a local maximum at (z;,t;), and thus
0 > Ye(xj, t5) = j(tj — 85) ‘
by the assumption on u; notice here that Dzw(zj,tj) = 0 because T; = y;. Subtracting
the two inequalities gives
0< j(tj - 8_,') —j(tj - Sj) =0,
a contradiction. The case z; # y; is easy and goes as in the proof of Theorem 3.1. O
As a consequence of Lemma 3.2, it is now easy to check that the time-independent

solutions of (1.1) are precisely the infinity harmonic functions. The proof is left for the .
reader as an exercise.

Corollary 3.3. Let Qr = U x (0,T) and suppose that u : Qr — R can be written as
u(z,t) = v(z) for some upper semicontinuous function v : U — R. Then u is a viscosity
subsolution of (1.1) if and only if —(D?*v(z)Dv(z)) - Du(z) < 0 in the viscosity sense.
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4. EXISTENCE

The main existence result we will prove is

Theorem 4.1. Let Qr = U x (0,T), where U C R™ is a bounded domain, and let ¢ €
C(R™1). Then there ezists a unigue h € C(Qr N 8,Qr) such that h =y on 5,Qr and

in the viscosity sense.

The uniqueness follows from the comparison principle, Theorem 3.1. Regarding the
existence, we consider the approximating equations

(4'1) ' Up = Agfu,
where ' .
1
by = — 1 (p? . Du = &6 y
Affu =elAu+ Dul + 52‘(D uDu) Du ,-;1 a;; (Du)uij
with . .
() = 6~-+—-§5—§"—  0<e<l1, 0<é6<1
aij =E£ (3] l£|2+62; LS gy

For this equation with smooth initial and boundary data 1(z, t), the existence of a smooth
solution h, s is guaranteed by classical results in [23]. Our goal is to obtain a solution of
(1.1) as a limit of these functions as € — 0 and 4 — 0. This amounts to proving estimates
for he 5 that are independent of 0 <e <1and 0 <4 <1.

The estimates we require will be obtained by using the standard barrier method. Note
that we have the existence for any bounded cross-section U C R"™. This is a consequence
of the fact that we do not need to use the distance function in the construction of the
barriers.

4.1. Boundary regularity at ¢t = 0. ,

Proposition 4.2. Let h = h. s be a smooth function satisfying
he = AR in Qr,
h(z,t) = ¢¥(z,t) on GQr.

If ¢ € C2(R™t1), then there exists C > 0 depending on |[D%*y||e and [|¢t]lec but indepen- -
dent of € and 6 such that

lh(z’t) - 1/’(:17, O)l < Ct
forallz € U and 0 < t < T. Moreover, if ¢ is only continuous, then the modulus

of continuity of h on U x {0} can be estimated in terms of ||¥|lcc and the modulus of
continuity of ¢ in x. ' ‘

Proof. Suppose first that ¢ € C2(R™*1), and let w(z,t) = ¥(z,0) + At, where A > 0 is to
be determined. We have

wy — AZw > A — (1 + en) || D¥p(z, 0)Jloc > 0
if X is large enough. Clearly w(z,0) > h(z,0) for all z € U. Moreover,
w(z,t) = ¢(z,0) + At = 9(z,0) + [|¥tllot = 9¥(z,t)
forall z € OU and 0 < t < T if A 2 |[¥t|lcc. Thus, by the comparison principle,
h(z,t) < w(z,t) = ¥(z,0) + At
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foralz e U and 0 <t <T. By consxdermg also the lower barrier (z,t) — ¥%(z,0) —
we obtain the Lipschitz estimate
(4.2) |h(z,t) — ¥(z,0)| < Ct,

where C = max{(1 + &n)|| D?¥(z, 0)||co, [14¥tlloo}-

Suppose now that i is-only continuous, and fix zo € U. For a given u > 0, choose
0 < 7 < dist(zg,8U) such that |1(z,0) — ¥(z0,0)] < p whenever |z — zo| < 7, and
consider the smooth functions .

Y+(z,t) = P(20,0) T p = —=—

It is easy to check that ¥_ < ¥ < 94 on the pa.rabohc boundary of Q7. Thus if hy
are the unique solutions to (4.1) with boundary and initial data yu of class CZ(R™+?),
respectively, we have h < h < hy in Qr by the comparison principle. Applying the
estimate (4.2) for hy yields

'h.-t(-’to, t) — ¥£(0,0)] < tmax{||(¥+)tlloo, 1 + E”)"Dzﬂliﬂ:”oo}
4"'¢'”oo

II¢H°°

52z ~ mof?.

