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Traveling wave solutions of the Allen-Cahn equations*

BERARFEIFE  _E /~f1  (Hirokazu Ninomiya)
Department of Applied Mathematics and Informatics
Ryukoku University

1 Introduction
The Allen-Cahn equation
(1.1) u = Au - f(u), xeRM, t>0

is one of the most simple and popular parabolic nonlinear equations, because 'this
equation is often appeared in the several fields (see [2]). This is also called the Nagumo
equation for the nerve axon. The typical example of the nonlinear term f is

flu) = (u+1)(u—-1)(u-a).

We are interested in solutions having interfaces that travel upwards in the vertical z
direction with a constant speed ¢. For simplicity, we introduce (z, z) = (21, - - , Zn, 2)
for the spatial coordinates with dimension N = n + 1 > 2. Thus we rewrite the
Allen-Cahn equation for u = u(z, z,t) as

(1.2) U = Uy + Alu — f(u), ze€R" 2€eR, t>0.

Hereafter we use A’ = >°7| 82, If a solution is of the form u(z, z,t) = U(z, z — ct),
‘then (¢, U) is called a traveling wave solution with its profile U and the speed ¢. The
traveling wave solution (c, U) satisfies

w3 {cU +U, +AU = f(U) YzeR"zeR,
1.3

lim U(z,z) =+1 VzeR"

A function W (y) is called cylindrically symmetric if W (x,z) = W(|z|,z) for some
W. For simplicity, we abuse the notation W(z,2) = W(|z|,z). A function W(y) is -
radially symmetric if W (y) = W (|y|) for some W. For radially symmetric functions of -
y = (2,2), 0,. + A = 20p + 0pp. We shall look for cylindrically symmetric traveling
wave solutions.

Set

F(u) = f £(s)ds.

*This is based on the joint works with Chen, Guo, Hamel, Roquejoffre [15] and Tamguch1 [37, 38]
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When F(1) # F(—1), the existence of a traveling wave with asymptotic planar interface
was proved by Fife [22] in dimension n + 1 = 2 (see also [34]). Solutions having
asymptotic conical level sets with any positive aperture angle were constructed by
Ninomiya and Taniguchi [39, 40] in dimension N = n+ 1 = 2 and by Hamel, Monneau,
and Roquejoffre [31] in any dimension N = n + 1 > 2, where the nonlinearities f is
assumed to have exactly three zeros +1, a (Ja| < 1). See also the works of Bonnet and
Hamel (8] and Hamel, Monneau, and Roquejoffre [30] for the “ignition temperature”
type of the combustion problem (i.e., f = 0 in [-1,0] and f > 0 in (0, 1) for some
6 € (-1,1)) in dimension N = n + 1 = 2, and Hamel and Nadirashvili [33] for the
mono-stable case (i.e., f > 0in (~1,1)) and for solutions with general level sets in any
dimension n + 1 > 2. Other related works can be found in [28, 29, 34, 37, 38].

We consider the case F'(1) = 0 called balanced bistable; more precisely,
(A) f=FeCR), F(+l) = 0 < F(s) Vs # £1, F"(£1) > 0.
The one-dimensional stationary wavé ® is the unique solution to
(1.4) ®" = f(®) on R, &(+oc0) =x1, P(0)=a
where « is a constant specified later, see (2.1). Actually
(@ - 2F (@) =0,

then we have

®(¢)
o = /2F (D), fa \/zi;_@ —¢ VEeR

Theorem 1.1 ([15]) Assume (A). For any ¢ > 0, (1.3) admits a cylindrically sym-
metric solution U with the monotonicity property:

(1.5) © U.>0 on R™ and U, <0 on (R"\{0}) xR.

One of the motivation of our study of (1.3) is the De Giorgi conjecture [18] which
asserts that :

when ¢ = 0 and f(U) = U® - U, all z-monotonic solutions of (1.3) are
planar

at least in dimension N = n + 1 < 9. Here planar means that there exist a unit vector
n € R**! and a function ¥ : R — [-1,1] such that U(z,z) = ¥(n - (z,z)) for all
(z,2); in this conjecture, the radial symmetry in z is not assumed. This conjecture
was proven recently by Savin [42] (see also [1, 3, 5, 26]). More general nonlinearities of
type (A) can also be considered in the spirit of [26, 42].

