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Abstract. Following [I2] we discuss the large time behavior of solutions of
the Cauchy problem for the Hamilton-Jacobi equation $u_{t}+H(x, Du)=0$ in
$R^{n}x(0, \infty)$ , where $H(x,p)$ is continuous on $R^{n}xR^{n}$ and strictly convex in
$p$. We present a general convergence result for viscosity solutions $u(x, t)$ of the
Cauchy problem as $tarrow\infty$ .
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1. Introduction
In the laet decade, there has been much interoet on the aeymptotic behavior of

viscosity solutions of the Cauiy problem for Hamilton-Jacobi equations or viscou8
Hamilton-Jacobi equations. Namah $\bm{t}d$ Roquejoffre [NR] $\bm{t}d$ Fathi [F2] were the first
those who aetablished fairly general convergence raeults for the Hamilton-Jacobi equa-
tion $u_{t}(x, t)+H(x, Du(x,t))=0$ on acompact manifold $M$ with smooth strictly convex
Haniltonit H. The approai by Fathi to this large time asymptotic problem is based
on weak KAM thmry [Fl, F3, FS1] which is concerned with the $Hamiltonarrow Jacobi$ equa-
tion as $weU$ as with the Lagrangian or Hamiltonian dynamical structures behind it.
Barles $\bm{t}d$ Sougtidis [BS1, BS2] took another approach, based on PDE techniques, to
the same asymptot$ic$ problem. The weak KAM approach due to Fathi to the aeymP-
totic problem has been developed and further improved by Roquejoffre [R] and $Dav\dot{i}$i-
Siconolfi [DS]. It should be remarked here that the same kind of aeymptotic $beha\dot{w}or$ of
$so1_{11}tions$ of Hamilton-Jacobi equations has already been studied$\cdot$ by Kruzkov [K], P.-L.
Lions [L], $\bm{t}d$ Barles [B1].

In this review we are concerned with the Cauchy problem for the Hamilton-Jacobi
equation

$u_{t}+H(x, Du)=0$ in $R^{n}x(0, \infty)$ , (1.1)
$u(\cdot, 0)=u_{0}$ , (1.2)
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where $H$ is a scalar function on $R^{n}\cross R^{n},$ $u=u(x, t)$ is the unknown scalar function
on $R^{n}\cross[0, \infty$ ), and $u_{0}$ is a given function on $R^{n}$ .

The function $H(x,p)$ is assumed here to be convex in $p$ , and we call $H$ the Hamil-
tonian and then the function $L$ , defined by $L(x, \xi)=\sup_{p\in R^{n}}(\xi\cdot p-H(x,p))$ , the
Lagrangian.

We are also concerned with the additive eigenvalue problem:

$H(x, Dv)=c$ in $R^{n}$ , (1.3)

where the unknown is a pair $(c, v)\in R\cross C(R^{n})$ for which $v$ is a viscosity solution of
(1.3). This problem is also called the ergodic control problem due to the fact that PDE
(1.3) appears as the dynamic programming equation in ergodic control of deterministic
optimal control. We remark that the additive eigenvalue problem (1.3) appears as well
in the homogenization of Hamilton-Jacobi equations. See for this [LPV].

For notational simplicity, given $\phi\in C^{1}(R^{n})$ , we will write $H[\phi](x)$ for $H(x, D\phi(x))$

or $H[\phi]$ for the function: $xrightarrow H(x, D\phi(x))$ on $R^{n}$ . For instance, (1.3) may be written
as $H[v]=c$ in $R^{n}$ . Also, we denote by $S_{H}^{+}$ (resp., $S_{H}^{-}$ , and $S_{H}$ ) the space of all viscosity
supersolutions (resp., subsolutions, and solutions) $u$ of $H[u]=0$ in $R^{n}$ .

The paper is organized as follows: in Section 2 we state our assumptions on $H$ and
then the main result in [I2] (Theorem 1 below). In Section 3 we present an outline of the
proof of Theorem 1. In Section 4 we discuss basic properties of Aubry sets. In Section
5 we give examples of $H$ to which Theorem 1 applies, an example and two propositions
related to equilibrium points in Aubry sets, and an example for which the desirable
asymptotic behavior does not hold.

2. Main results
We make throughout the following assumptions on the Hamiltonian $H$.

(A1) $H\in C(R^{n}\cross R^{n})$ .
(A2) $H$ is coercive, that is, for any $R>0$ ,

$\lim_{rarrow\infty}\inf\{H(x,p)|x\in B(0, R), p\in R^{n}\backslash B(0, r)\}=\infty$.

(A3) For any. $x\in R^{n}$ , the function: $prightarrow H(x,p)$ is strictly convex in $R^{n}$ .
(A4) There are functions $\phi_{i}\in C^{0+1}(R^{n})$ and $\sigma_{i}\in C(R^{n})$ , with $i=0,1$ , such that for

$i=0,1$ ,
$H(x, D\phi_{i}(x))\leq-\sigma_{i}(x)$ almost every $x\in R^{n}$ ,
$\lim_{|x|arrow\infty}\sigma_{i}(x)=\infty$ , $\lim_{|x|arrow\infty}(\phi_{0}-\phi_{1})(x)=\infty$ .

By adding a constant to the function $\phi_{0}$ , we assume henceforth that

$\phi_{0}(x)\geq\phi_{1}(x)$ for $x\in R^{n}$ .
We introduce the classes $\Phi_{0}$ and $\Psi_{0}$ of functions defined, respectively, by

$\Phi_{0}=\{u\in C(R^{n})|\inf_{R^{n}}(u-\phi_{0})>-\infty\}$ ,

$\Psi_{0}=$ {$u\in C([0,$ $\infty)xR^{n})|\inf_{(x,t)\in R^{n}x[0,T]}(u(x,$ $t)-\phi_{0}(x))>-\infty$ for any $T>0$}.
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We call a function $m:[0, \infty$ ) $arrow[0, \infty$ ) a modulus if it is continuous and nondecreas-
ing on $[0, \infty$) and satisfies $m(O)=0$. The space of all absolutely continuous functions
$\gamma$ : $[S, T]arrow R^{n}$ will be denoted by $AC([S, T], R^{n})$ . For $x,$ $y\in R^{n}$ and $t>0,$ $C(x, t)$

(resp., $C(x,$ $t;y,$ $0)$ ) will denote the spaces of all curves $\gamma\in AC([0, t], R^{n})$ satisfying
$\gamma(t)=x$ (resp., $\gamma(t)=x$ and $\gamma(0)=y$). For any interval $I\subset R$ and $\gamma$ : $Iarrow R^{n}$ , we
call $\gamma$ a curve if it is absolutely continuous on any compact subinterval of $I$ .

We have established the following theorem in [I2].

Theorem 1. (a) Let $u_{0}\in\Phi_{0}$ and assume that $(A1)-(A4)$ hold. Then there is a unique
viscosity solution $u\in\Psi_{0}$ of (1.1) and $(1.2)and$ the function $u$ is represented as

$u(x, t)= \inf\{\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds+u_{0}(\gamma(0))|\gamma\in C(x, t)\}$ (2.1)

for $(x,t)\in R^{n}x(0, \infty)$ .
(b) There is a solution $(c, v)\in Rx\Phi_{0}$ of (1.3). Moreover the constant $c$ is unique

in the sense that if $(d,w)\in R\cross\Phi_{0}$ is another solution of (1.3), then $d=c$.
(c) Let $u\in\Psi_{0}$ be the viscosity solution of (1.1) and (1.2). Then there is a solution

$(c, v)\in Rx\Phi_{0}$ of (1.3) for which, as $tarrow\infty$ ,

$u(x, t)+ct-v(x)arrow 0$ in $C(R^{n})$ .

Motivated by recent developments due to [BS1, BS2, F2, $R$, DS] conceping the
large time behavior of solutions of $Hamiltonarrow Jacobi$ equations, the $\dot{a}$uthor jointly with
Y. mjita and P. LoretI (see [FILI, FIL2]) has recently investigated the aeymptotic
problem for viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator and
the corresponding Hamilton-Jacobi equations. The above theorem generalizes main
results of [FIL2]. The new feature in [FILI, FIL2, I2] is that we deal with Hamilton-
Jacobi equation (1.1) on $R^{n}x(0, \infty)$ and the domain $R^{n}$ is noncompact while in [BS1,
BS2, F2, $R,$ $DS$] the auhtors studied (1.1) on $\Omega x(0, \infty)$ with $\Omega$ being compact. Barles
and Roquejoffre [BR] have recently studied the large time behavior of solutions of (1.1)
and (1.2) and obtained, among other results, ageneralization of the main result in [NR]
to unbounded solutions. See also [II] for results in the same direction. The laxge time
behavior of solutions of Hanilton-Jacobi equations with boundary conditions has been
studied by [Bl, $R,$ $M$].

We will see in Example 4of Section 5that if $H(x,p)$ does not $satis\theta$ strict convexity
(A3) and is just convex in $p$ , then in general assertion (d) does not hold.

