転移点と特異点を持つ2階線形常微分方程式について

On asymptotics of a second order linear O.D.E with a turning-regular singular point

> 慶応義塾大学・理工学部 中野 實 (Minoru Nakano) Keio University

§1. Introduction.

1.1. The differential equation studied is

(1.1)
$$\varepsilon^2 \frac{d^2 y}{dx^2} - \left(x^m - \frac{\varepsilon}{x}\right) y = 0,$$

$$x, y \in \mathbb{C}; \ 0 < |x| \le x_0, \ 0 < \varepsilon \le \varepsilon_0; \ m \in \mathbb{N},$$

where x_0 and ε_0 are constants. This differential equation has a turning point and a regular singular point, both of which are situated at the origin. We do not have a onestep-method to obtain an asymptotic approximation to the solution as $\varepsilon \to 0$ in the whole domain $D = \{x : 0 < |x| \le x_0\}$, so we split (1.1) into two different types of the differential equation whose solutions are obtained separately (§2) and then we connect them by a so-called matching matrix in a common domain as shown in §4.

1.2. The differential equation (1.1) is represented in the matrix form:

(1.2)
$$\varepsilon \frac{dY}{dx} = \begin{bmatrix} 0 & 1 \\ x^m - \varepsilon/x & 0 \end{bmatrix} Y,$$

where Y is a 2-by-2 matrix. (1.2) has the first two terms of

(1.3)
$$\varepsilon \frac{dY}{dx} = \left\{ \begin{bmatrix} 0 & 1 \\ x^m & 0 \end{bmatrix} + \varepsilon \begin{bmatrix} 0 & 0 \\ -1/x & 0 \end{bmatrix} + O(\varepsilon^2) \right\} Y.$$

If $O(\varepsilon^2)$ is small for $x \in D$ and ε , then a solution of (1.3) is a regular perturbation of one of (1.2) with respect to a small ε . In this sense (1.2) is dominant to (1.3)

Our aim is to get two types of the formal solution of (1.1) and match them as $\varepsilon \to 0$. In order to do it, analyzing Stokes curve configuration is important (§3). The case of m = 1

has been studied in Nakano [5].

Remark: We do not show any proofs or illustrations as they would take many pages.

§2. The reduced equations.

2.1. The differential equation (1.2) is written in the form

(2.1)
$$x^{(m+1)/2} (x^{-m-1}\varepsilon) \frac{dZ}{dx} = \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + (x^{-m-1}\varepsilon) \begin{bmatrix} 0 & 0 \\ -1 & -mx^{m/2}/2 \end{bmatrix} \right) Z,$$

where $Y := \text{diag} [1, x^{m/2}] Z$. This differential equation is called an *outer equation* of (1.2) and it should be analyzed when $x^{-m-1}\varepsilon \to 0$, that is, for x in a sub-domain $S := \{x: K\varepsilon^{1/(m+1)} \le |x| \le x_0\}$ (K = large constant) of the whole domain D. A solution of (2.1) is called an *outer solution* of (1.2).

Theorem 2.1. The formal outer solution \tilde{Y}_{out} of (1.2) is given by

(2.2)
$$\tilde{Y}_{out} := x^{m/4} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} e^{\alpha \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}},$$
$$\alpha := \frac{2}{m+2} \frac{1}{\varepsilon} x^{(m+2)/2} + \frac{1}{m} \frac{1}{x^{m/2}},$$

or

which is the leading term of an asymptotic expansion of a true outer solution of (1.2), namely, there exists a true outer solution Y_{out} such that

(2.4)
$$Y_{out} \sim \tilde{Y}_{out} \quad (x^{-m-1}\varepsilon \to 0)$$

in an outer domain, i.e., in a sector

(2.5)
$$S_m := \left\{ x : K \varepsilon^{1/(m+1)} \le |x| \le x_0, -\frac{\pi}{m+2} < \arg x < \frac{3\pi}{m+2} \right\}.$$

Notice that the arguments of x in the above sector S_m correspond to the arguments of the boundaries of a canonical domain C_m^{∞} (cf. (2.10)). \tilde{Y}_{out} is an outer WKB approximation

to the solution of (1.2) of a matrix form.

