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ABSTRACT

We study the dynamios of size-structured population model represented

by delay equations with infinite delay. The population is split into two

groups according to their maturity which is determined by their size.

Delay equations consist of a Volterra functional equation coupled with a

delay differential equation which describe the time evolution of popula-

tion birth rate and the food density, respectively. In this paper, steady

state analysis for the interior equilibrium of delay equations is carried

out in order to address questions under what conditions population cy-

cles can occur.

Key words: size-structure; resource-consumer model; delay equations with infinite

delay; state dependent delay; steady-state analysis;

1 Introduction

Individuals differ from each other in terms of size and age etc.. These phys-

iological differences affect the vital rates such as survival, development and

reproduction rate. The growth in age and size is often coupled to maturation

so that reproduction takes place only after individuals have reached a certain

age or slze. The importance of body size is related to the fact that 80% of all

species grow and develop throughout their entire life (Werner [7]). Therefore

size is one of the most important individual physiological traits which would

affect to the population-level phenomena. Practically, in particular it is nat-

ural for insects which typically go through several stages during their life, it

is often the case that one distinguishes individuals into several discrete stages
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in terms of age or size. In continuous time models described by delay differ-

ential equations, development or transition to the next stage is described by

the sojourn time (see Cooke et al. [1], Gourley and Kuang [5] etc.). Recently,

de Roos and Persson [6] studied a size structured population model in which

two size classes, juveniles and adults, are distinguished. The model considered
in [6] is described by a system of delay differential equations with state de-

pendent delay. By means of numerical analysis of steady state and numerical

simulations with the EBT-method, they showed that three types of population

cycles can occur depending on the nature of competition among individuals.

In this paper, we study a mathematical model which describes the population

dynamics of size structured population of the form:

$b(t)=\beta_{A}(F(t))A(t)$ ,

$\frac{dF}{dt}(t)=D-\gamma_{J}(F(t))J(t)-\gamma_{A}(F(t))A(t)$ ,

$J(t)= \int_{t-\tau(t)}^{t}b(\alpha)e^{-\int_{\alpha}^{t}\mu_{J}(F(\sigma))d\sigma}d\alpha$,
(DE)

$A(t)= \int_{-\infty}^{t-\tau(t)}b(\alpha)e^{-\int_{a}^{\alpha+\overline{\tau}(\alpha)}\mu_{J}(F(\sigma))d\sigma-\int_{\alpha+\overline{\tau}(\alpha)}^{t}\mu_{A}(F(\sigma))d\sigma}d\alpha$,

$s_{m}-s_{b}= \int_{t-\tau(t)}^{t}g(F(\sigma))d\sigma=\int^{t+\tilde{\tau}(t)}g(F(\sigma))d\sigma$.

Here $b(t)$ denotes the population birth rate, while $F(t)$ denotes the food density

at time $t$ . $J(t)$ and $A(t)$ denote the populatlon size of juveniles and adults at

time $t$ , respectively. Two types of time delay $\tau=\tau(t)$ and $\tau=\tilde{\tau}(t)$ are
implicitly defined by the forth equation of (DE). Note that individuals that

mature at time $t$ were born at time $t-\tau$ , while individuals that are born

at time $t$ mature at time $t+\tilde{\tau}$ . The functions $g(F),$ $\mu_{J}(F),$ $\mu_{A}(F),$ $\beta_{A}(F)$ ,

$\gamma_{J}(F)$ and $\gamma_{A}(F)$ represent the rates for individual growth, death of juveniles

and adults, reproduction and consumption ofjuveniles and adults, respectively.

We assume that the size-at-birth of individuals is fixed at $s_{b}.We$ further assume
that the maturation size of juveniles is also fixed at $s_{m}>s_{b}$ . $D$ is the constant

rate at which food is provided in the environment.

System (DE) can be derived from a size-structured resource-consumer model

described by partial differential equations as a special case (see for example,
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[4]). Note that system (DE) includes the equations (3a) and (3b) considered

in [6] as a special case. In fact, equations (3a) and (3b) correspond to (DE) if
$\gamma_{J}(F)=aF,$ $\gamma_{A}(F)=qaF,$ $g(F)=\epsilon_{g}aF,$ $\mu_{J}(F)=\mu/(aF),$ $\mu_{A}(F)=\mu/(qaF)$

and $\beta_{A}(F)=\epsilon_{b}qaF$ . The purpose of this paper is to investigate under what

conditions population cycles can occur by analyzing a characteristic equation

associated with the linearized equations of system (DE) around an interior

equilibrium. The organization is as follows. In the next section, we show the

condition for the existence of an interior equilibrium of system (DE). Then we
derive a linearized equations of system (DE) around the interior equilibrium.

