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1 Introduction

This talk is a joint work with Professor Ken-ichi Kamo (Sapporo Medical University,
Japan). Let us consider the equations of the form
(I ") + p()[uf"'u = 0 (E)

under the following conditions:

(A1) @ and B are positive constants satisfying o < 3;
(Az) p(t) is a C'—function defined near +oo satisfying the asymptotic condition
p(t) ~ 177 for some o € R as t — oo.

By condition (A;z) equation (E) can be rewritten in the form
(w']*= ) + 77 (1 + e(t)[ulfu = 0, (E)

where €(t) = tp(t) — 1 satisfies limy () = 0. Of course, here and in what follows the
symbol “f(t) ~ g(t) as t — 00” means that lim,,, f(¢)/g(t) = 1. A function u is defined
to be a solution of equation (E) if u € C'[t;,00) and |u/|*~1u’ € C[t;,00) and it satisfies
equation (E) on [t;,00) for sufficiently large t;.

It is easily seen that all positive solutions u(t) of (E) are classified into the following
three types according as their asymptotic behavior as t = oo:

(I) (asymptotically linear solution):

u(t) ~ ¢1t for some constant ¢; > 0;
(II) (weakly increasing solution):
uw'(t) 10, and wu(t)t oo;
(III) (asymptotically constant solution):
u(t) ~ ¢; for some constant ¢; > 0.

Concerning qualitative properties of positive solutions, the study of asymptotic be-
havior of asymptotically linear solutions and asymptotically constant solutions are rather
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easy, because their first approximations are given by definition. On the other hand, we
can not easily find how the weakly increasing positive solutions behave except for the case
of a =1 ([1, 4]).

In [4, Section 20], equation (E) with @ = 1 has been considered systematically, and
asymptotic forms of weakly increasing positive solutions are given by means of the pa-
rameters 8 and 0. When a # 1, as far as the authors are aware, there are no works in
which asymptotic forms of weakly increasing positive solutions are studied systematically.
Motivated by these facts we have been making an attempt to find out asymptotic forms
of weakly increasing positive solutions of (E) for the general case o > 0.

To gain an insight into our problem, we consider the typical equation

(l'1°7 ) + t7%lullu = 0, (Eo)

where ¢ € R is a constant. Note that equation (E) can be regarded as a perturbed
equation of this equation. Equation (E,) has a weakly increasing positive solution of the
form ct?,(¢ > 0,0 < p < 1) if and only if a + 1 < ¢ < 8 + 1. This solution is uniquely
given by .
uo(t) = Ct*, (1)
where 1
k= %-— €(0,1), € ={a(l -k)k*}7=. 2)
From this simple observation we can see that asymptotic forms of weakly increasing
positive solutions of (E) may be strongly affected by that of the coefficient function p(t).
Furthermore we conjecture that weakly increasing positive solutions u of (E) behave like
uo(t) given by (1) and (2) if |(¢)| is sufficiently small at co. It should be noted that the
number k appearing in (2) plays important roles in the sequel.
We have shown in [3] that the above conjecture is true in some case as seen from the
following theorem:

Theorem 1 Let < 1 and 1/2 < k < 1(& (a+ B +2)/2 < 0 < B+ 1). Suppose

furthermore that either ,
< e(t)?

or - _

/ I€'(£)]dt < oo (4)
holds. Then, every weakly increasing positive éolution u of (E) has the asymptotic form
u(t) ~ up(t) as t— oo,

where ug is given by (1) and (2).

In today’s talk we report that our conjecture is still valid for other cases; that is, we
will prove the following:
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Theorem 2 Let o > 1 and 0 < k < 1/2(& a+1 <0 < (a+ B+ 2)/2). Suppose

furthermore that either (3) or (4) holds. Then, the same conclusion as in Theorem 1
holds.

Remark. (i) In Theorems 1 and 2, the differentiability of p is unnecessary when (3)
is assumed.