In view of the De Giorgi conjecture, a natural extension is to ask whether planar
solutions are the only solutions to the corresponding parabolic equation

(1.6) Up = Uy, + Alu + u — uS, (r,z) eR"x R, teR
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subject to the monotonicity conditions

(1.7) Erirx u(z, 2,t) = %1, us(z,2,8) >0  V(z,z,t) eR" xR x R.
z (o o]

In the literature, a solution to a parabolic equation that is defined for all t € R is
called an entire solution. Since traveling waves are special entire solutions, Theorem
1.1 clearly provides an example, when IV = n+1 > 2, of an entire solution that satisfies
the monotonicity conditions (1.7) and that is not planar. Thus, for the elliptic equation
(1.3) with ¢ % 0 or for the parabolic equation (1.6) additional conditions are needed
for an entire monotone solution to be planar. See also Lemma 2.3.

The monotonicity property (1.5) and the boundary values of U imply that the
interface can be represented as a graph z = H(|z|) or |z| = R(z) where R is the inverse
of H. We can describe the asymptotic shape of the interface as follows.

Theorem 1.2 Assume (A). Let (c,U) be as in Theorem 1.1 and T be the 0-level set
of U. '

(i) If n > 1, T is asymptotically a paraboloid, i.e.

lz]2 n-—1
im —_—=
200, U(z,2)=0 2z c

(ii) Ifn =1, T is asymptotically a hyperbolic cosine curve, i.e., for some A = A(f) >

0,
lim cosh(2uz) _4 =/ f(1).

200, U{z,2)=0 wz c’

2 Outline of proof

The condition (A) is assumed hereafter. It implies the existence of constants o € (0, 1)
and & € (-1, 0) satisfying

21) f=F">0 on [-1,8U[e,1], F(a)=F(&) < F(s) Vs € (&, q).

In the sequel, @ and & are thus fixed. Also fixed is the wave speed ¢ > 0. Note that
all wells (roots to f(-) = 0) other than =1 lie either in (&, a) or in (o0, ~1) U (1, 00)
where the latter is not our concern at all. The depth (the value of F) of any well in
(—1,1) is higher than F(a) > 0 = F(=1).

For definiteness, we use notation

reR", zeR, y=(z,2)eR™, r=|z|, p=|y|=22+]|z]%
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2.1 Existence of the traveling wave solutions
Set

folw) = f(u) + e/2F@), Filu):= /_ j f.(s)ds.

For any € > 0, f¢ is unbalanced; in particular F.(s) > 0 for all s € (—1, 1], which.
attains its deepest well only at u = —1. It is easy to verify that for any € > 0, ® is
also the profile of a one dimensional traveling wave of speed ¢ to

(2.2) ed' + " = f,() on R.

Furthermore, one assumes that ¢ > 0 is small enough so that f/(£1) > 0 and the
profile of & is then a unique solution to (2.2) up to shift such that ®(+oo) = %1. (cf.

[4]).
Hence, according to [39] when n+1 = 2, and [31] when n+1 > 3, for any given speed
¢ > 0, there exists a cylindrically symmetric traveling wave U® = U¢(z, 2) satisfying

(2.3) cU; + U, + A'U® = f.(U®) on R™,
' U(0,0) =a, Ut(-,+o0)=+1, Ut>0>Uc on R,

where r = |z|. Since |U®| < 1, by a standard elliptic estimate [27], {U®}o<e<1 is @
bounded family in C3(R™*!).. Thus it is a compact family in C2 (R"*!). Along a
sequence € “\, 0, it converges to a cylindrically symmetric solution U to :

(24) cU,+ U, +A'U=f({U), U1, U,202U, on R*, U(0,0) =c.

2.2 The “boundary values”
We shall show that solutions to (2.4) has the right boundary value.

Lemma 2.1 The following holds:
(1) Suppose n = 1. Then any symmetric (about z) solution U to (2.4) satisfies

(2.5) lim U(z,2) =+1VzeR", lim U(zr,z)=-1VzeR.
z=>to00 jz|—o00

(2) Suppose n > 1. Let U be a limit, along a sequence € \, 0, of the cylindrically
symmetric family {U*} of solutions to (2.3). Then U has the boundary value
(2.5).

Step 1. The limit equations.
AsU, 2 0 2> U, and |U| < 1, there exist
ot (z) = lim U(a:,z)' Vz e R, ¢(2) := lim U(z,2) Vz€R.
z—=%00 jz|—o00

Consequently, lim;_,400(|Us| + |Us:|) = 0 and limjg—0c A'U = 0, by the boundedness
of the C3(R™*!) norm of U and the interpolation

1/2 1/2
(2.6) I llosoy < 5l gamyl * ey
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for any cubic domain D with side length > 1. Thus,

Ap* — f(pf) =02 ¢ on R", 0t (0) = a > ¢ (0),
Cr+ e — fp) =0< 9, onR, p(0) <.
To complete the proof, we need show that ¢* = +1 and ¢ = —1.