Assertion (b) of the above thmrem determines uniquely aconstrt $c$ , which we will
denote by $c_{H}$ , for which (1.3) hae aviscosity solution in the class $\Phi_{0}$ . The constant $c_{H}$ is
called the additive eigenvalue (or simply eigenvalue) or critical value for the Hamiltonian
H. This definition may suggaet that $c$ depends on the choice of $(\phi_{0}, \phi_{1})$ . Actually, it
depends only on $H$ , but not on the choice of $(\phi_{0}, \phi_{1})$ , as the characterization of $c_{H}$ in
Proposition9below shows. It is clear that if $(c, v)$ is asolution of (1.3), then $(c, v+K)$
is asolution of (1.3) for any $K\in$ R. As is well-known (see [LPV]), the structure
of solutions of (1.3) is, $\ddagger n$ general, much more complicated tht this one-dimensional
structure.
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For any solution $(c, v)\in R\cross\Phi_{0}$ of (1.3), we call the function $v(x)-ct$ an asymptotic
solution of (1.1). It is clear that any asymptotic solution of (1.1) is a viscosity solution
of (1.1) and (1.2). On the other hand, if $u$ is a viscosity solution of (1.1) and (1.2),
$(c, v)\in R\cross\Phi_{0}$ , and, as $tarrow\infty$ , we have

$u(\cdot, t)+ct-varrow 0$ in $C(R^{n})$ ,

then $(c, v)$ is a solution of (1.3) and hence an asymptotic solution of (1.1).
Note that $L(x, \xi)\geq-H(x, 0)$ for all $x\in R^{n}$ and hence $\inf\{L(x,\xi)|(x,\xi)\in$

$B(O, R)xR^{n}\}>-\infty$ for all $R>0$ . Note as well that for any $(x, t)\in R^{n}\cross(0, \infty)$ and
$\gamma\in C(x, t)$ the function: $srightarrow L(\gamma(s),\dot{\gamma}(s))$ is measurable. Therefore it is natural and
standard to set

$\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds=\infty$ ,

with $\gamma\in C(x, t)$ , if the function: $s-\rangle$ $L(\gamma(s),\dot{\gamma}(s))$ on $[0, t]$ is not integrable. In this
sense the integral in formula (2.1) always makes sense.

In order to prove (c) of Theorem 1, we take an approach close to and inspired by the
generalized dynamical approach introduced by Davini and Siconolfi [DS] (see also [R]).
However our approach does not depend on the Aubry set for $H$ and is much simpler
than the generalized dynamical approach by [DS].

In the following we always assume unless otherwise stated that $(A1)-(A4)$ hold.

3. Outline of proof of Theorem 1.
We give here a brief description of the proof of Theorem 1. We begin with a lemma

(see [I2, Proposition 2.4]).

Lemma 2. Let $\Omega$ be an open subset of $R^{n},$ $\phi\in C^{0+1}(\Omega)$ , and $\gamma\in AC([a, b], R^{n})$ ,
where $a,$ $b\in R$ satisfy $a<b$ . Assume that $\gamma([a, b])\subset\Omega$ . Then there is a function
$q\in L^{\infty}(a, b, R^{n})$ such that

$\frac{d}{dt}\phi\circ\gamma(t)=q(t)\cdot\dot{\gamma}(t)$ $a.e$. $t\in(a, b)$ ,
$q(t)\in\partial_{c}\phi(\gamma(t))$ $a.e$ . $t\in(a, b)$ .

Here $\partial_{c}\phi$ denotes the Clarke differential of $\phi$ (see [C]), that is,

$\partial_{c}\phi(x)=\bigcap_{r>0}\overline{co}$ {$D\phi(y)|y\in B(x,$ $r),$ $\phi$ is differentiable at $y$} for $x\in\Omega$ .

Lemma 3 ([I2, $Proposit\ddagger on2.5]$ ). Let $\Omega$ be an open subset of $R^{n}$ and $w\in C(\Omega)a$

viscosity solution $ofH[w]\leq 0$ in $\Omega$ . Let $a,$ $b\in R$ satish $a<b$ and let $\gamma\in AC([a, b])R^{n})$ .
Assume that $\gamma([a, b])\subset\Omega$ . Then

$w( \gamma(b))-w(\gamma(a))\leq\int_{a}^{b}L(\gamma(s),\dot{\gamma}(s))d_{8}$.
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Proof. By Lemma 2, there is a function $q\in L^{\infty}(a, b, R^{n})$ such that

$\frac{d}{ds}w(\gamma(s))=q(s)\cdot\dot{\gamma}(s)$ and $q(s)\in\partial_{c}w(\gamma(s))$ a.e. $s\in(a, b)$ .

Noting that $H(x,p)\leq 0$ for all $p\in\partial_{c}w(x)$ and all $x\in\Omega$ , we calculate that

$w( \gamma(b))-w(\gamma(a))=\int_{a}^{b}\frac{d}{ds}w(\gamma(s))ds=\int_{a}^{b}q(s)\cdot\dot{\gamma}(s)ds$

$\leq$ $ab[L(\gamma(s),\dot{\gamma}(s))+H(\gamma(s), q(s))]ds\leq$ $abL(\gamma(s),\dot{\gamma}(s))ds$ . 口

Proof of (a). A way of proving the existence of a viscosity solution $u\in\Psi_{0}$ of (1.1)
and (1.2) is to show that the function $u$ on $R^{n}x(0, \infty)$ given by

$u(x, t)= \inf\{\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds+u_{0}(\gamma(0))|\gamma\in C(x, t)\}$ (3.1)

is a viscosity solution of (1.1) by using the dynamic programming principle.
In the proof of (a), $u$ denotes always the function given by (3.1).

Lemma 4. There exists a constant $C_{0}>0$ such that

$u(x, t)\geq\phi_{0}(x)-C_{0}(1+t)$ for all $(x, t)\in R^{n}x[0, \infty)$ .

Proof. We choose $C_{0}>0$ so that $u_{0}(x)\geq\phi_{0}(x)-C_{0}$ and $H(x, D\phi_{0}(x))\leq C_{0}$ a.e.
$x\in R^{n}$ . Fix any $(x, t)\in R^{n}x(0, \infty)$ . For each $\epsilon>0$ there is a curve $\gamma\in C(x,t)$ such
that

$u(x, t)+ \epsilon>\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds+u_{0}(\gamma(0))$ .
By Lemma 3, we have

$\phi_{0}(\gamma(t))-\phi_{0}(\gamma(0))\leq\int_{0}^{t}[L(\gamma(s),\dot{\gamma}(s))+C_{0}]ds$,

and hence

$u(x, t)+\epsilon>\phi_{0}(\gamma(t))-\phi_{0}(\gamma(0))-C_{0}t+u_{0}(\gamma(0))\geq\phi_{0}(x)-C_{0}(1+t)$ ,

which shows that $u(x,t)\geq\phi_{0}(x)-C_{0}(1+t)$ . ロ

Lemma 5. We have

$u(x, t)\leq u_{0}(x)+L(x, O)t$ for $dl(x, t)\in R^{\mathfrak{n}}x(0, \infty)$ .
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We remark here that, thanks to (A1) and (A2), for each $R>0$ there is an $\epsilon>0$

such that $\sup_{B(0,R)\cross B(0,\epsilon)}L<\infty$ .
Proof. For $\gamma(s):=x$ , we have

$u(x,.t) \leq\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s)).ds+u_{0}(\gamma(0))=u_{0}(x)+L(x,O)t$. 口

Lemma 6. For each $R>0$ there eaeists a modulus $m_{R}$ such that

$u(x, t)\geq u_{0}(x)-m_{R}(t)$ for all $(x, t)\in B(O, R)x[0, \infty)$ .

Proof. Let $C_{0}>0$ be as in the proof of Lemma 4. We choose $C_{1}>0$ so that
$H(x, D\phi_{1}(x))\leq C_{1}$ a.e. $x\in R^{n}$ . Fix $R>0,$ $(x, t)\in B(O, R)x(0,1)$ , and $\epsilon\in(0,1)$ .
There is a curve $\gamma\in C(x,t)$ such that

$u(x, t)+ \epsilon>\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds+u_{0}(\gamma(0))$ . (3.2)

By the dynamic programming principle, for any $\tau\in[0,t]$ , we have

$u(x, t)+\epsilon>l^{t}L(\gamma(s),\dot{\gamma}(s))ds+u(\gamma(\tau), \tau)$ .

Fix $\tau\in[0, t]$ . Using Lemm\"as 3 and 4, we get

$u(x, t)+1>\phi_{1}(\gamma(t))-\phi_{1}(\gamma(\tau))-C_{1}(t-\tau)+u(\gamma(\tau), \tau)$

$\geq\phi_{1}(x)-\phi_{1}(\gamma(\tau))-C_{1}(t-\tau)+\phi_{0}(\gamma(\tau))-C_{0}(\tau+1)$ .

Consequently, using Lemma 5, we have

$\phi_{0}(\gamma(\tau))-\phi_{1}(\gamma(\tau))<u_{0}(x)+|L(x, 0)|+1-\phi_{1}(x)+C_{1}+2C0$ .

From this we see that there is a $C_{R}>0$ depending only on $R,$ $C_{0},$ $C_{1},$ $\phi 0,$ $\phi_{1},$ $u0$ , and
$L(\cdot, 0)$ such that $|\gamma(\tau)|\leq C_{R}$ for all $\tau\in[0, t]$ .

There is an $A_{\epsilon}>0$ , depending only on $\epsilon,$ $u_{0}$ , and $C_{R}$ , such that

$|u_{0}(y)-u_{0}(z)|\leq\epsilon+A_{\epsilon}|y-z|$ for all $y,$ $z\in B(O, C_{R})$ .

