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\S 1. Introduction.

1.1. The differential equation studied is

(1.1) $\epsilon^{2}\frac{d^{2}y}{dx^{2}}-(x^{m}-\frac{\epsilon}{x})y=0_{:}$

$x,$ $y\in \mathbb{C};0<|x|\leq x_{0},0<\epsilon\leq\epsilon_{0};m\in N$ ,

where $x_{0}$ and $\epsilon_{0}$ are constants. This differential equation has a turning point and a
regular singular point, both of which are situated at the origin. We do not have a one-
step-method to obtain an asymptotic approximation to the solution as $\epsilonarrow 0$ in the whole
domain $D=\{x : 0<|x|\leq x_{0}\}_{:}$ so we split (1.1) into two different types of the differential

equation whose solutions are obtained separately (\S 2) and then we connect them by a
so-called matching matrix in a common domain as shown in \S 4.

1.2. The differential equation (1.1) is represented in the matrix form:

(12) $\hat{\epsilon}\frac{d\}’}{dx}=\{\begin{array}{ll}0 lx^{m}-\hat{\circ}/x 0\end{array}\} Y$,

where $Y$ is a 2-by-2 matrix. (1.2) has the first two terms of

(1.3) $\hat{\Leftrightarrow}\frac{dY}{dx}=\{\{\begin{array}{ll}0 1x^{m} 0\end{array}\}+ \epsilon\{\begin{array}{ll}0 0-l/x 0\end{array}\}+O( \epsilon^{2})\}Y$

If $O(\epsilon^{2})$ is small for $x\in D$ and $c\wedge$ , then a solution of (1.3) is a regular perturbation of one
of (1.2) with respect to a small $\epsilon$ . In this sense (1.2) is dominant to (1.3)

Our aim is to get two types of the formal solution of (1.1) and match them as $\epsilonarrow 0$ . In

order to do it, analyzing Stokes curve configuration is important (\S 3). The case of $m=1$
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has been studied in Nakano [5].

Remark: We do not show any proofs or illustrations as they would take many pages.

\S 2. The reduced equations.

2.1. The differential equation (1.2) is written in the form

(21) $x^{(m+1)/2}(x^{-m-1} \epsilon)\frac{dZ}{dx}=(\{\begin{array}{ll}0 ll 0\end{array}\}+(x^{-m-1} \epsilon)\{\begin{array}{ll}0 0-1 -mx^{m/2}/2\end{array}\})Z$ ,

where $Y;=$ diag $[1, x^{m/2}]$ $Z$, This differential equation $is_{\vee}$ called an outer equation of
(1.2) and it should be analyzed when $x^{-m-1}\epsilonarrow 0$ , that is, for $x$ in a sub-domain $S$ $:=$

$\{x : K\epsilon^{1/(m+1)}\leq|x|\leq x_{0}\}$ ($K=large$ constant) of the whole domain D. A solution of

(2.1) is called an outer solution of (1.2).

Theorem 2.1. The formal outer solution $\tilde{Y}_{\sigma ut}$ of (1.2) is given by

(2.2) $\tilde{Y}_{aut}$ $:=xm/4\{\begin{array}{ll}-1 00 l\end{array}\}\{\begin{array}{l}1-111\end{array}\}e\alpha\{\begin{array}{l}100-l\end{array}\}$ ,

$\alpha:=\frac{21}{m+2\epsilon}x^{(m+2)/2}+\frac{1}{m}\frac{1}{x^{m/2}}$,

$or$

(2.3) $\tilde{Y}_{out}$ $:=\{\begin{array}{ll}x^{-m/4} 00 x^{m/4}\end{array}\}\{\begin{array}{l}1-111\end{array}\}\{\begin{array}{ll}e^{\alpha} 00 e^{-a}\end{array}\}$ ,

which is the leading term of an asymptotic expansion of a true outer $soh_{4}tion$ of (1.2),

namely, there exists a true outer solution $y_{out}$ such that

(2.4) $l_{out}’\sim\tilde{Y}_{out}$ $(x^{-m-1}\epsilonarrow 0)$

in an outer domain, $i.e.$ , in a sector

(2.5) $S_{m}$ $:=\{x$ : $K\epsilon^{1/(m+1)}\leq|x|\leq x_{0},$ $- \frac{\pi}{m+2}<\arg x<\frac{3\pi}{m+2}\}$ .

Notice that the arguments of $x$ in the above sector $S_{m}$. correspond to the arguments of

the boundaries of a canonical domain $C_{m}^{\infty}$ (cf. (2.10)). $\tilde{l’}_{out}$
’ is an outer WKB approximation
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to the solution of (1.2) of a matrix form.

