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In [2] Ohtsuka studied on a crystal growth of spirak and proposed us to use a level set

method. Since the conventional level set method (see [1]) could not express spiral curves
$hav\dot{i}g$ the orientation, he modif’yed the conventional method by using a sheet structure

function.

Let $\Omega$ be a bounded domain of $\bm{R}^{2}$ with the smooth boundary and let $B_{\rho_{j}}(a_{j})$ be $N$

screw dislocations in $\Omega$, which are disk8 small enough with $a_{j}\in\Omega$ and $\rho_{j}>0$ so that
$\overline{B_{\rho_{j}}(a_{j})}\subset\Omega$ and $B_{\rho_{j}}(a_{j})\cap B_{\rho_{k}}(a_{k})=\emptyset$ if $j\neq k$ . We denote

$W= \Omega\backslash (\bigcup_{j=1}^{N}\overline{B_{\rho_{j}}(a_{j})})$ .

The level set equation for his spiral crystal growth on $W$ is

(1) $u_{t}-| \nabla(u-\theta)|\{div\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}+0\}\approx 0$ in $W$,

with the boundary condition of Neumaan type

(2) $\langle\nu, \nabla(u-\theta)\rangle=0$ on $\partial W$.

Here $C$ is a constant, $\nu$ is the unit normal vector of $\partial W$ and $\theta(x)=\sum_{j=1}^{N}m_{j}\arg(x-a_{j})$

for $m_{j}\in \mathbb{Z}\backslash \{0\}$ . We note that $\theta(x)$ is a multi-valued function, but $\nabla\theta$ is single-valued.

When $\Gamma_{t}$ is the $8piral$ curve, it must be defined

$\Gamma_{t}=$ {$x\in\pi:u(t,x)-\theta(x)\equiv 0$ mod $2\pi mZ$}.

Here $m$ is the greatest common divisor of $|m_{j}|$ . Ohtsuka proved the following results.
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COMPARISON THEOREM. Let $u$ and $v$ be a viscosity $su$bsolution and a supersolution of (1)

and (2), respectively. If $u^{*}(0, \cdot)\leq v_{*}(0, \cdot)$ , then we have $u^{*}(t,x)\leq v_{*}(t,x)$ for any $t>0$ .

EXISTENCE THEOREM. For any given $u_{0}\in C(\overline{W})$ there exists a unique global-in-time

viscosity solution $u\in C([O, \infty)x\overline{W})$ of (1) and (2) with initial data $u(0, \cdot)=u_{0}$ .

This note is a short remark for the Ohtsuka’s theory, that is, we would like to consider
the uniqueness of $\Gamma_{t}$ . It means that, for a given initial spiral $\Gamma_{0}$ , we choose $u0$ an initial

function satisfying

$\Gamma_{0}=$ { $x\in\overline{W}$ : $u_{0}(x)-\theta(x)\equiv 0$ mod $2\pi m\mathbb{Z}$},

the Existence Theorem says that there exists a unique solution $u$ , but we can choose $v_{0}$

an another initial function satisfying

$\Gamma_{0}=$ { $x\in\overline{W}:v_{0}(x)arrow\theta(x)\equiv 0$ mod $2\pi mZ$}

and we get a unique solution $v$ . Our question is

{ $x\in\overline{W}$ : $u(t,x)-\theta(x)\equiv 0$ mod $2\pi m\mathbb{Z}$}

and

{ $x\in$ Vi7: $v(t,x)-\theta(x)\equiv 0$ mod $2\pi mZ$}

are tracing the same spiral curve?