Observe by (A1) that for any $r>0$ ,

$\lim_{|\xiarrow\infty x\in}\inf_{B0r)},\frac{L(x,\xi)}{|\xi|}=\infty$ .

Hence there is a $B_{\epsilon}>0$ , depending only on $C_{R},$ $A_{\epsilon}$ , and $L$ , such that $L(x,\xi)\geq A_{e}|\xi|-B_{e}$

for all $(x,\xi)\in B(O, C_{R})xR^{n}$ .
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Ftirom (3.2), we get

$u(x, t)>- \epsilon+\int_{0}^{t}(A_{\epsilon}|\xi(s)|-B_{e})ds+u_{0}(x)-\epsilon-A_{\epsilon}|\gamma(0)-x|\geq-2\epsilon-B_{\epsilon}t$ ,

from which we conclude that for any $R>0$ we have $u(x, t)\geq u_{0}(x)-m_{R}(t)$ for all
$(x,t)\in B(0, R)\cross[0, \infty)$ and for some modulus $m_{R}$ . ロ

By the dynamic programming principle, we infer (see [I2, Appendix] for the details)
that $u$ is a viscosity solution of (1.1) in the sense that its upper (resp., lower) semi-
continuous envelope $u^{*}$ (resp., $u_{*}$ ) is a viscosity subsolution (resp., supersolution) of
(1.1).

Setting $u(x,0)=u_{0}(x)$ for $x\in R^{n}$ , we extend the domain of definition of $u$ to
$R^{n}\cross[0, \infty)$ . The resulting $u$ is continuous at every point $(x, 0)$ with $x\in R^{n}$ .

We have the following comparison theorem for solutions of (1.1) and (1.2).

Theorem 7. Let $T\in(O, \infty)$ and $\Omega$ be an open subset of $R^{n}$ . Let $u,$ $v:\overline{\Omega}\cross[0,T$) $arrow$

R. Assume that $u,$ $-v$ are upper semicontinuous on ri $x[0, T$) and that $u$ and $v$ are,
respectively, a viscosity subsolution and a viscosity supersolution of

$u_{t}+H(x, Du)=0$ in $\Omega\cross(0,T)$ . (3.3)

Moreover, assume that

$\lim_{rarrow\infty}\inf${$v(x,$ $t)-\phi_{1}(x)$ I $(x,$ $t)\in(\Omega\backslash B(O,r))\cross[0,$ $T)$ } $=\infty$ , (3.4)

and that $u\leq v$ on $(\Omega x\{0\})\cup(\partial\Omega x[0, T))$ . Then $u\leq v$ in Xi $x[0,T$).

Proof. We choose a $C>0$ so that

$H(x,D\phi_{1}(x))\leq C$ a.e. $x\in R^{n}$ ,

and define the function $w\in C(R^{n}xR)$ by $w(x, t):=\phi_{1}(x)-Ct$ . Observe that
$w_{t}+H(x, Dw(x,t))\leq 0$ a.e. $(x, t)\in R^{n+1}$ .

We need only to show that for all $(x,t)\in\overline{\Omega}$ and all $A>0$ ,

$\min\{u(x, t), w(x, t)+A\}\leq v(x, t)$ . (3.5)

Fix any $A>0$ . We set $w_{A}(x, t)=w(x, t)+A$ for $(x,t)\in R^{\mathfrak{n}+1}$ . The function $W_{A}$

is a viscosity subsolution of (3.3). By the convexity of $H(x,p)$ in $p$ , the function $\overline{u}$

defined by $\overline{u}(x, t):=\min\{u(x, t), w_{A}(x, t)\}$ is a viscosity subsolution of (3.3). Because
of assumption(3.4), we see that there is a $R>0$ such that $\overline{u}(x, t)\leq v(x,t)$ for all
$(x,t) \in(\prod\backslash B(O, R))x[0,T)$ . We set $\Omega_{R}$ $:=\Omega\cap intB(O, 2R)$ , so that $\overline{u}(x, t)\leq v(x,t)$

for all $x\in\partial\Omega_{R}x[0, T$). Also, we have $\overline{u}(x, O)\leq u(x, O)\leq v(x, 0)$ for all $x\in\Omega_{R}$ .
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Next we wish to use standard comparison results. However, $H$ does not satisfy the
usual assumptions for comparison. We thus take the sup-convolution of $\overline{u}$ in the variable
$t$ and take advantage of the coercivity of $H$ . That is, for each $\epsilon\in(0,1)$ we set

$u^{\epsilon}(x, t)$ $:= \sup_{\epsilon\in[0,T)}(\overline{u}(x, s)-\frac{(t-s)^{2}}{2\epsilon})$ for all $(x, t)\in\overline{\Omega}_{R}x$ R.

For each $\delta>0$ , there is a $\gamma\in(0, \min\{\delta, T/2\})$ such that $\overline{u}(x, t)-\delta\leq v(x, t)$ for
all $(x, t)\in\overline{\Omega}_{R}x[0, \gamma]$ . As is well-known, there is an $\epsilon\in(0, \delta)$ such that $u^{\epsilon}$ is a
viscosity subsolution of (3.3) in $\Omega_{R}\cross(\gamma, T-\gamma)$ and $u^{\epsilon}(x, t)-2\delta\leq v(x,t)$ for all $(x,t)\in$
$(\overline{\Omega}_{R}\cross[0,\gamma])\cup(\partial\Omega_{R}x[\gamma, T-\gamma])$ . Observe that the family of functions: $trightarrow u^{e}(x,t)$

on $[\gamma, T-\gamma]$ , with $x\in\overline{\Omega}_{R}$ , is equi-Lipschitz continuous, with a Lipschitz bound $C_{\epsilon}>0$ ,
and therefore that for each $t\in[\gamma, T-\gamma]$ , the function $z$ : $xrightarrow u^{\epsilon}(x,t)$ in $\Omega_{R}$ satisfies
$H(x, Dz(x))\leq C_{\epsilon}$ a.e., which implies that the family of functions: $xrightarrow u^{\epsilon}(x, t)$ , with
$t\in[\gamma, T-\gamma]$ , is equi-Lipschitz continuous in $\Omega_{R}$ .

Now, we may apply a standard comparison theorem, to get $u^{\epsilon}(x, t)\leq v(x, t)$ for all
$(x, t)\in\Omega_{R}x[\gamma, T-\gamma]$ , from which we get $\overline{u}(x, t)\leq v(x, t)$ for all $(x, t)\in\overline{\Omega}x[0, T)$ .
This completes the proof. ロ

Using the above comparison theorem, we conclude that $u\in C(R^{n}x[0, \infty))$ and
hence $u\in\Psi_{0}$ . We have thus proved assertion (a). ロ

Proof of (b). In order to show the existence of a solution of (1.3), we let $\lambda>0$ and
consider the problem

$\lambda v_{\lambda}(x)+H(x, Dv_{\lambda}(x))=\lambda\phi_{0}(x)$ in $R^{n}$ . (3.6)

Thanks to the coercivity of $H$, it is not hard to construct a function $\psi_{0}\in C^{1}(R^{n})$

such that
$H(x, D\psi_{0}(x))\geq-C_{0}$ and $\psi_{0}(x)\geq\phi_{0}(x)$ in $R^{n}$

for some constant $C_{0}>0$ . We may assume that $H[\phi_{0}]\leq C_{0}$ in $R^{n}$ in the viscosity
sense.

We define the functions $v_{\lambda}^{\pm}$ on $R^{n}$ by

$v_{\lambda}^{+}(x)=\psi_{0}(x)+\lambda^{-1}C_{0}$ and $v_{\lambda}^{-}(x)=\phi_{0}(x)-\lambda^{-1}C_{0}$ .

It is easily seen that $v_{\lambda}^{+}$ and $v_{\lambda}^{-}$ are viscosity supersolution and a viscosity subsolution
of (3.6). Since $\phi_{0}\leq\psi_{0}$ in $R^{n}$ , we have $v_{\lambda}^{-}(x)<v_{\lambda}^{+}(x)$ for all $x\in R^{n}$ . By the Perron
method, we find a viscosity solution $v_{\lambda}$ of (3.6) such that

$v_{\lambda}^{-}(x)\leq v_{\lambda}(x)\leq v_{\lambda}^{+}(x)$ for all $x\in R^{n}$ . (3.7)

We formally compute that

$\lambda\phi_{0}(x)=\lambda v_{\lambda}(x)+H(x, Dv_{\lambda}(x))\geq\lambda\phi_{0}(x)-C_{0}+H(x, Dv_{\lambda}(x))$,
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and hence $H(x, Dv_{\lambda}(x))\leq C_{0}$ . This together with the coercivity of $H$ yields the local
equi-Llpschitz continuity of the family $\{v_{\lambda}\}_{\lambda>0}$ . As a consequence, the family $\{v_{\lambda}-$

$v_{\lambda}(O)\}_{\lambda>0}\subset C(R^{n})$ is uniformly bounded and equi-Lipschitz continuous on bounded
subsets of $R^{n}$ .