(ii) When o = 1 and ¢(¢) = 0, Theorems 1 and 2 have been obtained by [1] and [4,
Corollaries 20.2 and 20.3].

We note that existence results of weakly increasing positive solutions to (E) are not
well known. But we can show many concrete examples of those equations that have weakly
increasing positive solutions. Some of existence results of weakly increasing solutions for
the case o = 1 are found in [6,7].

The paper is organized as follows. In Section 2 we give preparatory lemmas employed
later. In Section 3 we give the proof of Theorem 2. Other related results are found in
[3’5,6’7]' |
2 Preparatory lemmas

Lemma 3 Let w € C'[to,00),w'(t) = O(1) as t = oo, and w € L*[to,00) for some
A > 0. Then, lim; o, w(t) = 0.

Proof. We have
wPe(t) = hot)Pulio) + [ (ru(s)Pu(s)yds
to .

= futto)ulte) + (1) [ (o) Pu(e)de.

o

By our assumptions the last integral converges as ¢ — oco. Hence lim,,, |w(t)|*w(t) € R
exists. Since w € L*[tg, 00), the limit must be 0. The proof is completed.

Lemma 4 Let 0 € (a+1,8+1). Then every weakly increasing positive solution u of (E)
satisfies u(t) = O(uo(t)) and w'(t) = O(uy(t)) ast — oo, where ug is the ezact solution of
(Eo) given by (1) and (2). ”

Proof. We may assume that u,u’ > 0 for ¢ > ¢,. Since u satisfies for large ¢

vy = | " p(s)u(s)’ds, (5)

and u is increasing, we have

W() > u(t)? / " p(s)ds,
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that is

Q-

w2 ([ pte)as)

An integration of this inequality on the interval [t,c0) will give

u(t) < Cy {/too (/’m p(r)dr)l/a ds}_a/(ﬁ—a) = Cauo(t),

where C; and C; are positive constant. Furthermore, by (5) we find that

o 1/a oo
u'(t) = (/ P(s)u(s)ﬁds) < 6'3/ sTOHBds = CytF~! = O(ul(t)) as t— oo,
t t
where C; and C; are positive constants. This compleﬁes the proof.

Lemma 5 Let o € (a+1,8+1), and u a weakly increasing positive solution of equation
(E). Put s = logug(t) and v = ufup. Then

(i) v,0 = O(1) as s = o0, and v + ¥ > 0 near oo, where - = d/ds;

(ii) v(s) satisfies near co the equation

b — av — bv + b(V + v)! 7P + bé(s)(0 + v) P =0, (6)
where |
1 1-k
a= E—2>0’ b= T>0’ and 4(s) = &(t).

Proof. We will prove only (i), because (ii) can be proved by direct computations.
We assume that y,u' > 0. Since u = ugv, the boundedness of v follows from Lemma 4.
Noting du/dt = Ckt*~!(v + v), we have v + ¢ > 0. On the other hand, since dt/ds = t/k,
we have

o] = d(u)dt
- dt Ug ds

This completes the proof.

t th—1¢ke
ZSCtT=O(1) as § — 0o.

u'up — upu

uf

Lemma 6 Let the assumptions of Theorem 2 holds, and v be as in Lemma 5. Then
v € L¥[sp,0) for sufficiently large so.

Proof. We note that conditions (3) and (4), respectively, are equivalent to

/00 8(s)%ds < o0 (M

/ ~ 18(s)|ds < oo. (8)
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We multiply the both sides of (6) by v. Since @ > 1, we have (1 + §(s))(v 4+ v)}~% <
(1 4+ 46(s))vt~*v; and so we obtain

av? < 0D — bt + b(1 + §(s))v' > +Ap.
An integration on the interval [sp, s} gives

