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On asymptotics of a second order linear O.D.E with

a turning-regular singular point
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§1. Introduction.

1.1. The differential equation studied is
d?y g
1.1 228 _ (pm - _) y = 0.
(1.1) £ (a: po y =0,
z,y€C; O<lzi<zmy, 0<e<gy; MEN,

where o and g, are constants. This differential equation has a turning point and a
regular singular point, both of which are situated at the origin. We do not have a one-
step-method to obtain an asymptotic approximation to the solution as € — 0 in the whole
domain D = {z : 0 < |z < x¢}, so we split (1.1) into two different types of the differential
equation whose solutions are obtained separately (§2) and then we connect them by a

so-called matching matrix in a common domain as shown in §4.

1.2. The differential equation (1.1) is represented in the matrix form:

Y 0 1
dz ™ —¢fz O

where Y is a 2-by-2 matrix. (1.2) has the first two terms of

(1.3) 5%—1-/—:{{0 1}-{-6[ 0 0]+O(52)}Y.
| z z™ 0 “1/z 0

If O(£?) is small for z € D and ¢, then a solution of (1.3) is a regular perturbation of one
of (1.2) with respect to a small ¢. In this sense (1.2) is dominant to (1.3)
Our aim is to get two types of the formal solution of (1.1) and match them as € = 0. In

order to do it, analyzing Stokes curve configuration is important (§3). The case of m =1
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has been studied in Nakano [5]

Remark: We do not show any proofs or illustrations as they would take many pages.
§2. The reduced equations.

2.1. The differential equation (1.2) is written in the form

iz (101 0 0
(21) x(m+l)/2(x—m—1€)a__ = ({ } + (x—m—lé.) { } ) Z,
“ 10 -1 —mz™?/2

where Y := diag [1, z™/? ]| Z. This differential equation is called an outer equation of -
(1.2) and it should be analyzed when =™ !¢ — 0, that is, for z in a sub-domain S :=
{r: Ke¥(m+) < |z} < 2o} (K = large constant) of the whole domain D. A solution of
(2.1) is called an outer solution of (1.2).

Theorem 2.1. The formal outer solution Vout of (1.2) is given by

mf4[_1°] 1 -1 a[l o ]
(22) ?out =T 0 1 € o -1 J?
1 1
2 1 1 1
e— 2 m+2)/2 4
o m+25$ m g™/?’
or
. .’L'_m"“ 0 1 -1 €% 0

(23) ’out = ’

0 ™| |1 1 0 ™

which is the leading term of an asymptotic expansion of a true outer solution of (1.2),

namely, there exists a true outer solution Y,y such that
(2.4) Your ~ Your (7™ e — 0)

in an outer domain, i.e., in a sector

T 3
(2.5) S = {a: . Kel/tmtl) < lz| < o, ——— <argr <,m 5]

Notice that the arguments of z in the above sector S,, correspond to the arguments of

the boundaries of a canonical domain C%® (cf. (2.10)). Y, is an outer WKB approzimation
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to the solution of (1.2} of a matrix form.

2.2, We reduce (1.2) to another form in the complement C := {z : 0 < |z| <
Ke'/tm+1} of the sub-domain S, i.e., D = CUS. Let x := ¢'/(™+V¢ (a stretching transform)
and Y := diag [1, e™/2(™*+1] U, then (1.2) becomes a form such as

0 1 1

(2.6) gm/2m+1) %%— = U (p(t) =" — —),
p(t) O

which has a very similar form to (1.2) but lacks a term of € and is called an inner equation
of (1.2). The origin ¢ = 0 is a regular singular point and zeros of p(t) are turning points
of (2.6), which are called secondary turning points of (1.2). A solution of (2.6) is called

an tnner solution of (1.2).

Theorem 2.2. The formal inner solution Y, of (1.2) is given by

1 0 e H° 1 -1 s/ °
(27) ffin e P 0 1 e 0 -1 ,

0 6m,,/2(m—i—1) 1 1

1 t
= gm/2(m+1) / \/}; dt’
or
28) o 1 0 pMt 0 1 -1 0
. in = , ’
0 sm/2(m+1) 0. p1/4 1 1 0 e—ﬂ

which is the leading term of the asymptotic expansion of a true inner solution of (1.2),

namely, there exists a true inner solution Y, of (1.2) such that

~ -0
(2.9) Yo~ Vin as { °
t — o0

in a canonical domain

(2.10) o= {t : 0< |t <<>o,—m7_:_2 <argt < 7r2 near t=oo}.

m +

Yi» is an inner WKB approzimation to the solution of (1.2) of a matrix form. The property

(2.9) is called the double asymptotic property (Fedoryuk [2]).
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83. Stokes curves and the canonical domains.