By (3.7), we have $\lambda\phi_{0}(x)-C_{0}\leq\lambda v_{\lambda}(x)\leq\lambda\psi_{0}(x)+C_{0}$ for all $x\in R^{n}$ . In particular,
the set $\{\lambda v_{\lambda}(0)\}_{\lambda\in(0,1)}\subset R$ is bounded. Thus we may choose a sequence $\{\lambda_{j}\}_{j\in N}\subset$

$(0,1)$ such that, as $jarrow\infty$ ,

$\lambda_{j}arrow 0$ , $-\lambda_{j}v_{\lambda_{j}}(0)arrow c$ ,
$v_{\lambda_{f}}-v_{\lambda_{f}}(O)arrow v$ in $C(R^{n})$

for some $c\in R$ and some function $v\in C^{0+1}(R^{n})$ . Since

$|\lambda(v_{\lambda}(x)-v_{\lambda}(0))|\leq\lambda L_{R}|x|$ for all $x\in B(O, R),$ $R>0$

and for some constant $L_{R}>0$ , we find $that-\lambda_{j}v_{\lambda_{j}}arrow c$ in $C(R^{n})$ as $jarrow\infty$ . By the
stability of the viscosity property, we deduce that $(c,v)$ is a solution of (1.3). We need
to show that $v\in\Phi_{0}$ . For this we just refer to [I2].

It remains to prove the uniqueness of the constant $c$ . We have the following com-
parison theorem.

Theorem 8 ([I2, Theorem 3.2]). Let $\Omega$ be an open subset of $R^{n}$ and $\epsilon>0$ . Let
$u,$

$v:\overline{\Omega}arrow R$ be, respectively, an upper semicontinuous viscosity subsolution of $H[u]\leq$

$-\epsilon$ in $\Omega$ and a lower semicontinuous viscosity supersolution of $H[v]\geq 0$ in $\Omega$ . Assume
that $v\in\Phi_{0}$ and $u\leq v$ on $\partial\Omega$ . Then $u\leq v$ on $\Omega$ .

We skip the proof of the above theorem. Using the above theorem, it is easy to
conclude the uniqueness of the constant $c$ . ロ

The following characterization of $c_{H}$ is valid.

Proposition 9. We have: $c_{H}= \inf\{a\in R|S_{H-a}^{-}\neq\emptyset\}$, where $H-a$ denotes the
function: $(x,p)rightarrow H(x,p)-a$.
Proof. We write $c$ temporarily for the right hand side of the above equality. It is
clear that $c\leq c_{H}$ .

To complete the proof, we suppose that $c<c_{H}$ and will get a contradiction. By
(b) of Theorem 1, there is a function $v\in\Phi_{0}\cap S_{H-c_{H}}$ . It is obvious that $v\in S_{H-c}^{+}$ .
Note by the stability of the viscosity property that $S_{H-c}^{-}\neq\emptyset$ . Fix $w\in S_{H-c}^{-}$ . We may
choose a $C>0$ so that the function $u(x)$ $:= \min\{w(x), \phi_{1}(x)+C\}$ is a viscosity solution
of $H[u]\leq c$ in $R^{n}$ . Moreover we may assume by replacing $C$ by a larger constant if
necessary that $u-C\leq v$ in $R^{n}$ . We apply the Perron method to find a $\phi\in S_{H-c}$ , but
this contradicts the uniqueness assertion of (b) of Theorem 1. ロ

Proof of (c). We assume that $c_{H}=0$ in the following proof. Indeed, this condition
can be achieved by replacing $H$ and $L$ by $H-c_{H}$ and $L+c_{H}$ , respectively.
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Let $\{S_{t}\}_{t\geq 0}$ be the semi-group of mappings on $\Phi_{0}$ defined by $Stuo=u(\cdot, t)$ , where
$u\in\Psi_{0}$ is the unique viscosity solution of (1.1) and (1.2).

Let $I\subset R$ be an interval and $\phi\in\Phi_{0}$ a viscosity subsolution of $H[\phi]=0$ in $R^{n}$ . We
denote by $\mathcal{E}(I, \phi)$ the space of all curves $\gamma\in C(I, R^{n})$ such that for any $[a, b]\subset I$ ,

$\gamma\in AC([a, b], R^{n})$ and $\int_{a}^{b}L(\gamma(t),\dot{\gamma}(t))dt\leq\phi(\gamma(b))-\phi(\gamma(a))$ .

Such an element $\gamma\in \mathcal{E}(I, \phi)$ is called an extremal curve.
We need the following lemma.

Lemma 10 ([I2, Corollary 6.2]). Let $x\in R^{n}$ and $\phi\in S_{H}\cap\Phi_{0}$ . Then there exists a
curve $\gamma\in \mathcal{E}((-\infty, 0$], $\phi$) such that $\gamma(0)=x$ .

The following lemma is a variant of [DS, Lemma 5.2].

Lemma 11 ([I2, Proposition 7.1]). Let $K$ be a compact subset of $R^{n}$ . Then there
eat a constant $\delta\in(0,1)$ and a modulus $\omega$ for which if $u_{0}\in\Phi_{0},$ $\phi\in S_{H}^{-},$ $\gamma\in$

$\mathcal{E}([0, T], \phi),$ $\gamma([0, T])\subset K,$ $T>r\geq 0$ and $\frac{\tau}{T-\tau}\leq\delta$, then

$S_{T}u_{0}( \gamma(T))-S_{r}u_{0}(\gamma(0))\leq\phi(\gamma(T))-\phi(\gamma(0))+\frac{\tau T}{T-\tau}w(\frac{\tau}{T-\tau})$ .

We skip here the proof of the above two lemmas.

We fix any $u_{0}\in\Phi_{0}$ and define the functions $u^{\pm}:$ $R^{n}arrow R$ by

$u^{+}(x)= \lim_{tarrow}\sup_{\infty}S_{t}u_{0}(x)$ , $u^{-}(x)=1 i\inf_{tarrow\ovalbox{\tt\small REJECT}\ovalbox{\tt\small REJECT}}S_{t}u_{0}(x)$ .

It is not hard to see that the function $u(x, t)$ $:=S_{t}u_{0}(x)$ is bounded and uniformly
continuous on $B(O, R)\cross[0, \infty)$ for any $R>0$ , the proof of which we refer to [I2,
Lemmas 5.1, 5.6, and 5.7]. From this, we see that $u^{\pm}\in C(R^{n})$ and that $u^{+}(x)=$

$\lim\sup_{tarrow\infty}^{*}u(x, t)$ and $u^{-}(x)= \lim\inf_{*tarrow\infty}u(x, t)$ for all $x\in R^{n}$ . As is standard in
viscosity solutions theory, we have $u^{+}\in S_{H}^{-}$ and $u^{-}\in S_{H}^{+}$ . Moreover, by the convexity
$ofH(x, \cdot)$ , we have $u^{-}\in S_{H}^{-}$ (and hence $u^{-}\in S_{H}$ ). Also, we have $u^{\pm}\in\Phi_{0}$ (see [I2,
Lemma 5.1]).

To conclude the proof, it is enough to show that $u^{+}(x)=u^{-}(x)$ for all $x\in R^{n}$ .
We fix any $x\in R^{n}$ . By Lemma 10, we find an extremal curve $\gamma\in \mathcal{E}((-\infty, 0$], $u^{-}$ )

such that $\gamma(0)=x$ .
We show that $\gamma((-\infty, 0$]) is bounded in $R^{n}$ . To see this, let $C>0$ be a constant and

set $\psi(x)=\min\{\phi_{1}(x)+C, u^{-}(x)\}$ for $x\in R^{n}$ . We then fix $C$ so that $H(x, D\psi(x))\leq 0$

a.e. $x\in R^{n}$ . Using Lemma 3, we get

$\psi(\gamma(0))-\psi(\gamma(-t))\leq\int_{-t}^{0}L(\gamma(s),\dot{\gamma}(s))ds\leq u^{-}(\gamma(0))-u^{-}(\gamma(-t))$ for 下\sim 1 $t\geq 0$ .
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Hence we have $u^{-}(\gamma(-t))-\psi(\gamma(-t))$ $\leq$ $u^{-}(x)-\psi(x)$ for all $t$ $\geq$ $0$ . Since
$\lim_{|y|arrow\infty}(u^{-}(y)-\psi(y))=\infty$ , we see that $\gamma((-\infty, 0$]) is a bounded subset of $R^{n}$ .

By the definition of $u^{+}$ , we may choose a divergent sequence $\{t_{j}\}\subset(0, \infty)$ such
that $\lim_{jarrow\infty}u(x, t_{j})=u^{+}(x)$ . Since the sequence $\{\gamma(-t_{j})\}$ is bounded in $R^{n}$ , we may
assume by replacing $\{t_{j}\}$ by one of its subsequences if necessary that $\gamma(-t_{j})arrow y$ as
$jarrow\infty$ for some $y\in R^{n}$ .

Fix any $\epsilon>0$ , and choose a $\tau>0$ so that $u^{-}(y)+\epsilon>u(y, \tau)$ . Let $\delta\in(0,1)$ and $\omega$

be those from Lemma 11. Let $j\in N$ be so large that $\tau(t_{j}-\tau)^{-1}\leq\delta$ . We now apply
Lemma 11, to get

$u(x,t_{j})=u( \gamma(0),t_{j})\leq u(\gamma(-t_{j}), \tau)+u^{-}(\gamma(0))-u^{-}(\gamma(-t_{j}))+\frac{\tau t_{j}}{t_{j}-\tau}w(\frac{\tau}{t_{j}-\tau})$ .