Step 2. Radially symmetric stationary solutions.
To show the convergence we prepare for the auxiliary solutions for the maximum
principle. For definiteness, in the sequel ¢ € C3(R) is a fixed function satisfying

¢=0 on {-1}U[4,1], (¢>0in (- / {g }ds>o
For each £ > 0, we define v
9e(8) = fo(8) — eC(8) = f(s) + e/2F(s) —e((s) Vs e [~1,1].

For each sufficiently small positive €, notice the following:
(i) both wells 1 of g. are stable, i.e., g.(+1) > 0 = g.(£1);
(ii) all wells of g, in (—1,1) lies in (&, a);
(iii) 1 is the only deepest well of g, on [—1,1}, i.e. [} ge(u)du > 0 for all s € [-1,1).

Using a standard shooting argument (7, 16, 41] one can show the following:
Lemma 2.2 For each sufficiently small positive €, there ezists a unique solution w® to
(2.7 %w,‘, +w§, - gc('w‘) =0> 'wf, in (0,00), wi(0)=0, wf(oo0)=~1.

The solution satisfies w*(0) < 1 = lim,~ o w*(0).
" These solutions will be used as subsolutions to establish the boundary values of U

obtained from a limit process.

Step 3. The 2z — oo limit. ‘

Consider the case where n = 1. Integrating ¢ {pt, — f(¢*)} = 0 over [0,00) and
using ¢} (0) = 0 gives F(p*(00)) = F(¢*(0)). Since ¢+ (0) = ¢, the definition of a in
(2.1) implies that ¢*(o0) € [-1,8]U[e, 1]. As f(¢*(00)) = 0, we can only have either
¢t (o0) = =1 or p*(o0) = 1. The former case cannot happen, since F is a balanced
potential with its deepest well at &1 so that 1) = —1 is the only solution to

Y2z — f(¥) =02 . on [0,00), ¥2(0) =0, ¥(c0) = —1.
Thus ¢*(co0) = 1. Consequently, since ¢} < 0 on [0,0), ¢t = 1.

Next consider the case when n > 1. We write cp"‘(x) as ot (r) where r = |z|.
Suppose ¢+ # 1. Since ] (0) = 0, we must have o < p*(0) < 1. Set 8 := p*(c0).
Then f(B) = 0. Integrating

n—1
or | o+ — so:‘—f(cp*)]~=0
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over r € [0,00), and using ; (0) = 0, we obtain

n-—-1

r

F(5) - Fe*O) = [ = >0
This implies that 8 € (&, a).

Next, consider the solution w* of (2.7). Since lim,\ o w*(0) = 1, there exists g9 > 0
such that w®(0) > ¢*(0). Also, since w®(occ) = —1, there exists Ry > 0 such that
w(Ry) = &. Set

¢ := gmin{w®(0) - ¢*(0), 8-4}>0.

Now, since lim,_,o, U(+, 2) = ¢*(|-|) locally uniformly, there exists zop € R such that
|U(z,2) — ¢*(|z])] < 6 for all |z] < Ry and z > z. Also, by the assumption, along
a sequence € \, 0, U* — U uniformly on any compact subset of R**!. There exists
€ € (0,&0) such that | U(z, 2) — U(z, z) | < 6 for all |z — 29| + |z| < 2Ry. Hence

[US(z,2) — o™ (z]) | €26 if 20 <2< 20+ Ro,|z| < Rp.

We shall compare U¢((0, z) + -) with w®(] - |) on B(Ry) := {y € R™* | |y| < Ro}-
Since lim, .+, U¢(-, 2) = %1 locally uniformly, we can define 2* by -

2 :=min{z€R | U((0,2z) +y) > w(ly|]) Vy€ B(Ro) }.

Upon noting that for every z < zp, U¢(0, z) < U¢(0, 29) < ™ (0) + 26 < w(0), we see
that z2* > Zo._ ‘ .
Let yo € B(Ry) be a point such that

0=U7((0,2") +30) - w(lwa) = _min {U“((0.) +v) - w(w)}.

Since U*(z, 2) is monotonic in z and in |z,
w*([yol) = U*((0, 2") +y0) = U*((0, 20) +50) > ¢™ (Iyol) — 26 > B~ 26 > & = w*(Ro).