2.2. We reduce (1.2) to another form in the complement $C := \{x : 0 < |x| < K\varepsilon^{1/(m+1)}\}$ of the sub-domain S, i.e., $D = C \cup S$. Let $x := \varepsilon^{1/(m+1)}t$ (a stretching transform) and $Y := \text{diag} \left[1, \varepsilon^{m/2(m+1)}\right] U$, then (1.2) becomes a form such as

(2.6)
$$\varepsilon^{m/2(m+1)} \frac{dU}{dt} = \begin{bmatrix} 0 & 1\\ \\ \\ p(t) & 0 \end{bmatrix} U \quad \left(p(t) := t^m - \frac{1}{t}\right),$$

which has a very similar form to (1.2) but lacks a term of ε and is called an *inner equation* of (1.2). The origin t = 0 is a regular singular point and zeros of p(t) are turning points of (2.6), which are called *secondary turning points* of (1.2). A solution of (2.6) is called an *inner solution* of (1.2).

Theorem 2.2. The formal inner solution \tilde{Y}_{in} of (1.2) is given by

(2.7)
$$\tilde{Y}_{in} := \begin{bmatrix} 1 & 0 \\ 0 & \varepsilon^{m/2(m+1)} \end{bmatrix}^{1/4 \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}^{-\beta} e^{\beta \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}},$$
$$\beta := \frac{1}{\varepsilon^{m/2(m+1)}} \int^{t} \sqrt{p} \, dt,$$

or

which is the leading term of the asymptotic expansion of a true inner solution of (1.2), namely, there exists a true inner solution Y_{in} of (1.2) such that

(2.9)
$$Y_{in} \sim \tilde{Y}_{in} \quad as \quad \begin{cases} \varepsilon \to 0 \\ t \to \infty \end{cases}$$

in a canonical domain

(2.10)
$$C_m^{\infty} := \left\{ t : 0 < |t| < \infty, -\frac{\pi}{m+2} < \arg t < \frac{3\pi}{m+2} \text{ near } t = \infty \right\}.$$

 \tilde{Y}_{in} is an inner WKB approximation to the solution of (1.2) of a matrix form. The property (2.9) is called the *double asymptotic property* (Fedoryuk [2]).

§3. Stokes curves and the canonical domains.

3.1. A Stokes curve for (2.6) is, by definition, a set of points t's given by

(3.1)
$$\{t : \Re \xi(a,t) = 0\},\$$

where

(3.2)
$$\xi(a,t) := \int_{a}^{t} \sqrt{p} \, dt \quad (p(a) = 0).$$

An anti-Stokes curve of (2.6) is defined by an equation

(3.3)
$$\Im \xi(a,t) = 0 \quad (p(a) = 0).$$

These curves are particular level curves defined by $\Re \xi(a,t) = \text{const.}$ and $\Im \xi(a,t) = \text{const.}$, namely, they are the curves of level zero.

The global property of Stokes curve configuration for a general rational function p(t) is well known in Evgrafov-Fedoryuk [1], Fedoryuk [2] and Nakano [6]-[7], and Fukuhara [3], Hukuhara [4] and Paris-Wood [8] for a local property of Stokes cueves. The outline of the Stokes curve configuration for (2.6) is as follows:

Theorem 3.1. The Stokes and anti-Stokes curves for (2.6) possess the following properties:

(i) The origin t = 0 is a regular singular point from which one Stokes curve and one anti-Stokes curve emerge.

When m = odd, two lines t < -1, 0 < t < 1 on the real axis are Stokes curves, and two lines -1 < t < 0, 1 < t are anti-Stokes curves.

When m = even, a line 0 < t < 1 on the real axis is a Stokes curve and two lines t < 0, 1 < t on the real axis are anti-Stokes curves.

(ii) The point at infinity $t = \infty$ is an irregular singular point and m+3 Stokes curves emerge from (or tend to) $t = \infty$ at angles $\pm \frac{\pi}{m+2}$, $\pm \frac{3\pi}{m+2}$, $\pm \frac{5\pi}{m+2}$, \cdots .

Also, m+3 anti-Stokes curves emerge from (or tend to) $t = \infty$ at middle angles between neighboring two Stokes curves.

(iii) All the zero $t = e^{2k\pi i/(m+1)}$ $(k = 0, 1, 2, 3, \cdots)$ of p(t) are situated on the unit circle |t| = 1 symmetrically with respect to the real axis and they are simple secondary

turning points. From a turning point $t = e^{2k\pi i/(m+1)}$ three Stokes curves emerge at angles $\pm \frac{\pi}{3} + \frac{4k\pi}{3(m+1)}, \pi + \frac{4k\pi}{3(m+1)}.$

Three anti-Stokes curves emerge from every zero at middle angles between neighboring two Stokes curves.