Sending $jarrow\infty$ yields

$u^{+}(x)\leq u(y, \tau)+\cdot u^{-}(x)-u^{-}(y)<u^{-}(y)+\epsilon+u^{-}(x)-u^{-}(y)=u^{-}(x)+\epsilon$,

from which we conclude that $u^{+}(x)\leq u^{-}(x)$ . This completes the proof. ロ

4. Aubry sets
Let $c=c_{H}$ . Following [FS2], we introduce the Aubry set for $H[u]=c$. We define

the function $d_{H}\in C(R^{n}xR^{n})$ by

$d_{H}(x,y)= \sup\{v(x)|v\in S_{H-c}^{-}, v(y)=0\}$ (4.1)

and $\mathcal{A}_{H}$ as the set of those $y\in R^{n}$ for which the function $d_{H}(\cdot,y)$ is a viscosity solution
of $H[u]=c$ in $R^{n}$ . We call $\mathcal{A}_{H}$ the Aubry set for $H$ or for $H[u]=c$.

Unless otherwise stated, we henceforth assume as in the proof of (c) of Theorem 1
that $c=0$.

The following proposition describes some of basic properties of $d_{H}$ (see [I2, Section
8]).

Proposition 12. We have:
(a) $d_{H}$ is locally Lipschitz continuous in $R^{n}xR^{n}$ .
(b) $d_{H}(y,y)=0$ for all $y\in R^{n}$ .
(c) $d_{H}(\cdot, y)\in S_{H}^{-}for$ all $y\in R^{n}$ .
(d) $d_{H}(\cdot, y)$ is a viscosity solution of $H=0$ in $R^{n}\backslash \{y\}$ for all $y\in R^{n}$ .
(e) $d_{H}(x, z)\leq d_{H}(x,y)+d_{H}(y, z)$ for all $x,y,$ $z\in R^{n}$ .

We see from (d) of the above proposition that

$y\in R^{n}\backslash A_{H}$ $\Leftrightarrow$ $\exists p\in D_{1}^{-}d_{H}(y, y)$ such that $H(y,p)<0$ , (4.2)

where $D_{1}^{-}d(x,y)$ denotes the subdifferential at $x$ of the function: $xrightarrow d(x,y)$ .
We have the following variational fomula for $d_{H}$ .
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Proposition 13 ([I2, Proposition 8.2]). The following $fo$rmula is valid for all $x,$ $y\in$

$R^{n}$ ;

$d_{H}(x, y)= \inf\{\int_{0}^{t}L(\gamma(s),\dot{\gamma}(s))ds|t>0,$ $\gamma\in C(x, t;y, 0)\}$ . (4.3)

We skip here the proof of the above proposition.

Proposition 14.. We have $y\in R^{n}\backslash \mathcal{A}_{H}$ if and only if there are functions $\phi,$ $\sigma\in C(R^{\mathfrak{n}})$

such that $\sigma\geq 0$ in $R^{n},$ $\sigma(y)>0$ , and $H[\phi]\leq-\sigma$ in $R^{n}$ in the viscosity sense.

Proof. Assume that $y\in R^{n}\backslash \mathcal{A}_{H}$ . Set $u=d_{H}(\cdot,y)$ . In view of (4.2), there is a
function $\psi\in C^{1}(R^{n})s$uch that $u(y)=\psi(y),$ $u(x)>\psi(x)$ for all $x\in R^{n}\backslash \{y\}$ , and
$H(y, D\psi(y))<0$ . We may moreover assume that $\lim_{|x|arrow\infty}(u-\psi)(x)=\infty$ . If we choose
$\epsilon>0$ sufficiently small and set $\phi(x)=\max\{u(x), \psi(x)+\epsilon\}$ for $x\in R^{n}$ , then $\phi\in S_{H}^{-}$

and moreover there is a function $\sigma\in C(R^{n})$ satisfying $\sigma\geq 0$ in $R^{n}$ and $\sigma(y)>0$ such
that $H(x, D\phi(x))\leq-\sigma(x)$ in $R^{n}$ in the viscosity sense.

Next, assume that there are functions $\phi,$ $\sigma\in C(R^{n})$ such that $\sigma\geq 0$ in $R^{n},$ $\sigma(y)>0$ ,
and $H(x, D\phi(x))\leq-\sigma(x)$ in $R^{n}$ in the viscosity sense. We may choose a compact
neighborhood $V$ of $y$ so that $\sigma(x)>0$ in $V$ . By a small perturbation of $\phi$ if necessary,
we may assume that $d_{H}(x, y)>\phi(x)-\phi(y)$ for all $x\in V\backslash \{y\}$ . We need to show that
$y\in R^{n}\backslash \mathcal{A}_{H}$ . For this, we suppose that $y\in \mathcal{A}_{H}$ and will get a contradiction. Let
$\{\phi_{k}\}_{k\in N}\subset C^{1}(R^{n})$ be a sequence converging to $\phi$ in $C(R^{n})$ such that $H(x, D\phi_{k}(x))\leq$

$-\sigma(x)/2$ in $V$ . Let $y_{k}\in V$ be a minimum point of $d_{H}(\cdot, y)-\phi_{k}$ over $V$ . Since $d_{H}(\cdot, y)-\phi$

has a strict minimum at $y$ over $V$ , we deduce that $y_{k}arrow y$ as $karrow\infty$ . Consequently, for
sufficiently large $k$ , we have $H(y_{k}, D\phi(y_{k}))\geq 0$, which is a contradiction. ロ

Proposition 15. The Aubry set $\mathcal{A}_{H}$ is a nonempty compact subset of $R^{\mathfrak{n}}$ .
Proof. By Proposition 14, it is easy to see that $R^{n}\backslash \mathcal{A}_{H}$ is an open subset of $R^{n}$ ,
which says that $\mathcal{A}_{H}$ is aclosed subset of $R^{n}$ .

Since $c_{H}=0$ , by (b) of Theorem 1, there is afunction $\phi\in S_{H}\cap\Phi_{0}$ . Since
$\lim_{|x|arrow\infty}\sigma_{1}(x)=\infty$ , we may choose a $C>$ $0$ so that the function $\psi(x)$ $:=$

$\min\{\phi(x), \phi_{1}(x)+C\}$ is a $v\ddagger scosity$ subsolution of $H[\psi]=0$ in $R^{n}$ . Since $\lim_{|x|arrow\infty}(\phi-$

$\phi_{1})(x)=\infty$ , we see that $H(x, D\psi(x))\leq-\sigma_{1}(x)$ in $R^{n}\backslash B(0, R)$ in the viscosity sense
for some $R>0$ . We choose $r>R$ so that $\sigma_{1}(x)>0$ for $R^{n}\backslash B(0, r)\bm{t}d$ conclude by
Proposition 14 that $\mathcal{A}_{H}\subset B(0, r)$ .

It remains to show that $\mathcal{A}_{H}\neq\emptyset$ . To do so, we suppose that $\mathcal{A}_{H}=\emptyset$ and will get a
contradiction. Let $\psi \bm{t}dr>0$ be as above. $\ln$ view of Proposition 14, there are finite
sequences $\{y_{j}\}_{j=1}^{N}\subset B(0,r)\bm{t}d\{\psi_{j}\}_{j=1}^{N},$ $\{f_{j}\}_{j=1}^{N}\subset C(R^{n})$ such that $f_{j}\geq 0$ in $R^{\mathfrak{n}}$ for
all $j,$ $H[\psi_{j}]\leq-f_{j}$ in $R^{n}$ in the viscosity sense for all $j$ , and $B( O, r)\subset\bigcup_{j=1}^{N}\{x\in R^{n}|$

$f_{j}(x)>0\}$ . Set $u= \frac{1}{N+1}(\psi+\sum_{j=1}^{N}\psi_{j})$ , and observe by the convexity of $H$ that $u$ is

aviscosity solution of $H[u] \leq-\frac{1}{N+1}(\sigma+\sum_{j=1}^{n}f_{j})$ in $R^{n},$ &om which we deduce that

$\square there$
is a $\epsilon>0$ such that $u\in S_{H-\epsilon}^{-}$ . This is acontradiction in view of Proposition 9.
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In the PDE viewpoint, the following uniqueness property features Aubry sets.

Theorem 16. Let $v\in S_{H}^{-}$ and $w\in S_{H}^{+}\cap\Phi_{0}$ . Assume that $v\leq w$ on $\mathcal{A}_{H}$ . Then $v\leq w$

on $R^{n}$ .
Proof. Fix any $\epsilon>0$ . Choose a compact neighborhood $V$ of $\mathcal{A}_{H}$ so that $v(x)\leq$

$w(x)+\epsilon$ for all $x\in V$ . As in the proof of Proposition 9, we may find a $\psi\in C(R^{n})$ and
a $\delta>0$ such that $H[\psi]\leq-\delta$ in $R^{n}\backslash V$ in the viscosity sense and $\psi(x)=\phi_{1}(x)$ for all
$x$ , with $|x|$ sufficiently large. Let $\lambda\in(0,1)$ and set $v_{\lambda}(x)=(1-\lambda)v(x)+\lambda\psi(x)-2\epsilon$ for
$x\in R^{n}$ . Observe that $H[v_{\lambda}]\leq-\lambda\delta$ in $R^{n}\backslash V$ and that for $\lambda\in(0,1)$ sufficiently small,
$v_{\lambda}(x)\leq w(x)$ for all $x\in V$ . We may apply standard comparison results, to get $v_{\lambda}(x)\leq$

$w(x)$ for all $x\in R^{n}\backslash V$ and all $\lambda$ sufficiently small. Hence, for $\lambda\in(0,1)$ sufficiently
small, we have $v_{\lambda}(x)\leq w(x)$ for all $x\in R^{n}$ . Erom this, we obtain $v(x)\leq w(x)$ for all
$x\in R^{n}$ . ロ

The above theorem has the following corollary.