=t(1 +en)———
which implies
4% lloo
|h(z0,t) — (0, 0)| < p+ (1 +en)——3—t.
The proposition is proved. a

Using the comparison principle and the fact that the equation is translation invariant,
we have

Corollary 4.3. Let Qr = U x (0,T) and h = h.s be as in Proposition 4.2. If ¢ €
C?(R™*1), then there exists C > 0 depending on ||D2111||°° and ||¢tlco but independent of
0<e<1and0<4d <1 such that

|h(z,t) — h(z,8)] < C|t — 8] forallz € U andt,s € (0,T).

Moreover, if ¥ is only continuous, then the modulus of continuity of h int on U x(0,T)
can be estimated in terms of ||l and the modulus of continuity of ¢ in = and t.

4.2. Regularity at the lateral boundary Sr = 8U x [0, T).
Proposition 4.4. Let h = hes be a smooth function satisfy‘ing

he = AZPh in Qr,

h(z,t) = ¥(z,t) on FQr,
where 9 € C2(R™!). Then for each0 < a < 1, there ezists a constant C > 1 depending
on a, |[¥|loos |D¥llco and ||¥tlloo but independent of € and & such that

|h(z, to) — ¥(zo,t0)| < Clz — o|* _
for all (zo,tg) € BU x (0,T), z € U N By(zo) and & > 0 sufficiently small (depending on
a).
Proof. Let
w(z,t) = h(zo,to) + Clz — zo|* — M(t — to), 7

where (z9,t9) € OU x (0,T),to >0and 0 <a < 1. Thena straightforward (but lengthy)
calculation gives

- 1
wy = DSw > —M + Calz —zo|°-2_1-i-69‘- > -M + Ca—



74

AN EVOLUTION PROBLEM FOR THE SINGULAR INFINITY LAPLACIAN
providedthat0<65m(;f—;g_—27 ifn>lande>0ifn=1and

C > max{1, ;1f¥}.
It is also easy to check that if we choose
M > max{|[llcos 2[¥llc}  and € 2 max{||D¥lloo; 2l ¥lloo}
then w > h on the parabolic boundary of Q7 N (Bi(xo) X (to — 1,t0)). The comparison
principle then implies that
h(z,to) < w(z,to) = Y(zo,t0) + Clz — zo|®

for z € U N Bi(zp). The other half of the estimate claimed follows by considering the
lower barrier (z,t) — h(zo, o) — C|z — Zo|* + M(t — to). Q

Notice that the function w(z,t) = C|z —z9|* — M (t - to) is not a viscosity supersolution
of (1.1) if @ = 1. Therefore, in order to obtain Lipschitz estimates, we have to consider
barriers of different type and, rather surprisingly, remove the Laplacian term from the
equation.

Proposition 4.5. Suppose that h = hs satisfies
hy = A%h in viscosity sense in Qr,
h(x$ t) = ’¢(Z’, t) on apQT-

If ¢ € C*(R™*), then there exzists a constant C > 1 depending on ||¢|co, ||D¥|lec and
l¢lloo but independent of 0 < § < 1 such that

|h(z, to) — ¥(zo,t0)| < Clz — 20

for all (zg,t0) € U x (0,T), z € U N By(xp). Moreover, if 9 is only continuous, then
the modulus of continuity of h on 8U x (0,T) can be estzmated in terms of ||¥||eo and the
modulus of continuity of .