(iv) There is a Stokes curve connecting $\alpha := e^{2k\pi i/(m+1)}$ and $\alpha^* := e^{2\pi i - 2k\pi i/(m+1)}$. This Stokes curve crosses the anti-Stokes curve -1 < t < 0 and can not cross lines t < -1 or 0 < t < 1.

(v) There is an anti-Stokes curve connecting $\alpha := e^{2k\pi i/(m+1)}$ and $\bar{\alpha} := e^{-2k\pi i/(m+1)}$. This anti-Stokes curve crosses only the Stokes curve 0 < t < 1.

(vi) Any Stokes curve (resp., any anti-Stokes curve) can not cross other Stokes curves (resp., anti-Stokes curves) except for at turning points or at $t = \infty$.

(vii) A Stokes curve and an anti-Stokes curve emerging from a turning point tend to another turning point or to $t = \infty$.

(viii) Any Stokes curve or any anti-Stokes curve can not cross itself.

(ix) When a point $t = \alpha$ is a turning point or a simple pole, there are no (sums of) Stokes or anti-Stokes curves homotopic to a circle surrounding α . Therefor there are no circle-like Stokes or anti-Stokes curves for (6.1).

3.2. A canonical domain on the *t*-plane (or the Riemann surface) is, by definition, a simply connected domain bounded by Stokes curves which is mapped by $\xi = \xi(a, t)$ onto the whole ξ -plane except several slits. Referring Theorem 3.1 we can get several canonical domains whose illustration is omitted here.

§4. A matching matrix.

Existence domains S_m and C_m^{∞} of the outer and the inner solutions have a common part where two solutions relate linearly. This linear relation is represented by a so-called matching matrix. The matrcing matrix $M:=[m_{ij}]$ between Y_{out} and Y_{in} is defined by the equality $Y_{out}M = Y_{in}$, i.e.,

Theorem 4.1. The matching matrix defined by (4.1) is given by

(4.2)
$$\mathbf{M} \sim \varepsilon^{m/4(m+1)} \begin{bmatrix} 1 & 0 \\ & \\ 0 & 1 \end{bmatrix} \quad (\varepsilon \to 0).$$

§5. The main theorem.

Summing up the results so far, we can get

The main theorem. The differential equation (1.1) (or (1.2)) possesses a formal outer solution (an outer WKB approximation) (2.2) (or (2.3)) which is an asymtpotic expansion of the true outer solution in a sector (i.e., an outer domain) (2.5) as $x^{-m-1}\varepsilon \to 0$. The differential equation (1.1) possesses a formal inner solution (an inner WKB approximation) (2.7) (or (2.8)) which is an asymptotic expansion of the true inner solution in a canonical domain (i.e., an inner domain) as $\varepsilon \to 0$ or $t \to \infty$. The arguments of the outer domain's boundaries are $-\pi/(m+2)$ and $3\pi/(m+2)$, and those of the inner domain's boundaries are identical for a large t, and two domains have a common part in which the outer and the inner solutions are related by the matching matrix (4.2).

References

[1] Evgrafov, M. A. and M. V. Fedoryuk, Asymptotic behavior as $\lambda \to \infty$ of solutions of the equation $w''(z) - p(z, \lambda)w(z) = 0$ in the complex z-plane. Uspehi Mat. Nauk 21, or Russian Math. Surveys 21 (1966), 1-48.

[2] Fedoryuk, M. V., Asymptotic Analysis. Springer Verlag (1993).

 [3] Fukuhara, M., Sur les proprietes asymptotiques des solutions d'un système d'equations différentielles linéaires contenant un paramètre. Mem. Fac. Eng., Kyushu Imp. Univ. 8 (1937), 249-280.

[4] Hukuhara, M., Sur les points singulieres des équaions différentielles linéaires III. Mém.Fac. Sci. Kyushu. Univ. 2 (1941), 125-137.

[5] Nakano, M., On a matching method for a turning point problem. Keio Math. Sem. Rep. 2 (1977), 55-60.

[6] ———, Second order linear ordinary differential equations with turning points and singularities I. Kodai Math. Sem. Rep. 29 (1977), 88-102.

[7] ———, Second order linear ordinary differential equations with turning points and

[8] Paris, R. B. and A. D. Wood, Asymptotics of high order differential equations. Longman Scientific and Technical (1986).

[9] Wasow, W., Linear turning point theory. Springer-Verlag (1985).

singularities II. Kodai Math. J. 1 (1978), 304-312.