Corollary 17. Let $u\in S_{H}\cap\Phi_{0}$ . Then

$u(x)= \inf\{u(y)+d_{H}(x, y)|y\in \mathcal{A}_{H}\}$ for all $x\in R^{n}$ . (4.4)

5. Examples
We give two sufficient conditions for $H$ to satisfy (A4).

Example 1. Let $H_{0}\in C(R^{n}\cross R^{n})$ and $f\in C(R^{n})$ . Set $H(x,p)=H_{0}(x,p)-f(x)$

for $(x,p)\in R^{n}\cross R^{n}$ . We assume that

$\lim_{|x|arrow\infty}f(x)=\infty$ , (5.1)

and that there exists a $\delta>0$ such that

$sup|H_{0}|<\infty$ . (5.2)
$R^{n}xB(0,\delta)$

Fix such a $\delta>0$ and set $C_{\delta}= \sup_{R^{n}xB(0,\delta)}|H_{0}|$ . Then we define $\phi_{i}\in C^{0+1}(R^{n})$ ,
with $i=0,1$ , by setting $\phi_{0}(x)=-\frac{\delta}{2}|x|$ and $\phi_{1}(x)=-\delta|x|$ , and observe that for $i=0,1$ ,

$H_{0}(x, D\phi_{i}(x))\leq C_{\delta}$ for all $x\in R^{\mathfrak{n}}\backslash \{0\}$ .

Hence, for $i=0,1$ , we have

$H_{0}(x, D \phi_{i}(x))\leq\frac{1}{2}f(x)+C_{\delta}-\frac{1}{2}\min_{R^{n}}f$ for all $x\in R^{n}\backslash \{0\}$ .

If we set
$\sigma_{i}(x)=\frac{1}{2}f(x)-C_{\delta}+\frac{1}{2}\min_{R^{n}}f$ for $x\in R^{n}$ and $i=0,1$ ,
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then $H$ satisfies (A4) with these $\phi_{i}$ and $\sigma_{i},$ $i=0,1$ . It is clear that if $H_{0}$ satisfies
$(A1)-(A3)$ , then so does $H$ .

Example 2. Let $\alpha>0$ and let $H_{0}\in C(R^{n})$ be a strictly convex function satisfying
the superlinear growth condition

$\lim_{|p|arrow\infty}\frac{H_{0}(p)}{|p|}=\infty$ .

Let $f\in C(R^{n})$ . We set

$H(x,p)=\alpha x\cdot p+H_{0}(p)-f(x)$ for $(x,p)\in R^{n}xR^{n}$ .
This class of Hamiltonians $H$ is very close to that treated in [FIL2].

Clearly, this function $H$ satisfles $(A1)-(A3)$ . Let $L_{0}$ denote the convex conjugate
$H_{0}^{*}$ of $H_{0}$ . By the strict convexity of $H_{0}$ , we see that $L_{0}\in C^{1}(R^{n})$ . Define the
function $\psi\in C^{1}(R^{n})$ by $\psi(x)=-\frac{1}{\alpha}L_{0}(-\alpha x)$ . Then we have $D\psi(x)=DL_{0}(-\alpha x)$ and
therefore, by the convex duality, $H_{0}(D\psi(x))=D\psi(x)\cdot(-\alpha x)-L_{0}(-\alpha x)$ for all $x\in R^{n}$ .
Consequently, for all $x\in R^{n}$ , we have

$H(x, D\psi(x))=\alpha x\cdot D\psi(x)+H_{0}(D\psi(x))-f(x)=-L_{0}(-\alpha x)-f(x)$ .
Now we assume that there is a convex function $l\in C(R^{n})$ such that

$\lim_{|xarrow\infty}(l(-\alpha x)+f(x))=\infty$ , (5.3)

$\lim(L_{0}-l)(\xi)=\infty$ . (5.4)
$|\xi|arrow\infty$

Let $h$ denote the convex conjugate of $l$ . We define $\phi\in C^{0+1}(R^{n})$ by $\phi(x)=-\frac{1}{\alpha}l(-\alpha x)$

for $x\in R^{n}$ . This function $\psi$ is almost everywhere differentiable. Let $x\in R^{n}$ be any
point where $\phi$ is differentiable. By a computation similar to the above for $\psi$ , we get

$\alpha x\cdot D\phi(x)+h(D\phi(x))-f(x)\leq-l(-\alpha x)-f(x)$ . (5.5)

By assumption (5.4), there is a $C>0$ such that $L_{0}(\xi)\geq l(\xi)-C$ for all $\xi\in R^{n}$ . This
inequality implies that $H_{0}\leq h+C$ in $R^{n}$ . Hence, from (5.5), we get

$H(x, D\phi(x))\leq-l(-\alpha x)-f(x)+C$ .
We now conclude that the function $H$ satisfies (A4), with the functions $\phi_{0}=\phi,$ $\phi_{1}=\psi$ ,
$\sigma_{0}(x)=l(-\alpha x)+f(x)-C$, and $\sigma_{1}(x)=L(-\alpha x)+f(x)$ .

It is assumed here that $H_{0}$ is strictly convex in $R^{n}$ , while it is only as8umed in [FIL2]
that $H_{0}$ is just convex in $R^{n}$ , so that $L_{0}$ may not be a $C^{1}$ function.

The reason why the strict convexity of $H_{0}$ is not needed in [FIL2] is in the fact that
Hamiltonians $H$ in this class have a simple structure of the Aubry sets. Indeed, if $c$ is
the additive eigenvalue of $H$ , then $\min_{p\in R^{n}}H(x,p)=c$ for all $x\in \mathcal{A}_{H}$ . Given such a
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property of the Aubry set, the proof of (c) of Theorem 1 can be simplified greatly and
does not require the $C^{1}$ regularity of $L_{0}$ (see [FIL2]), while such a regularity is needed
in the proof of Lemma 11 in the general case. Any $x\in \mathcal{A}_{H}$ is called an equilibrium point
if $\min_{p\in R^{n}}H(x,p)=c$ . A characterization of an equilibrium point $x\in A_{H}$ is given by
the condition that $L(x, O)=-c$. The property of Aubry sets $A_{H}$ mentioned above can
be stated that the set $\mathcal{A}_{H}$ comprises only of equilibrium points.

The following example illustrates the fact that Aubry sets may not contain any
equilibrium point.

Example 3. We consider the two-dimensional case. We fix $\alpha,\beta\in R$ so that $0<\alpha<\beta$

and choose a function $g\in C([0, \infty))$ so that $g(r)=0$ for all $r\in[\alpha, \beta],$ $g(r)>0$ for all
$r\in[0, \alpha)\cup(\beta, \infty)$ , and $\lim_{rarrow\infty}g(r)/r^{2}=\infty$ . We define the functions $H_{0},$ $H\in C(R^{4})$

by
$H_{0}(x,p)=(p_{1}-x_{2})^{2}+(p_{2}+x_{1})^{2}-|x|^{2}$ ,
$H(x,p)=H_{0}(x,p)-g(|x|)$ .

It is easily seen that the function $H$ satisfies $(A1)-(A3)$ . Let $\delta>0$ and set $\psi(x)=-\delta|x|^{2}$

for $x\in R^{2}$ . We observe that $D\psi(x)=-2\delta x$ and $H_{0}(x, D\psi(x))=4\delta^{2}|x|^{2}$ for all $x\in R^{2}$ .
Therefore, for any $\delta>0$ , if we set $\phi_{0}(x)=-\delta|x|^{2}$ and $\phi_{1}(x)=-2\delta|x|^{2}$ for $x\in R^{2}$ ,
then (A4) holds with these $\phi_{0}$ and $\phi_{1}$ .

Noting that the zero functionz $=0isaviscositysubsolutionofH[z]=0inR^{2}$ , we
find that the additive eigenvalue $c_{H}$ is nonpositive. We fix any $r\in[\alpha,\beta]$ and consider
the curve $\gamma\in AC([0,2\pi])$ given by $\gamma(t)$ $:=r$ ($\cos t$ , sin $t$). We denote by $U$ the open
annulus int $B(O,\beta)\backslash B(O, \alpha)$ for simplicity of notation. Let $\phi\in C^{0+1}(R^{2})$ be a viscosity
solution of $H[\phi]=c_{H}$ in $R^{n}$ . Such a viscosity volution indeed exists according to (b)
of Theorem 1. Due to Lemma 2, there is a function $q=(q_{1}, q_{2})\in L^{\infty}(O, 2\pi,R^{2})$ such
that for almost all $t\in(O, 2\pi)$ ,

$\frac{d}{dt}\phi(\gamma(t))=r$ ($.-q_{1}(t)$ sin $t+q_{2}(t)$ cos t) and $q(t)\in\partial_{c}\phi(\gamma(t))$ .