Proof. The outline of the proof is the same as above We suppose first that 1 € C?(R™*1)
and use a barrier of the form

w(z,t) = (2o, to) + M(to — t) + Clz — zo| — K|z — 0|,

where M, C, K > 0. Straightforward computations show that if M > max{2l|%}||co, l|¥tllcc }s
K > M/2, and

C > max{2K + \/m%g,zf + |DYlloc, K + 2[|%loo }

the function w defined above is a viscosity supersolution of (4.1) with e = 0 and w > h
on the parabolic boundary of Q7 N (Bi(xzo) % (to — 1,%)). Thus the comparison principle
implies

| h(z,to) < ¥(zo, to) + Clz — Zo

for £ € U N By(xo). As before, we obtain the full estimate by considering also the lower
barrier (z,t) — ¥(zo,to) — M(to — t) — Clz — zo| + K|z — zo|? with the same choice for
the constants M, C and K. 0

Corollary 4.6. Let Qr = Ux(0,T) and h = hg be as in Proposition 4.5. If{ € C’2(R"+l),
then there exists C > 1 depending on Y|, ||D¥]lcc and ||¥tllco but independent of 0 <
e<1and 0< 4 <1 such that '

|h(z,t) — h(y,t)| < Clz—y|  forallz,y e U andte (0,T).

Moreover, if ¥ is only continuous, then the modulus of continuity of h inz on U x (0,T)
can be estimated in terms of (Y|l and the modulus of continuity of 1 in z and t.



75

PETRI JUUTINEN

Remark 4.7. In the event that the boundary data 9 is independent of the time variable
t, the Lipschitz estimate is much easier to prove. Indeed, one can simply compare h with
the functions (z,t) — ¢(zg) = Cl|z — zo| where C = || D¢}||o0,6u to obtain

|h(z,t) — ¥(z0)| < Clz — zo| for all zo € OU and z € U,
which in turn yields the interior estimate

|h(z,t) — h(y,t)| < Clz - y| for all z,y € U and t € (0, 7).

Remark 4.8. It is not difficult to show that if % : R® — R is bounded and uniformly
continuous, then there exists a unique bounded solution 4 : R™ x [0,7) — R to the Cauchy
problem

h(z,0) = ¢(z) for all z € R™.

The result can be extended to cover the case of linearly bounded (smooth) data (1], [26].
It would be interesting to know if the optimal growth rate that guarantees uniqueness for
(4.3) is O(e“'“"lz) as in the case of the heat equation

(4.3) {h¢ = Axh in the viscosity sense in R"-x (0,T),

5. AN INTERIOR LIPSCHITZ ESTIMATE

In this section, we establish an interior Lipschitz estimate for the solutions of (1.1) using
Bernstein’s method. Such an estimate was first obtained by Wu [29] for smooth solutions
(see also [15]). We follow his ideas and show a similar estimate for the solutions of the
approximating equation (4.1) with constants independent of € and 4, and thereby extend
Wu’s result to all solutions of (1.1).

Proposition 5.1. Let Qr = Ux(0,T), where U C R" is a bounded domain. There ezists a
constant C > 0, independent of 0 < & <1 and 0 < § < 1/2, such that ifh = he 5 € C* (@r)
is a bounded, smooth solution of the approzimating equation (4.1) in Qr, then

llAloo
|Dh(z,t)| < C (1 + dist((x,t),apQT)z)

for all (z,t) € Qr.
Proof. Let us denote
v = (|Dhf? +8%)*/*
and consider the function
w(z, t) = ((z, t)v(z,t) + Ah(z,t)?,

where A > 0 and ( is a smooth, positive function that vanishes on the parabolic boundary
of Qr. Let (zg,to) be a point where w takes its maximum in Qr, and let us first suppose
that this point is not on the parabolic boundary 8,@Qr. Then at that point, since the

matrix (a,f]’-‘s (Dh));; is positive definite, we have
0<w— ) aff (Dhywi; =¢ ('Ut > af}-a(Dh)Uij) +v (Ct > af]'-"(Dh)(,'j)
(5.1) +2\h (ht -3 oy (Dh)hij) -2 a5 (Dh)Gu
— 20" S (Dh)hsh;.
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Notice that that the third term on the right hand side is zero because A is a solution to
(4.1). In order to estimate the first term, we need to derive a differential inequality for v.
To this end, note first that differentia.ting (4.1) with respect to z; leads to the equation

2
hex 7= eAhy + — Z] h,hJ ijk + =5 ; h,‘hjkh,'j - ;Z %: (h,‘hjhij) Zl: (hyha)
Multiplying this with —v‘l and adding from 1 to n yields

v = % Z hihiir + ;1'5 Z hihjhichiji + ‘55 Z hihijhihje — % (Z h‘hih‘j)z '

Since
1 1 1
vy = =3 hahje+ =3 hehige = = > (hihae) D (hihs)
k k k l

we thus have that

-3 i (D = Z (Zh ) - %(;h‘h"h“”)z

i,5=1
(5.2) IR S (X heh)”
‘ 1, k

2
< (1422
v
Using (5.2) and the fact the h is a solution to the approximating equation in (5.1) then
gives
0<¢(1+ s)‘ + v (Ct Za (Dh.)(,]) - 2§:a (DR)¢ v

_ 2 |Dh|?
2)| Dl (e+ AR

In order to estimate the various terms above, we notice that since 0 = w, = (;u+{vi+2Ahh;
at (zo,p), we have

(5.3)

Cvi = —Civ — 2\hh;.