A characteristic equation is defined from the linearized equations. Then we
look for the existence ofa complex conjugate of pure imaginary roots for the

characteristic equation to examine whether Hopf bifurcation occurs or not. In

the last section, we discuss our results.

2 Steady state analysis

2.1 Interior equilibrium

It follows from the fourth equation $of\cdot(DE)$ , we infer that in steady state

$\tilde{\tau}=\tau=\frac{s_{m}-s_{b}}{g(F)}$ . (2.1)

For $b\neq 0$ , the steady state version of (DE) reduces to a condition on $F$ , viz.

$\beta_{A}(F)e^{-\tau\mu_{J}(F)}\frac{1}{\mu_{A}(F)}=1$ . (22)

The left hand side is easily interpreted as the basic reproduction number $R_{0}(F)$ .

Note that one should use (2.1) to make it into a condition involving only $F$ .
We assume that all $\beta_{A}(F),$ $g(F),$ $\mu_{J}(F)$ and $\mu_{A}(F)$ are smooth functions of $F$ .
For $\beta_{A}(F)$ and $g(F)$ , we further assume that $\beta_{A}’(F)>0$ and $g’(F)>0$ for all.
$F\in[0, \infty)$ . While for $\mu_{J}(F)$ and $\mu_{A}(F)$ , we further assume that $\mu_{J}’(F)\leq 0$

and $\mu_{A}’(F)\leq 0$ . Then equation (2.2) has exactly one root whenever the left

hand side exceeds 1 for large $F$ .
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2.2 Linearized equations

Throughout the remainder of this paper, we assume that the interior equi-

librium uniquely exists. In this subsection, we derive linearized equations for

system (DE) around the interior equilibrium $\overline{F}$ and $\overline{b}$ . We do not write calcu-

lations for deriving the linearized equations. We shall only show the results.

Define

$\theta_{J}(\overline{F}):=\overline{b}\mu_{J}(\overline{F})\{\frac{g’(\overline{F})}{g(\overline{F})}-\frac{\mu_{J}’(\overline{F})}{\mu_{J}(\overline{F})}\}$ , $\theta_{A}(\overline{F}):=\overline{b}\mu_{A}(\overline{F})\{\frac{g’(\overline{F})}{g(\overline{F})}-\frac{\mu_{A}’(\overline{F})}{\mu_{A}(\overline{F})}\}$ .

$k_{10}= \overline{b}\frac{\beta_{A}’(\overline{F})}{\beta_{A}(\overline{F})},$ $k_{11}(\sigma)=H(\sigma-\overline{\tau})\mu_{A}(\overline{F})e^{\mu_{A}(F)(\overline{\tau}-\sigma)}$,

where $H$ is the Heaviside function,

$k_{12}(\sigma)=\{\begin{array}{ll}\theta_{J}(\overline{F})+(\theta_{A}(\overline{F})-\theta_{J}(\overline{F}))e^{-\mu A(\overline{F})\sigma} for \sigma\leq\overline{\tau}\theta_{J}(\overline{F})-\overline{b}\mu_{A}(\overline{F})\frac{g’(\overline{F})}{g(\overline{F})}+(\theta_{A}(\overline{F})- (\overline{F}))e^{-\mu_{A}(\overline{F})\sigma} for \sigma>\overline{\tau},\end{array}$

$k_{20}=- \overline{b}\{\frac{\gamma_{A}’(\overline{F})}{\mu_{A}(\overline{F})}e^{-\mu_{J}(\overline{F})\overline{\tau}}+\frac{\gamma_{J}’(\overline{F})}{\mu_{J}(\overline{F})}(1-e^{-\mu_{J}(\overline{F})\overline{\tau}})\}$ ,

$k_{21}(\sigma)=\{\begin{array}{ll}-\gamma_{J}(\overline{F})e^{-\mu_{J}(\overline{F})\sigma} for \sigma\leq\overline{\tau}-\gamma_{A}(\overline{F})e^{-\mu_{J}(\overline{F})\overline{\tau}}e for \sigma>\overline{\tau}\end{array}$