It follows that y, is an interior point of B(R,). Consequently, (3,,+A")U((0, z*)+yo) =
(022 + A )w*(|yo]). Also, as w®(|yo|) > @&, we have {(w(|yo|)) = 0. Hence

0 = cUt+ (8.. + AYU® - f.(U®)

> 0+ (0zc + A)w™ — feo (w™) o

(0,2-)+y0

= (azz + Al)wco - g,o('weo) = 0,

¥o
which is impossible. This impossibility shows that p* = 1.

Step 4. Cases for z = ~oc0 and |z| = 0.

By the similar manners, we can show ¢~ = —1 and ¢ = —1. So, we omit the detail
of the proof. ’ .

Finally, the monotonicity property U, > 0 on R**! and U, < 0 for all » = |z| > 0
follows from the strong maximum principle.
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2.3 Planar Waves

In studying the asymptotic behavior of the interface, a limiting procedure leads to the
following, for U = V¥(£,2), £ € R, z € R:

(28) eV, + T, + Ve = f(¥), |¥/<1, ¥,20>2¥ on R?) ¥(0,0)=c.

Lemma 2.3 Assume (A) and ¢ > 0. Then U(€,2) = &(=£), (£,2) € R?, is the only
solution to (2.8). '

This result implies that lim,_,e ||U.(*, 2)||z@n) = 0 and that the interface is asymp-
totically vertical.

2.4 The behavior of the interfaces

In this subsection we give the heuristic understanding of the profile of the level sets
{U(z,z) = a} = {|z|] = R(z)}. It is well-known that the interface (level set) of
solutions of (1.2) evolves, in an appropriate space and time scale, according to the
motion by mean curvature flow; see (2, 11, 19, 21, 35| and references therein. For
a traveling wave solution of (1.3), after shrinking the space by a factor of R(2), the
interface near R™ x {2} is asymptotically, as Z — oo, a circular cylinder §(1) x R where
S(r) represents the sphere in R™ with radius r and center origin. As a hypersurface in
R™*1, S(1) x R has a sum of all principal curvatures equal to n — 1. Thus, when n > 1,
the interface moves, in a certain scaled space-time, with a normal velocity equal to
n— 1. Translating into the original space-time, this motion should represent a constant
vertical velocity ¢ motion. In the moving coordinates, this renders to the approximation
“equation cR' ~ (n — 1)/R, from which the asymptotic behavior cR(z)?/2 ~ (n — 1)z
for the interface follows.

In the two dimensional case (n = 1), the scaled interface is asymptotically two lines
{£1} x R, for which the curvature effect is negligible. To discover the dynamics, we
compare (1.2) with its one space dimensional version u; = e?uge— f(u) (€ = 1/R(2),£ =
z/R(2)). It has been discovered more than a decade ago by Carr and Pego [10],
Fusco [24], and Fusco and Hale [25] that for well-developed initial profile in a bounded
domain with Neumann or periodic boundary conditions, the speed that two interfaces of
distance d approach each other is of order e=2#4/¢, Such a result was recently extended
with simplified proofs by Chen [13] to arbitrary initial data and on the whole real line
(see also Ei [20]). In particular, if initially there are two interfaces of distance d, the
velocity that the two interfaces approach each other is Ae=244/=+o(1) gfter an initiation
which processes an arbitrary initial data into a special wave profile. The time needed for
such an initiation is significantly short in comparing to the exponentially slow motion
of the interface. If this size of normal velocity should produce a vertical velocity ¢
motion, the shape of interface for solutions of (1.3) should be asymptotically governed
by the equation cR' = Ae 2R, resulting a hyperbolic cosine curve, as describes in
Theorem 1.2. ‘

From another point of view, formally, for large z we have c R" = —2uAde~*RR' =
o(1)R/, so the U,, term in (1.3) can be expected to be dropped without causing any
significant change (for large z). Then (1.3) becomes cU, + U,z = f(U). A change of
variables s = z/c gives U, + Uzz = f(U),(s,x) € R%. A recent result of Chen, Guo,
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and Ninomiya [14] shows that there is a unique (up to a translation) entire solution
having two interfaces located asymptotically on the hyperbolic cosine curve described
in Theorem 1.2.

Thus, Theorem 1.2 verifies the following speculation: when n > 1, the pure curva-
ture effect contributes to the motion of the interface; when n = 1, the curvature effect
is insignificant and it is the interaction of the two branches of the interface.
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