Hence
IDvl _ S _ DG ko 21 o
¢ T =" T ¢ +4ACDC Dh + 4 cvwh'
< %’- (IDC? + (AR)?)
and |
h-D¢)?\ | Dh-D 2
_220' (Dh)CJ'U:"—"( IDC|2 .(.?_.175129_)4_4)"‘(_ z ¢) (E le’;I)
s i(-l—zi)z (ID¢R + (AR)?).

Moreover, using Young’s inequality,
equality

v (6= Y a5 (Dh)Gs) <v (Gl + (1 +ne)| D)

<M+ 2% (1G] + (1 +ne)l D))’
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Thus (5.3) implies

DRz + 62 ¢ (IDCP + (AR) ) +3 Ly

+ 25 (161 + (1 + ne)| D)

< i‘;‘; (I1D¢ + (Ah) ) + g/\vi’

| + 5 (161 + (1 +m)I DY)’
If | Dh(xo,tp)| > 1 and 0 < & < 1/2, then

Dh|? |Dh|? | Dh|?
2)\|Dh)? -—-l——— =2Av? :
[DA (” IDR? +52) Moo+ \*t Dp e
2_1 LY 5 on? g)”
22)\v1+62 €+1+62 > 2\ 5)
Thus in (5.4) we can move the term 2Av2 to the left-hand side, then d1v1de by A and
multiply by ¢2 to obtain

2
20| D2 (H |Dh| )S10(1+e

(5.4)

0
2t < 30 (1Dgf? + ()2 + 355 (6l + (1 +mID3)?,

that is,
(¢0)” < 55 ((UDC + (AR + €2 (16l + (1 + D))

at the point (zo,%p). Now let A = ||h||3}, fix (x,t) € Qr and choose ¢ so that {(z,t) =
and
1

((z, 1), 5pQ1)

max{(|D¢ oo oo} <

Then
|Dh(z, t)| < w(z,t) <w(zo, to) = {(zo, to)v(zo, to) + Ah(zo, to)2

< _’\Q (ID¢113, + A2 l1Al% + 1D*Clloo + licilloo) + A%,

1
<
< Clihlles (1 + dist((z,t),apQT)2)
with a constant C > 1 depending only on n. On the other hand, if | Dh(zp, )| < 1, then
th’(ws t)l < ‘U((D, t) < w(za t) < ‘UJ(Z'Q, tO) = C(z(l, to)’U(Z’o, tO) + Ah(.’l?o, t0)2

<¢lloo V1 + 82 + [Ihllco-

Finally, if it happens that the maximum point (zg, ) of w is on the parabolic boundary
of @7, then

|Dh(z, t)| < v(z,t) < w(z,t) < w(zo, to) = Ah(0, %0)* < [[hlloo,
because ¢ vanishes on 8,Qr. a
Corollary 5.2. Let Qr = U x (0,T), where U C R™ is a bounded domain. There exists
a constant C' > 0 such that if h € C(Qr) i3 a viscosity solution of (1.1) in Qr, then

lAlloo
|Dh(z,t)| < C (1 + dist((z, t),apQT)"’)

for almost every (z,t) € Qr.
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6. THE HARNACK INEQUALITY

In this section, we prove the Harnack inequality for nonnegative viscosity solutions of
(1.1). The proof is based on the ideas of Krylov and Safonov [22] and DiBenedetto [13],
[14]. In fact, the argument below follows closely the proof of the Harnack inequality for
the solutions of the heat equation given in [14].