The last inclusion guarantees that $H(x(t), q(t))\leq C_{H}$ a.e. $t\in(O, 2\pi)$ . Hence, recalling
that $\alpha\leq r\leq\beta$ , we get

$c_{H}\geq H_{0}(x(t), q(t))=|q(t)|^{2}-2\gamma_{2}(t)q_{1}(t)+2\gamma_{1}(t)q_{2}(t)$ a.e. $t\in(O, 2\pi)$ .

We calculate that for all $T\in[0,2\pi]$ ,

$\phi(\gamma(T))-\phi(\gamma(O))=r\int_{0}^{T}$ ( $-q_{1}(t)$ sin $t+q_{2}(t)$ cos $t$ ) $dt$

$= \int_{0}^{T}(-q_{1}(t)\gamma_{2}(t)+q_{2}(t)\gamma_{1}(t))dt\leq\frac{1}{2}\int_{0}^{T}(c_{H}-|q(t)|^{2})dt\leq\frac{1}{2}c_{H}T$ .

This clearly implies that $c_{H}=0$ and also that the function: $trightarrow\phi(\gamma(t))$ is a constant.
Thus we find that $\phi(x)=h(|x|^{2})$ for some function $h\in C^{0+1}([\alpha, \beta])$ .
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Next, we show that $\phi$ is a constant function in $U$ . For any $r\in(\alpha, \beta)$ and any
$x\in\partial B(O, r)$ , we have $D\phi(x)=2h’(|x|^{2})x$ , and, in particular, $x_{2}\partial\phi/\partial x_{1}-x_{1}\partial\phi/\partial x_{2}=0$ .
Therefore, for almost all $x\in U$ , we have

$0\geq H_{0}(x,D\phi(x))=(\partial\phi/\partial x_{1}-x_{2})^{2}+(\partial\phi/\partial x_{2}+x_{1})^{2}-|x|^{2}=|D\phi|^{2}$ .
That is, we have $D\phi(x)=0$ a.e. $x\in U$ , which assures that $\phi$ is a constant in $U$ .

Now we know that for any $y\in U$ , the function: $xrightarrow d_{H}(x, y)$ is a constant in a
neighborhood of $y$ , which guarantees that $U\subset \mathcal{A}_{H}$ and moreover that $\overline{U}\subset \mathcal{A}_{H}$ . For
the function $z=0$ , we have $H[z]=-g(|x|)$ in $R^{n}$ in the viscosity sense, which shows
that $A_{H}\subset\overline{U}$ and hence $\mathcal{A}_{H}=\overline{U}$ .

Finally, we note that $H(x, (x_{2}, -x_{1}))=H_{0}(x, (x_{2}, -x_{1}))=-|x|^{2}<0$ for all $x\in$ Z7,
and conclude that any $x\in \mathcal{A}_{H}=\overline{U}$ is not an equilibrium points.

The following two.propositions give sufficient conditions for points of the Aubry set
$A_{H}$ to be equilibrium points.

Proposition 18. If $y$ is an isolated point of $\mathcal{A}_{H}$ , then it is an equilibrium point.

Proof. Let $y$ be an isolated point of $\mathcal{A}_{H}$ . Since $d_{H}(\cdot,y)\in S_{H}$ , according to Lemma
10, there exists a curve $\gamma\in \mathcal{E}((-\infty, 0$], $d_{H}(\cdot, y))$ such that $\gamma(0)=y$ .

We show that $\gamma(t)\in A_{H}$ for all $t\leq 0$ , which guarantees that

$\gamma(t)=y$ for all $t\leq 0$ . (5.6)

For this purpose we fix any $z\in R^{n}\backslash \mathcal{A}_{H}$ . By Proposition 14 there are two functions
$\phi\in S_{H}^{-}\cap\Phi_{0}\cdot and$ $\sigma\in C(R^{n})$ such that $H[\phi]\leq-\sigma$ in $R^{n}$ in the viscosity sense, $\sigma\geq 0$

in $R^{n}$ , and $\sigma(z)>0$ . By Lemma 3, for any fixed $t>0$ , we have

$\phi(y)-\phi(\gamma(-t))\leq\int_{-t}^{0}L(\gamma(s),\dot{\gamma}(s))ds-\int_{-t}^{0}\sigma(\gamma(s))ds$

$=d_{H}(y,y)-d_{H}( \gamma(-t),y)-\int_{-t}^{0}\sigma(\gamma(s))ds$ .

Accordingly we have

$\int_{-t}^{0}\sigma(\gamma(s))ds+d_{H}(\gamma(-t),y)\leq\phi(\gamma(-t))-\phi(\gamma(0))\leq d_{H}(\gamma(-t),y)$ .

Hence we get $\int_{-t}^{0}\sigma(\gamma(s))ds\leq 0$ , which implies that $\gamma(s)\neq z$ for all $s\leq 0$ . Thus we
conclude that (5.6) holds.

Now we have

$0=d_{H}(y,y)-d_{H}( \gamma(-1),y)=\int_{-1}^{0}L(\gamma(t),\dot{\gamma}(t))dt=L(y,0)$ ,

which shows that $y$ is an equilibrium point. ロ
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Proposition 19. Assume that there exist8 a viscosity solution $w$ $\in$ $C(R^{n})$ of
$H(x, Dw)= \min_{p\in R^{n}}H(x,p)$ in $R^{n}$ . Then $\mathcal{A}_{H}$ consists only of equilibrium points.

For instance, if $H(x, 0)\leq H(x,p)$ for all $(x,p)\in R^{2n}$ , then $w=0$ satisfies
$H(x, Dw(x))= \min_{p\in R^{n}}H(x,p)$ for all $x\in R^{n}$ in the viscosity sense. If $H$ has the
form $H(x,p)=\alpha x\cdot p+H_{0}(p)-f(x)$ as before, then $H$ attains a minimum as a function
of $p$ at a unique point $q$ satisfying $\alpha x+D^{-}H_{0}(q)\ni 0$ , or equivalently $q=DL_{0}(-\alpha x)$ ,
that is,

$\min_{p\in R^{n}}H(x,p)=\alpha x\cdot q+H_{0}(q)-f(x)$ ,

where $L_{0}$ denotes the convex conjugate $H_{0}^{*}$ of $H_{0}$ Therefore, in this case, the function
$w(x)$ $:=-(1/\alpha)L_{0}(-\alpha x)$ is a viscosity solution of $H[w]= \min_{p\in R^{n}}H(x,p)$ in $R^{n}$ . In
these two cases, the Aubry sets consist only of equilibrium points.
Proof. Let $C_{H}=0$ as usual. We have $\min_{p\in R^{n}}H(x,p)\leq 0$ for all $x\in R^{n}$ . Note that
the function $\sigma(x):=-\min_{p\in R^{n}}H(x,p)$ is continuous on $R^{n}$ and that $w$ is a viscosity
solution of $H[w]=$ -a in $R^{n}$ . Applying Proposition 14, we see that if $y\in R^{n}$ and
$\min_{p\in R^{n}}H(y,p)<0$ , then $y\not\in \mathcal{A}_{H}$ . That is, if $y\in \mathcal{A}_{H}$ , then $\min_{p\in R^{n}}H(y,p)=0$,
which is equivalent that $y$ is an equilibrium point. ロ

The following example shows that one cannot replace the strict convexity (A3) in
(c) of Theorem 1 by the convexity of $H(x,p)$ in $p$ .
Example 4. Consider the Hamiltonian $H\in C(R^{2}xR^{2})$ given by

$H(x,p)=H_{0}(x,p)-||x|-1|$ ,

where $H_{0}(x,p)=\sqrt{(p_{1}-x_{2})^{2}+(p_{2}+x_{1})^{2}}-|x|$ . It is clear that $H$ satisfies (A1) and
(A2). Also, $H$ satisfies (A4) with $\phi_{0}(x)=0$ and $\phi_{1}(x)=-|x|$ . Moreover, $H(x,p)$ is
convex in $p$ on $R^{2}$ . However, it is not strictly convex in $p$, i.e., (A4) does not hold.

It is easily checked that the function $\phi_{0}(x)=0$ is indeed a viscosity subsolution of
$H(x, D\phi_{0}(x))=0$ in $R^{2}$ , which implies that $c_{H}\leq 0$ by Proposition 9.