The paper [1] solved this uniquenes8 problem for the case of closed curves. The

key step is to construct the order changing function satisfying $u_{0}(x)\leq G(v_{Q}(x))$ , when,

generally, $u_{0}$ and $v_{0}$ are not maked order each other. Since $G$ is nondecreasing, if $v(t,x)$

is a viscosity supersolution, then $G(v(t, x))$ is also a viscosity supersolution. By using the

Comparison Theorem we see that $u(t,x)\leq G(v(t,x))$ , which leads us to compair the level

sets of $u$ and $v$ .
We try to extend this key idea to the spiral case. Applying the Ohtsuka’s method in

[2] we first introduce the covering space of $T$ like

$\mathfrak{X}=\{(x,\xi)\in\overline{W}xR^{N}$ : $\xi=(\xi_{1}, \cdots,\xi_{N}),$ $(c os\xi_{j},\sin\xi_{j})\underline{\perp}\frac{x-a_{j}}{|x-a_{j}|}\}$
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and assume that

$\{(x,\xi)\in X:u_{0}(x)-\sum_{j=1}^{N}m_{j}\xi_{j}>0\}=\{(x,\xi)\in X:v_{0}(x)-\sum_{j=1}^{N}m_{j}\xi_{j}>0\}$ .

We construct an order changing function $G$ with

$u_{0}(x)- \sum_{j=1}^{N}m_{j}\xi_{j}\leq G(v_{0}(x)-\sum_{j=1}^{N}m_{j}\xi_{j})$ for $(x,\xi)\in X$.

The important properties for $G$ are nondecreasing and satisfying the periodical condition
$(\#)G(\epsilon)=G(s+2\pi m_{j})-2\pi m_{j}$ . BasicaUy, $G$ is modified from

$G_{1}( \epsilon)=\sup\{\cdot(\tilde{u}_{0}(y,\eta))_{+} : (y,\eta)\in X,\tilde{v}_{0}(y,\eta)\leq s\}$ .

Here $\tilde{u}_{0}(y, \eta)=u_{0}(y)-\sum_{j=1}^{N}m_{j}\eta_{j},\tilde{v}_{0}(y,\eta)=v_{0}(y)-\sum_{j=1}^{N}m_{j}\eta_{j}$ and $(a)_{+}=R\{a,0\}$ .
Finally, we obtain

INVARIANCE LEMMA. Le$tv$ be a Viscosity supersolution with initial data $v(0, \cdot)=v_{0}$ an$d$

define

(3) $w(t,x)=G(v(t,x)-\theta(x))+\theta(x)$

in the sence ofsome meaning in the covering space (becase $\theta(x)$ is $m$ulti-val$ued$). Then we
have $w$ is a viscosity supersolution with $w(0, \cdot)=w_{0}$ .

The meaning of the definitiqn (3) is the $fon_{0}wing$: We denote that

$\mathfrak{L}=U_{\iota}^{\mathfrak{L}_{j}}j=N$ $\mathfrak{L}_{j}=\{x\in\overline{W}$ : $\frac{x-a_{j}}{|x-a_{j}\{}=(-1,0)\}$

and $\Theta_{j}(x)=Arg(x-a_{j})$ is the principal value of the argument which is a function from

$\overline{W}\backslash \mathfrak{L}_{j}$ to $(-\pi, \pi)$ . Then, $\Theta(x)=\sum_{j=1}^{N}m_{j}\Theta_{j}(x)$ is a single-valued function with a jump

discontinuity on $\mathfrak{L}$. However, since $G$ is periodic like $(\#)$ , we see that

$g(x)=\{\begin{array}{ll}G(f(x)-\Theta(x))+\Theta(x) if x\in\overline{W}\backslash \mathfrak{L},\lim_{\mathfrak{L}\not\supset\nuarrow x}\{G(f(y)-\Theta(y))+\Theta(y)\} if x\in \mathfrak{L}\end{array}$
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is continuous on $\mathfrak{L}$ .
We must discuss here about the constraction of an initial $f\iota ictionu_{0}$ for a given $\Gamma_{0}$ ,

which gives us the existence result on the growth of $\Gamma_{t}$ . The auther hopes it will be stated
in a forthcoming paper.

This research was started by Maki Nakagawa as the master’8 thesis [3] in a simple
case, which is supervised by the author. After that, Takeshi Ohtsuka and the author have
revised and completed it.
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