Theorem 6.1. Let h be a nonnegative viscosity solution of the infinity heat equation (1.1)
in Q C R"*!. Then there exists a constant ¢ > 0 such that whenever (zo,to) € € is such
that By, (xo) X (to — (4r)2,to + (47)?) C Q, we have

inf )h(:l:, to + ,,.2) > ch(zg, to)-

zEB, (z‘o

Proof. Using the change of variables

w;)x—zO, t_’t—to
T 2
and replacing h by h/h(0,0), we may assume that (zo,%o) = (0,0), » =1 and A(0,0) = 1.
For s € (0,1), let Q, = B,(0) x (—s2,0) and

)

1
M, = Sup h(z),  N,= G-
where 8 > 1 is chosen later. Since h is continuous in Q1, the equation M, = N, has a well-
defined largest root sq € [0,1), and there exists (,£) € Q,, such that h(2,£) = (1—s0) .
Next let p = (1 — 80)/2 > 0, and notice that since

Qp(‘i”i) = Bp(i) X (5— pZ,i.) - QH" )
we have
h< h<N i
sup < sup h < Nipgy = o3,
Qo(2.0) Ql_";;n T (1-30)?

We now apply the interior Lipschitz estimate of Corollary 5.2 and conclude that there
exists C > 1 such that for a.e. (z,t) € Q,/4(%,1)

SUPQ,(a.4) P P s0)°
D01 <0 (1+ dist((w,n,apczp(@,ﬂ)) =¢ (1 T Gy )

9.28C
< ——
- (1 - 80)5'*'2

Hence
. 1 9.20C
h(z,t) > h(z,t) — sup |Dh(z,t)|lz — | > - T—I
(2. 20 = owp 1Dl ~ 2 2 = = = et~ &
1 1
>——-———-——=— ‘r

for all z € B,/4(%) such that |z — £| < %_‘-2’-3)52.
In the last step of the proof, we expand the set of positivity by using a comparison
function

¥(z,t) =

MR* ( |z — a“c|5 )2

((t — ) + R?)? 4—(t—f)+R2 .
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where M = 5(—1—:1;;)-,; and R = %%2%. A straightforward computation as in [14], Lemma

13.1 shows that ¥ is a viscosity subsolution of (1.1) in R™ x (£,00); here Lemma 3.2 can
be used to take care of the critical points. Moreover,

h(z,d) > M > TléqJ(x, ) in Bar(2),

h(z,t) > 0=U(z,t) if |z —Z|>2\/R2+(t-1).

Therefore the comparison principle implies that k > ¥ in By(0) x (,4). In particular,
in order to complete the proof, it suffices to show that ¥(z,1) > ¢ > 0 for all z € B;(0).
We leave this task as an exercise to the reader. O

and

7. CHARACTERIZATION OF SUBSOLUTIONS A LA CRANDALL

In the case of the stationary version of (1.1), a large number of estimates for the sub- and
supersolutions can be derived from the fact that these sets of functions are characterized
via a comparison property that involves a special class of solutions, cone functions, see [9],
[4]. This kind of a characterization of subsolutions is known also for the Laplace equation
(12] and the ordinary heat equation [11], [24], and in these cases the set of comparison
functions is formed by using the fundamental solutions of these equations.

In this section, we prove an analogous result for the subsolutions of (1.1). To this end,

let us denote

=12

|2
I'(z,t) = %e' i, t>0,

and recall that I is a viscosity solution to (1.1) in R® x (0,00). We say that a function u
satisfies the parabolic comparison principle with respect to the functions

W(z,t) = Wagso(2,t) = ~T(z — z0,t — o),  (z0,t0) € R*,
in Q ¢ R*! if it holds that whenever Q = B.(2) x (f — r2,{) cC Q and to < { — 12, we
have
sup(u — Wi ty) = sup(u — Wao,z).-
Q 5Q

Note that this is equivalent to the condition
u < Wy +¢ on8,Q implies u < Wy +c¢ in Q,
where ¢ € R is a constant.

Theorem 7.1. An upper semicontinuous function u : Q@ — R is a viscosity subsolution of
(1.1) in Q if and only if u satisfies the parabolic comparison principle with respect to the
functions

W(x,t) = Wao,to (z,t) = —-I'(z — zo,t — to),

where t > tg and g € R"™.

Proof. Since Wy, 4, is a solution of (1.1) in R™ x (¢, 00), the necessity of the comparison
condition follows from Theorem 3.1.