3.1. A Stokes curve for (2.6) is, by definition, a set of points ¢’s given by

(3.1) {t: Re(a,t) =0},
where
(32) éat)= [ VEdt (o) =0).

An anti-Stokes curve of (2.6) is defined by an equation
(3.3) ¢(a,t) =0 (p(a) =0).

These curves are particular level curves defined by R¢(a,t) = const. and S¢(a,t) =
const., namely, they are the curves of level zero. »

The global property of Stokes curve configuration for a general rational function p(t)
is well known in Evgrafov-Fedoryuk (1], Fedoryuk [2] and Nakano [6]-[7], and Fukuhara
[3], Hukuhara [4] and Paris-Wood [8] for a local property of Stokes cueves. The outline

of the Stokes curve configuration for (2.6) is as follows:

Theorem 3.1. The Stokes and anti-Stokes curves for (2.6) possess the following
properties:

(i) The origin t = 0 i3 a regular singular point from which one Stokes curve and one
anti-Stokes curve emerge.

When m =odd, two linest < —1, 0 < t < 1 on the real azis are Stokes curves, and two
lines -1 <t <0, 1 <t are anti-Stokes curves.

When m =even, a line 0 < £ < 1 on the real axis is a Stokes curve and two linest < 0,
1 < t on the real azis are anti-Stokes curves.

(it) The point at infinity t = oc is an irregular singular point and m+ 3 Stokes curves
emerge from (or tend to) t = oo at angles +- + 3n 57

s
m+2 "m+2 "m+2
Also, m+3 anti-Stokes curves emerge from (or tend to) t = oo at middle angles between

neighboring two Stokes curves.
(i35) All the zero t = 2/(m+1) (g = 0,1,2,3,--.) of p(t) are situated on the unit

circle |t| = 1 symmetrically with respect to the real azis and they are simple secondary
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turning points. From a turning point t = e/ (m+1) three Stokes curves emerge at angles
1 4km N 4km

ERECET N

Three anti-Stokes curves emerge from every zero at middle angles between neighboring
two Stokes curves.

(iv) There is a Stokes curve connecting o := e2#7/(m+1) gnd q* := e¥mi~2kmi/(m+1),
This Stokes curve crosses the anti-Stokes curve —1 < t < 0 and can not cross lines
t<-lor0<t<l.

(v) There is an anti-Stokes curve connecting ¢ = e*m/(m+1) gnd § := e=2kmi/(m+1),
Thié anti-Stokes curve crosses only the Stokes curve 0 <t < 1.

(vi) Any Stokes curve (resp., any anti-Stokes curve) can not cross other Stokes curves
(resp., anti-Stokes curves) ezcept for at turning points or at t = oc.

(vif) A Stokes curve and an anti-Stokes curve emerging from a turning point tend to
another turning point or to t = oc.

(viti) Any Stokes curve or any anti-Stokes curve can not cross itself.

(iz) When a point t = a is a turning point or a simple pole, there are no (sums of)
Stokes or anti-Stokes curves homotopic to a circle surrounding . Therefor there are no

circle-like Stokes or anti-Stokes curves for (6.1).

3.2. A canonical domain on the t-plane (or the Riemann surface) is, by definition, a
simply connected domain bounded by Stokes curves which is mapped by & = £(a, t) onto
the whole £-plane except several slits. Refering Theorem 3.1 we can get several canonical

domains whose illustration is omitted here.
§4. A matching matrix.

Existence domains S,, and C3X of the outer and the inner solutions have a common
part where two solutions relate linearly. This linear relation is represented by a so-called
matching matriz. The matrcing matrix M:=[m;;] between Y,,; and Y;, is defined by the

equality Y,uM = Y;,, ie.,

(4.1) YouM ~ Vi (e = 0).
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Theorem 4.1. The matching matriz defined by (4.1) is given by

10
(4.2) M ~ gm/4Hm=+1) (e — 0).
01

§5. The main theorem.
Summing up the results so far, we can get

The main theorem. The differential equation (1.1) (or (1.2)) posseses a formal
outer solution (an outer WKB approzimation) (2.2) (or (2.3)) which is an asymt-
potic expansion of the true outer solution in a sector (i.e., an outer domain) (2.5) as
| 7™ e = 0. The differential equation (1.1) possesses a formal inner solution (an inner
WKB approzimation) (2.7) (or (2.8)) which is an asymptotic expansion of the true inner
solution in o canonical domain (i.e., an inner domain) as £ — 0 or t — oc. The argu-
ments of the outer domain’s boundaries are —m/(m+2) and 37 /(m +2), and those of the
inner domain's boundaries are identical for a large t, and two domains have a common

| part in which the outer and the inner solutions are related by the matching matriz (4.2).
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