Let $L$ denote the Lagrangian of $H$ , and we observe that

$L(x, \xi)=L_{0}(x,\xi)+|1-|x||$ ,
$L_{0}(x, \xi):=\sup_{p\in R^{2}}(p\cdot\xi-H_{0}(x,p))=\delta_{B(0,1)}(\xi)+x_{2}\xi_{1}-x_{1}\xi_{2}+|x|$ ,

$L_{0}(x,\xi)\geq\delta_{B(0,1)}(\xi)\geq 0$ ,

where $\delta_{B}$ denotes the indicator function of the set $B$ , i.e., $\delta_{B}(\xi)=0$ for $\xi\in B$ and $=\infty$

for $\xi\in R^{n}\backslash B$ .
Let $\phi\in C(R^{2})$ be a subsolution of $H(x, D\phi(x))\leq c_{H}$ in $R^{2}$ . Consider the curve

$\gamma(t)=$ ($\cos t$ , sin $t$), with $t\in[0,2\pi]$ , and observe that

$0= \phi(\gamma(2\pi))-\phi(\gamma(0))\leq\int_{0}^{2\pi}(L(\gamma(t),\dot{\gamma}(t))+c_{H})dt=2\pi c_{H}$ ,

from which we see that $c_{H}\geq 0$ . We now conclude that $C_{H}=0$ .
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Let $u_{0}\in BUC(R^{n})$ be such that $u_{0}(e_{1})=0$ , where $e_{1}=(1,0)$ , and $u_{0}(x)>0$ for all
$x\in R^{2}\backslash \{e_{1}\}$ , and we consider the Cauchy problem

$u_{t}(x, t)+H(x, Du(x, t))=0$ in $R^{2}\cross(0, \infty)$ and $u(\cdot, 0)=u_{0}$ . (5.7)

The formula (2.1) for the solution $u$ of (5.7) tells us that $u(x, t)\geq 0$ for all $(x, t)\in$

$R^{2}x[0, \infty)$ , and for any $k\in N$ ,

$u(e_{1},2k \pi)\leq\int_{0}^{2k\pi}L(\gamma(t),\dot{\gamma}(t))dt+u_{0}(\gamma(0))=0$,

where $\gamma(t)=$ ( $\cos t$ , sin t) for all $t\geq 0$ . In particular, we have $u(e_{1},2k\pi)=0$ for all
$k\in N$ .

We show that there is a $\epsilon>0$ such that

$u(e_{1}, (2k+1)\pi)\geq\epsilon$ for all $k\in N$ . (5.8)

Indeed, as we will show, (5.8) holds with $\epsilon=\min\{1/8, m/2\}$ , where $m= \min\{u_{0}(x)|$

$x\in K\}$ and $K=\{(x_{1}, x_{2})\in B(0,3/2)|x_{1}\leq 0\}$ .
Let $k\in N$ . We set $\epsilon=\min\{1/8, m/2\}$ and $T=(2k+1)\pi$ . We argue by contradiction

that $u(e_{1}, T)\geq\epsilon$ , and thus suppose that $u(e_{1}, T)<\epsilon$ . We can choose a $\gamma\in C(x,T)$ so
that

$\epsilon>\int_{0}^{T}L(\gamma(t),\dot{\gamma}(t))dt+u_{0}(\gamma(0))$ . (5.9)

Next, noting that $\dot{\gamma}(t)\in B(O, 1)$ and hence $|(d/dt)|\gamma(t)||\leq 1$ a.e. $t\in(0,T)$ , we
compute that for any $t\in[0,T]$ ,

$(| \gamma(t)|-1)^{2}=-2\int^{T}(|\gamma(s)|-1)\frac{d|\gamma(s)|}{ds}ds$ ,

and therefore, by (5.9),

$(| \gamma(t)|-1)^{2}\leq 2\int_{0}^{T}||\gamma(s)|-1|ds<2\epsilon$ .

Hence we have $||\gamma(t)|-1|<(2\epsilon)^{8}\leq 1/2$ for all $t\in[0,T]$ . That is, we have $1/2<$
$|\gamma(t)|<3/2$ for all $t\in[0, T]$ .

We now use the polar coordinates, that is, we choose functions $r,$ $\theta\in AC([0,T])$

so that $\gamma(t)=$ ($r(t)$ cos $\theta(t),r(t)$ sin $\theta(t)$ ) and $r(t)\geq 0$ for all $t\in[0,T]$ and $\theta(T)=0$ .
Such functions $r$ and $\theta$ exist because $\gamma(t)\neq 0$ for all $t\in[0, T]$ . Note that 1 $\dot{\gamma}(t)|^{2}=$

$\dot{r}(t)^{2}+r(t)^{2}\dot{\theta}(t)^{2}\leq 1$ and $L_{0}(\gamma(t),\dot{\gamma}(t))=r(t)(1-r(t)\dot{\theta}(t))$ a.e. $t\in[0, T]$ . Inequality
(5.9) reads

$\epsilon>\int_{0}^{T}[r(t)(1-r(t)\dot{\theta}(t))+|r(t)-1|]dt+u_{0}(\gamma(0))$ .
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IFhrom this, since $r(t)>1/2$ for all $t\in[0, T]$ , we get $\epsilon>\frac{1}{2}\int_{0}^{T}(1-r(t)\dot{\theta}(t))dt$. Note also
that $|\dot{\theta}(t)|\leq 1/r(t)<2$ a.e. $t\in(O,T)$ . Combining these observations, we get

$| \int_{0}^{T}(1-\dot{\theta}(t))dt|\leq|\int_{0}^{T}(1-r(t)\dot{\theta}(t))dt|+|\int_{0}^{T}(r(t)-1)\dot{\theta}(t)dt|$

$<2 \epsilon+\int_{0}^{T}|r(t)-1||\dot{\theta}(t)|dt\leq 2\epsilon+2\int_{0}^{T}|r(t)-1|dt<4\epsilon$ ,

from which we obtain $|T+\theta(0)|<4\epsilon\leq 1/2\leq\pi/2$ . Hence we have $\theta(0)\in[-2k\pi-$

$3\pi/2,$ $-2k\pi-\pi/2$]. Thus we get $\gamma(0)\in K$ and moreover $\epsilon>u_{0}(\gamma(0))\geq m$ , but this
contradicts our choioe of $\epsilon$ . We conclude that (5.8) holds and that the limit, as $tarrow\infty$ ,
of $u(e_{1}, t)$ does not exist.

6. Characterizations of the asymptotic solutions
The function $v$ in assertion (c) of Theorem 1 is characterized as follows.

Theorem 19 ([I2, Theorem 8.1]). Let $v\in C(R^{n})$ be the function ffom (c) of Theo-
rem 1. Then, for any $x\in R^{n}$ ,

$v(x).= \inf\{d_{H}(x,y)+d_{H}(y, z)+u_{0}(z)|y\in A_{H}, z\in R^{n}\}$ . (6.1)

We do not give here the proof of the above theorem.

Theorem 20. Let $u_{0}$ and $v$ be ffom Theorem 1. Assume that $c_{H}=0$ . Then

$v(x)= \inf${ $\phi(x)$ I $\phi\in S_{H},$ $\phi\geq u_{0}^{-}$ in $R^{n}$ } for all $x\in R^{n}$ , (6.2)

where $u_{0}^{-}$ is the function on $R^{n}$ given by

$u_{0}^{-}(x)= \sup$ { $\psi(x)|\psi\in S_{H}^{-},$ $\psi\leq u_{0}$ in $R^{n}$ }.

The formula (6.2) has been obtained in [II, Theorem 2.2] under slightly different
assumptions.
Proof. We write temporarily

$f(x)= \inf\{d_{H}(x,y)+u_{0}(y)|y\in R^{n}\}$ for $x\in R^{n}$ ,
$g(x)= \inf${ $\phi(x)|\phi\in S_{H},$ $\phi\geq u_{0}^{-}$ in $R^{n}$ } for $x\in R^{\mathfrak{n}}$ .

By Theorem 19, we have $v(x)= \inf\{d_{H}(x,y)+f(y)|y\in \mathcal{A}_{H}\}$ for all $x\in R^{n}$ . Thus,
we need to show that

$g(x)= \inf\{d_{H}(x,y)+f(y)|y\in A_{H}\}$ for all $x.\in R^{n}$ . (6.3)

We write $h(x)$ for the right hand side of (6.3).
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We first observe that $f=u_{0}$ . Indeed, since $f\in S_{H}^{-}$ and $f\leq u_{0}$ in $R^{n}$ , we see that
$f\leq u_{0}^{-}$ in $R^{n}$ . On the other hand, since $u_{0}^{-}\in S_{H}^{-}$ and $u_{0}\leq u_{0}$ in $R^{n}$ , we see that
$u_{0}(x)\leq d_{H}(x, y)+u_{0}(y)$ for all $x,$ $y\in R^{n}$ and therefore $u_{0}\leq f$ in $R^{n}$ . Thus we have
$u_{0}=f$ in $R^{n}$ .

Next we observe that $d_{H}(x, y)+u_{0}^{-}(y)\geq u_{0}^{-}(x)$ for all $x,$ $y\in R^{n},$ $d_{H}(\cdot, y)+u_{0}^{-}(y)\in$

$S_{H}$ for all $y\in A_{H}$ and hence $g(x) \leq\inf\{d_{H}(x, y)+u_{0}^{-}(y)|y\in \mathcal{A}_{H}\}=h(x)$ for all
$x\in R^{n}$ . In particular, we have $u_{0}^{-}(x)\leq g(x)\leq h(x)\leq u_{0}^{-}(x)$ for all $x\in A_{H}$ . Hence,
$g(x)=h(x)$ for all $x\in \mathcal{A}_{H}$ . Since $u_{0}\in\Phi_{0}$ , we may choose a $C>0$ so that $u_{0}\geq\phi_{0}-C$

in $R^{n}$ . We may assume without loss of generality that $\phi_{0}\in S_{H}^{-}$ . By the definition
of $u_{0}^{-}$ , we see that $u_{0}^{-}\geq\phi_{0}-C$ in $R^{n}$ . This ensures that $g\geq\phi_{0}-C$ and therefore
$g,$ $h\in\Phi_{0}$ . Finally, noting that $g,$ $h.\in S_{H}$ , we apply Theorem 16, to conclude that $g=h$
in $R^{n}$ . ロ
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