For the converse, suppose that u satisfies the parabolic comparison principle with respect
to all the functions Wy, t,, but u is not a viscosity subsolution of (1.1). Then we may
assume, using Lemma, 3.2 and the translation invariance of the equation, that there exists
@ € C%(R™*1) such that u — ¢ has a local maximum at (0,0),

a = ¢;(0,0), ¢ = Dp(0,0), X = D%p(0,0),
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and

) a>(X9)-4, if g #0,
' a>0 and X =0, ifq=0,
where § = g/|q|. We want show that there exist {p < 0 and zo € R™ such that

5 o .
(1.2) Eon,to(O,O) <a, DWz,4(0,0)=¢q and

D*W,,4,(0,0) > X.

Indeed, if we can find zg, tp such that (7.2) holds, then by Taylor’s theorem it follows that
the origin is the unique maximum point of u — Wy, ¢, over Bs(0) x (—42, 0] for § > 0 small
enough. Thus u fails to satisfy the parabolic comparison principle with respect to the
family Wy, ¢,, and we obtain a contradiction.

By computing the derivatives of Wy, s, we see that (7.2) amounts to finding zq, ¢ such
that

© a> (3+50) oo,

() W) q=-2(-t)32

™ 2
() X < (;I + Zi—-a:o ® :z:o) (—t0)~3/26 0.

We consider separately the cases ¢ =0 and g # 0.
Case 1: ¢ = 0. In this case, condition (II) is clearly satisfied if we choose z¢ = 0, and
then the two remaining conditions can be written as

(7.4) 0< §(~to)3/2 <a;

recall that by Lemma 3.2, we were able to assume that X = 0. Because a > 0 by (7.1),
there exists {9 < 0 so that (7.4) holds.

Case 2: ¢ # 0. Note that (II) implies zg = rq for some r < 0. Let us denote

D PR Yo O .
7-._2( to) e, o= T
Then 7 > 0, o > 0, and (I)-(IIT) can be rewritten as

I a>7(l-o0),

(II) g = —Txo,
iy X<r (I+ 51—-1:081:0) =71(I - oo ® &),
where #p = zo/|zo). We simplify things further by noting that » = —1. Then the
conditions above reduce to
N e>ra+1,
() zo=rq,

) I+rX>o§®q.
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In order to investigate (III), we write a vector p € R™ in the form p = of + ¢+, where
a€Rand §:-g+ =0. Then, forany 0 < e < 1,

I+rX)p-p-0(d®§p-p=0c*(1+1X§-4—0)+ g
+r(20Xq-¢* + Xq*- q‘L)
> a? (1+rXé~é—a+er||X||2)

1
+ (1 + || X| + -g'r) Iqll"’.

(7.5)

We choose first € > 0 so small that
Xq-g+el|X|* <a;
here we used (7.1). Next we choose r < 0 so that

1 1
1+r“X|l+Er>O and X:j-é+e||Xl|2<—;

and then o > 0 so that 1
Xg-g+e| X2 < == < g

note that since X§- ¢+ ¢[|X||> < -1, we can ta.ke o to be positive. By these choices we
have

1+r|X] +ir >0,

and hence I +rX > 0§ ® § by (7.5), i.e., (III) holds. Also by the choice of o, we have
o > 1+ ra, i.e., (I) holds.

Finally, we notice that by choosing r and o we actually chose zo and o as well. First
recall that zg = rq, and thus zg is determined by r and the function . Also, since o and

o are now known and ¢ = — zg:, the point tp < 0 has been determined as well. 0

{ 1+rX§-§—o+er|X||®>0,

Remark 7.2. The main difference between Theorem 7.1 and the corresponding results
for the heat equation is that above the comparison functions are single translates of the
*fundamental solution” I', whereas in the case of the heat equation one has to take linear
combinations of at least n copies of the heat kernel with different poles (see [11], [24] for
details). The same is true also for the elliptic counterparts of these equations, see [12].
Note that if n = 1, then our result slightly improves the one obtained in [11].

The proof of Theorem 7.1 is to a great extent an adaptation of the arguments in [12]
and (11] to our situation. In {11], the authors obtained a similar type of characterization
for the subsolutions of the equation

v(z,t) = (D*v(z,t)Dv(z,t)) - Dv(z,t),
which is another parabolic version of the infinity Laplace equation.
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