2,2, We reduce (1.2) to another form in the complement $C$ $:=\{x$ : $0<|x|<$
$K\epsilon^{1/(m+1)}\}$ of the sub-domain $S$ , i.e., $D=C\cup S$ . Let $x:=\epsilon^{1/(m\dotplus 1\rangle}t$ (a stretching transform)

and $Y:=diag[1, \epsilon^{m/2(m+1)}]\zeta U_{1}$ then (1.2) becomes a form such as

(2.6) $\epsilon^{m/2(m+1)_{\frac{dU}{dt}=}}\{\begin{array}{ll}0 1p(t) 0\end{array}\}U$ $(p(t)$ $:=t^{m}- \frac{1}{t})$ ,

which has a very similar form to (1.2) but lacks a term of $\epsilon$ and is called an inner equation

of (1.2). The origin $t=0$ is a regular singular point and zeros of $p(t)$ are turning points

of (2.6), which are called secondary turning points of (1.2). A solution of (2.6) is called

an inner solution of (1.2).

Theorem 2.2. The formal inner solution $\tilde{Y}_{in}$. of (1.2) is given by

(27) $\tilde{Y}_{1n}$ $:=\{\begin{array}{ll}1 00 \epsilon^{m}\backslash \end{array}\}p1/4\{\begin{array}{ll}-1 o0 1\end{array}\}\{\begin{array}{l}1-11l\end{array}\}e\theta\{\begin{array}{ll}1 00 -l\end{array}\}$ ,

$\theta:=\frac{1}{\epsilon^{m/2l_{\backslash }m+1)}}\int^{t}\sqrt{p}dt$ ,

$or$

(2.8) $\tilde{Y}_{in}$
$:=\{\begin{array}{ll}1 00 \epsilon^{m/2(m+1\rangle}\end{array}\}\{\begin{array}{ll}p^{-i/4} 00 p^{1/4}\end{array}\}\{\begin{array}{l}1-11l\end{array}\}\{\begin{array}{ll}e^{\beta} 00 e^{-\beta}\end{array}\}$ ,

which is the leading term of the asymptotic expansion of a true inner solution of (1.2),

namely, there exists a true inner solution $Y_{in}$ of (1.2) such that

(2.9) $1_{in}’\sim\tilde{Y}_{in}$ as $\{\begin{array}{l}\epsilonarrow 0tarrow\infty\end{array}$

in a canonical domain

(2.10) $P_{m}$ $:=\{t$ : $0<|_{1}t|<\infty,$ $- \frac{\pi}{m+2}<\arg t<\frac{3\pi}{m+2}$ near $t=\infty\}$ .

$\tilde{1^{r}}_{in}$ is an inner WKB approximation to the solution of (1.2) of a matrix form. The property

(2.9) is called the double asymptotic property (Fedoryuk [2]).
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\S 3. Stokes curves and the canonical domains.

3.1. A Stokes curve for (2.6) is, by definition. a set of points $t’ s$ given by

(3.1) $\{t : \Re\xi(a, t)=0\}$ ,

where

(32) $\xi(a,t)$ $;= \int_{a}^{t}\sqrt{p}dt$ $(p(a)=0)$ .

An anti-Stokes curve of (2.6) is defined by an equation

(3.3) $\Im\xi(a,t)=0$ $(p(a)=0)$ .

These curves are particular level curves defined by $\Re\xi(a, t)=$ const. and $\Im\xi(a_{l}.t)=$

const., namely. they are the curves of level zero.
The global property of Stokes curve configuration for a general rational function $p(t)$

is well known in Evgrafov-Fedoryuk [1]: Fedoryuk [2] and Nakano $[6]-[7]_{:}$ and Fukuhara
[3]. Hukuhara [$4_{J}1$ and Paris-Wood [8] for a local property of Stokes cueves. The outline

of the Stokes $cur\backslash e$ configuration for (2.6) is as foUows:

Theorem 3.1. The Stokes and anti-Stokes curves for (2.6) possess the following
properties:

(i) The or\’igin $t=0$ is a regular singular point from which one Stokes curwe and one

anti-Stokes curve emerge.

When $m=odd$, two lines $t<-1,0<t<1$ on the real axis are Stokes curves, and two
lines-l $<t<0,1<t$ are anti-Stokes curves.