$k_{22}( \sigma)=-\frac{\gamma_{A}(\overline{F})}{\beta_{A}(\overline{F})}k_{12}(\sigma)+\gamma_{J}(\overline{F})\overline{b}e^{-\mu_{J}(\overline{F})\overline{\tau}}\varphi(\sigma)$,

$\varphi(\sigma)=\{\begin{array}{ll}\frac{g’(\overline{F})}{g(\overline{F})}-\frac{\mu_{J}’(\overline{F})}{\mu_{J}(\overline{F})}\{1-e^{-\mu_{J}(\overline{F})(\sigma-\overline{\tau})}\} for \sigma\leq\overline{\tau}0 for \sigma>\overline{\tau}. \end{array}$

The linearized system is given by

$x(t)=k_{10}y(t)+ \int_{0}^{\infty}(k_{11}(\sigma)x(t-\sigma)+k_{12}(\sigma)y(t-\sigma))d\sigma$ , (2.3)

$\frac{dy}{dt}(t)=k_{20}y(t)+\int_{0}^{\infty}(k_{21}(\sigma)x(t-\sigma)+k_{22}(\sigma)y(t-\sigma))d\sigma$ . (2.4)
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2.3 Characteristic equation

The characteristic equation for (2.3) and (2.4) is given by

$\{1-\tilde{k}_{11}(\lambda)\}\{\lambda-k_{20}-\tilde{k}_{22}(\lambda)\}-\tilde{k}_{21}(\lambda)\{k_{10}+\tilde{k}_{12}(\lambda)\}=0$, (2.5)

where
$\tilde{k}_{mn}(\lambda)=\int_{0}^{\infty}k_{mn}(\sigma)e^{-\lambda\sigma}d\sigma$ , $(m, n=1,2)$ . (2.6)

To check whether equations (DE) undergoes a Hopf bifurcation, we look for a
complex conjugate of pure imaginary root of (2.5). System (DE) defines non-
sun-reflexive dual semigroups in a non-reflexive Banach space, so the theory

on sun-reflexive dual semigroups has supposed not to work if one only refers

the book for delay equations [2]. However, recently Diekmann and Gyllen-

berg have shown that delay equations can be reformulated as abstract weak-
’-integral equations involving dual semigroups when the solution take values

in a non-reflexive Banach space [4]. Then the theory, methods and results

such as linearized stability, center manifold theory and Hopf bifurcation the-

ory developed in [2] are applicable to our delay equations (see also [2], [3], [4]).

Hereafter we suppress to write the argument and simply write $\beta_{A},$
$\gamma_{A},$ $\gamma_{J},$ $g$ ,

$\mu_{J}$ and $\mu_{A}$ . For $\omega\neq 0$ ,

$\tilde{k}_{mn}(i\omega)=c_{mn}(\omega)-is_{mn}(\omega)$

$:= \int_{0}^{\infty}k_{mn}(\sigma)$ cos $( \omega\sigma)d\sigma-i\int_{0}^{\infty}k_{mn}(\sigma)$ sin $(\omega\sigma)d\sigma$, $(m, n=1,2)$ .

Define $\varphi_{A}(\omega)\in(0, \pi/2)$ and $\varphi_{J}(\omega)\in(0, \pi/2)$ by

COS $\varphi_{A}(\omega)=\frac{\mu_{A}}{\sqrt{\mu_{A}^{2}+\omega^{2}}}$ and $\sin\varphi_{A}(\omega)=\frac{\omega}{\sqrt{\mu_{A}^{2}+\omega^{2}}}$ (2.7)

COS $\varphi_{J}(\omega)=\frac{\mu_{J}}{\sqrt{\mu_{J}^{2}+\omega^{2}}}nnd\sin\varphi_{J}(\omega)=\frac{\omega}{\sqrt{\mu_{J}^{2}+\omega^{2}}}$ . (2.8)

We simply write $\varphi_{A}(\omega)$ and $\varphi_{J}(\omega)$ as $\varphi_{A}$ and $\varphi_{J}$ , respectively. Note that

$\frac{\cos\varphi_{A}}{\mu_{A}}=\frac{\sin\varphi_{A}}{\omega}$ and $\frac{\cos\varphi_{J}}{\mu_{J}}=\frac{\sin\varphi_{J}}{\omega}$ . (2.9)