07 bt byiots

2 8
.2 < 1-a+8, .
a/,; vidr < 2 2 + 2—-a+p + /;o oryo bdr + const; ®)

that is s .
a/ vidr < b/ §(r)v'=**Podr + O(1) as s — oo.
8 20

0

Here we have employed (i) of Lemma 5. Let the integral condition (3) hold; that is, let
(7) hold. By the Schwarz inequality we have '

s o0 1/2 ; ps 1/2
a/ v2dr < C) (/ 5(r)2dr) (/ i)zdr) + O(1)
80 80 80

for some constant Cy > 0. Therefore © € L?[sq,00). Next let (4) hold. Using integral by
parts, we obtain from (9) ‘

s N2 2—-a+f 8
K —_ - - —_— at+B
a/"vdr_2 VT 2—a+8 2 —atp 305(7')11 dr + const.

As before by noting (i) of Lemma 5, we find that v € L?[sg, 00). This completes the proof.

]

3 Proof of Theorem 2

We are now in a position to prove the main result Theorem 2:

Proof of Theorem 2. To this end it suffices to show that lim, o, v(s) = 1, where
v(s) is the function introduced in Lemma 5. The proof is divided into three steps.

Step 1. We claim that liminf, ,, v(s) > 0; namely liminf, o, u(t)/uo(t) > 0. The
proof is done by contradiction.

Suppose to the contrary that liminf, o v(s) = 0. Firstly, we suppose that v(s)
decreases to 0 as s — oo. This means that u(t)/uo(t) decreases to 0 as t — oo. Accordingly

we have
wty = [ poutrPar = [ priuotr)? (M)ﬁdr

t uo(r)

< (i—:—)%)ﬂ /too p(r)uo(r)Pdr = Cyt*~"u(t)?,

where C; > 0 is a constant. Consequently we obtain the differential inequality u' <
Cat(t-2)auP/>for some constant C, > 0 near co. But this differential inequality implies
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that u(t)/uo(t) = v(s) > C3 > 0 for some constant C3 > 0. This is an obvious contradic-
tion.

Next sppose that liminf, ,. v(s) = 0 and 9(s) changes sign in any neighborhood of
0o. Since v(s) takes local maxima in the region v > (1 + §(s))~1/(6~2) there are the
following sequences {s, } and {s,} satisfying

Sn <8, < §u+17 1_14m Sy = ll)m 311 = 00
N=+00 n—r00
and
9(s,) = 6(5n) =0, lim v(s,) =0, ©(3a) 2 (1+6(5,))7/C).

Now, we decompose a in the form o = m—p, where m € N and p > 0. Although there
are infinitely many such choices of decomposition for a, we fix one choice for a moment.
We rewrite equation (6) as

$ — ad — bv + b(v + v)"™FIHPYP L bi(s) (D + v) ™ PP = 0.

We multiply the both sides by (v + v)™v and then integrate the resulting equation on the
interval [s,,3,] to obtain

/ 0(v + v)™dr — a/ "(v + o)™ o%dr — b/ " vo(v + 9)"dr
3 . . 2n

-

+b / (v + OY*+2o0dr + b / 5(r)(v + 0)*+*o0Pdr = 0. (10)
The binomial expansion implies that
‘ m Fn Fn m Fn
Z Ck / Hoktly™=kdr — a/ (v + 0)™o%dr — bz Ck f y™kHgkt gy

3n Bn
+b/ (v + o) *PovPdr + b/ 5(r)(v + 9) " PiwPdr = 0,
&n 3n

where ¢ = (',':) are the binomial coefficients. Now, we evaluate each term in the left hand

side. For k € {0,1,...,m — 1} we obtain

T 3n d ,bk+2
/ poFtlym=kdp = / — (————-—) o™k dr
., s, dr \k+2

—k [ o
= __m____/ pRt3ym—k=1d, o(l) as n — oo.
k+2 .