When $m=even_{f}$ a line $0<t<1$ on the real axis is a Stokes curve and two lines $t<0_{f}$

$1<t$ on the real axis are anti-Stokes curves.
(ii) The point at infinity $t=\infty$ is an irregular singular point and $m+3$ Stokes curves

emerge from (or tend to) $t=\infty$ at $angles \pm\frac{\pi}{m+2},$ $\pm\frac{3\pi}{m+2},$ $\pm\frac{5\pi}{m,+2}$ ,

Also, $m+3$ anti-Stokes curves emerge from (or tend to) $t=\infty$ at middle angles between

neighboring two Stokes curves.
(iii) All the zero $t=e^{2k\pi i/(m+1)}$ $(k=01,2,3’., \cdots)$ of $p(t)$ are situated on the unit

circle $|t|=1$ symmetrically with respect to the real axis and they are simple secondary
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turning points. From a tuming point $t=e^{2\dot{\kappa}\pi i/(m+1_{J}^{\backslash }}$ three Stokes curves emerge at angles

$\pm\frac{\pi}{3}+\frac{4k\pi}{3(m+1)},$ $\pi+\frac{4k\pi}{3(m+1)}$ .

Three anti-Stokes curves emerge from every zero at middle angles between neighboring

two Stokes curves.
(iv) There is a Stokes curve connecting $\alpha$ $:=e^{2kr,i/(m+1)}$ and $\alpha^{*};=e^{2\pi i-2k\pi t/(m+1)}$ .

This Stokes curve crosses the anti-Stokes curve $-1<t<0$ and can not cross lines

$t<-1$ or $0<t<1$ .
(v) There is an anti-Stokes curve connecting $\alpha$

$:=e^{2k:/(m+1)}\pi$ and $\overline{\alpha}$
$:=e^{-2k\pi t/(m+1)}$ .

This anti-Stokes curve crosses only the Stokes curve $0<t<1$ .
(vi) Any Stokes curve (resp., any anti-Stokes curve) can not cross other Stokes curves

(resp., anti-Stokes curves) except for at tuming points or at $t=\infty$ .
(vii) A Stokes curve and an anti-Stokes curwe emerging from a tuming point tend to

another tuming point or to $t=\infty$ .
(viii) Any Stokes curve or any anti-Stokes cuiwe can not cross itself.
(ix) When a point $t=\alpha$ is a tuming point or a simple pole, there are no (sums ofl

Stokes or anti-Stokes curves homotopic to a circle sumunding $\alpha$ . Therefor there are no

cirde-like Stokes or anti-Stokes curves for (6.1).

3.2. A canonical domain on the t-plane (or the Riemann surface) is, by definition, a

simply connected domain bounded by Stokes curves which is mapped by $\xi=\xi(a, t)$ onto

the whole $\xi$-plane except several slits. Refering Theorem 3.1 we can get several canonical

domains whose illustration is omitted here.

\S 4. A matching matrix.

Existence domains $S_{m}$ and $C_{m}^{\infty}$ of the outer and the inner solutions have a common
part where two solutions relate linearly. This linear relation is represented by a so-called

matching matrix. The matrcing matrix $M:=[m_{1j}]$ between $Y_{out}$ and $1_{in}^{r}$ is defined by the

equality $1_{out}^{Y}M=1_{in}’$ , i.e.,

(4.1) $\tilde{Y}_{out}M\sim\tilde{Y}_{j.n}$ $(\epsilonarrow 0)$ .
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Theorem 4.1. The matching matrix defined by (4.1) is given by

(4.2) $M\sim’\vee\prime m/4(m+1)\{\begin{array}{ll}1 00 1\end{array}\}$ $(\epsilonarrow 0)$ .

\S 5. The main theorem.

Summing up the results so far, we can get

The main theorem. The differential equation (1.1) (or (1.2)) posseses a fomal
outer solution (an outer WKB approximation) (2.2) (or (2.3)) which is an asymt-

potic expansion of the true outer solution in a sector ( $i.e.$ , an outer domain) (2.5) as
$x^{-m-1}\epsilonarrow 0$ . The differential equation (1.1) $p_{08}sesses$ a fomal inner solution (an inner

WKB approximation) (2.7) (or (2.8)) which is an asymptotic expansion of the true inner

solution in a canonical domain ( $i.e.$ , an inner domain) as $’\veearrow 0$ or $tarrow\infty$ . The argu-

ments of the outer domain’s boundaries $are-\pi/(m+2)$ and $3\pi/(m+2)$ , and those of the

inner domain’s boundaries are identical for a large $t$ , and two domains have a common
part in which the outer and the inner solutions are related by the matching matrix (4.2).
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