For k = m obviously we have f:':‘ 39**1dr = 0. Hence the first term of the left hand side

of (10) tends to 0 as n — oco. The second term is dominated by Const ff" v?dr, and hence
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it tends to zero as n — oo. Next, we compute the third term. For k£ € {1,2,...,m} we
have |f: v™ R+ dr| < const [ v2dr. For k = 0 we have

n 1 v(S,)mt+?
m+1 d = -— \m+2 _ m+2 = n
/. v odr = — 3 (v(sn) v(s,) ) 1o

Zn

+0o(l) as n — oo.

Therefore the third term is equal to

_ by(3,)m

as n — oo.
m+2

o(1)
To evaluate the fourth term we employ the mean value theorem to obtain
(v+ )P = 0P 4 (1 4 p) (v + 8(r)D)" 9,

where 8(r) is a quantity between 0 and 1. Hence we can compute

/ "(v + 8)*PouPdr = / "o Bidr 4 (14 p) / " (v + 0(r)5) 52Pdr
3, 2n 2

= Zn 1 O(1)i%dr = —2L

Finally by Schwarz’s inequality we find that the last term is dominated by the quantity

5 2 ;5 1/2
const (/ 6(r)2dr) (/ ézdr) =o0(l) as n — oo.

n

+0(l1) as n— oo.

Consequently, from (10) we obtain the formula

b
2+p+ B

o(1) — (3.)*"*P +0(1) =0 as n — oo.

- \m+2
m + 2v(s,,) t

This implies that lim,_,o v(3,) = [(m +2 + 8 — @)/(m + 2)]*/A. Since m can be moved
arbitrarily, this is an obvious contradiction. Therefore liminf,., v > 0.

Step 2. We claim that lim,,.v(s) = 0. Since liminf, ,,, v(s) > 0 by Step 1,
we find that liminf, e u(t)/uo(t) > 0. Integrating equation (5), we further find that
liminfy e w/(t)/up(t) > 0. Since v + 9 = u/(t)/ug(t), we obtain liminf,e(v + ) > 0.
Recalling equation (6), we find that §(s) = O(1) as s = co. Since we have already known
that v € L?[sq,00), Lemma 3 shows that lim,_., v = 0.

Step 3. We claim that lim,_, v(s) = 1. To see this, we integrate (6) multiplied by ®:

1')2

—— a,/ vidr — 2v2 + b/ (0 + v)*vPodr
2 % 2 .

+b/ §(r)(% + v)!~*vPidr = const. (11)
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Suppose that condition (3); namely (7) holds. Since ¥ € L?[sp,00), the first, and the
third integrals in the left hand side of (11) converge as s & co. The mean value theorem
shows that

v+ ) =07+ (1~ a)(v+6(r)d)"% 0, (12)
where 6(r) is a quantity satisfying 0 < 6(r) < 1. Therefore,

/ (¥ + v)1"*vPidr = / {o ) + (1 — a)(v + 6(r)D)~*vPo?}dr
80 80
_ v(s)**=
T 248-a
So we find that the function —v?/2+v?*#-%/(2+ B — ) has a finite limit. This fact shows

that £ = lim, o v(s) € (0,00) exists. Next suppose that (4); namely (8) holds. We have
by (12)

+/ O(1)%%dr + const.

/: §(r)(0 + v)7vPodr = /,{5(7')‘!)1—0-*'3'[) +8(r)(1 — a)(v + 6(r)9)~*vP9?}dr

_5(s)v2+3'°' 1 s
T 2+4B8-a 2+4B-al,

as s — 0o. Hence, as before we know that the function —v?/2 + v?+#~*/(2 4+ 8 — @) has
a finite limit. Therefore £ = lim,_,., v(s) € (0, co0) exists.

Finally, we let s — oo in equation (6). Then, we have lim, o 9(s) = b(£ — £1+F-2),
Since v = o(1), we must have lim,_,« 9(s) = 0, implying £ = 1. The proof of Theorem 2
is completed. '

s
§(r)v**P~*dr + const + / O(1)vdr
%
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