Direct calculation yields that

$c_{11}=\cos\varphi_{A}$ cos $(\omega\tau+\varphi_{A}),$ $s_{11}=\cos\varphi_{A}$ sin $(\omega\tau+\varphi_{A})$ ,
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$c_{12}= \theta_{J^{\frac{\sin\omega\tau}{\omega}+\frac{\sin\varphi_{A}}{\omega}}}[(\theta_{A}-\theta_{J})\cos\varphi_{A}+(\theta_{J}-b\mu_{A}\frac{g’}{g})\cos(\omega\tau+\varphi_{A})]$ ,

$s_{12}= \theta_{\frac{1-\cos\omega\tau}{\omega}+\frac{\sin\varphi_{A}}{\omega}}[(\theta_{A}-\theta_{J})\sin\varphi_{A}+(\theta_{J}-b\mu_{A}\frac{g’}{g})\sin(\omega\tau+\varphi_{A})]$ ,

$c_{21}=- \frac{\gamma_{A}}{\mu_{A}}e^{-\mu_{J^{\mathcal{T}}}}\cos\varphi_{A}\cos(\omega\tau+\varphi_{A})-\frac{\gamma_{J}}{\mu_{J}}\cos\varphi_{J}[\cos\varphi_{J}-e^{-\mu_{J^{\mathcal{T}}}}\cos(\omega\tau+\varphi_{J})]$ ,

$s_{21}=- \frac{\gamma_{A}}{\mu_{A}}e^{-\mu_{J^{\mathcal{T}}}}\cos\varphi_{A}\sin(\omega\tau+\varphi_{A})-\frac{\gamma_{J}}{\mu_{J}}\cos\varphi_{J}[\sin\varphi_{J}-e^{-\mu_{J^{\mathcal{T}}}}\sin(\omega\tau+\varphi_{J})]$ ,

$c_{22}=( \frac{\gamma_{J}}{\mu_{J}}-\frac{\gamma_{A}}{\mu_{A}})e^{-\mu_{J^{\mathcal{T}}}}\theta_{J}\frac{\sin\omega\tau}{\omega}+b\frac{\mu_{J}’}{\mu_{J}}\frac{\gamma_{J}}{\mu_{J}}\cos\varphi_{J}[\cos\varphi_{J}-e^{-\mu_{J}\tau}\cos(\omega\tau+\varphi_{J})]$

$- \frac{\gamma_{A}}{\mu_{A}}e^{-\mu_{J^{\mathcal{T}_{\frac{\sin\varphi_{A}}{\omega}}}}}[(\theta_{A}-\theta_{J})\cos\varphi_{A}+(\theta_{J}-b\mu_{A}\frac{g’}{g})\cos(\omega\tau+\varphi_{A})]$ ,

$s_{22}=( \frac{\gamma_{J}}{\mu_{J}}-\frac{\gamma_{A}}{\mu_{A}})e^{-\mu_{J^{\mathcal{T}}}}\theta_{\sqrt{},\omega}+b\frac{\mu_{J}’}{\mu_{J}}\frac{\gamma_{J}}{\mu_{J}}\cos\varphi_{J}[\sin\varphi_{J}-e^{-\mu_{J^{\mathcal{T}}}}\sin(\omega\tau+\varphi_{J})]1-\cos\omega\tau$

$- \frac{\gamma_{A}}{\mu_{A}}e^{-\mu_{J^{\mathcal{T}_{\frac{\sin\varphi_{A}}{\omega}}}}}[(\theta_{A}-\theta_{J})\sin\varphi_{A}+(\theta_{J}-b\mu_{A}\frac{g’}{g})\sin(\omega\tau+\varphi_{A})]$ .

Here we exploited relations

$\int_{0}^{\tau}e^{-\mu\sigma}\cos\omega\sigma d\sigma=\frac{\mu-e^{-\mu\tau}(\mu\cos\omega\tau-\omega\sin\omega\tau)}{\mu^{2}+\omega^{2}}$ ,

$\int_{0}^{\tau}e^{-\mu\sigma}\sin\omega\sigma d\sigma=\frac{\omega-e^{-\mu\tau}(\omega\cos\omega\tau+\mu\sin\omega\tau)}{\mu^{2}+\omega^{2}}$ ,

$l^{\infty}e^{-\mu\sigma} \cos\omega\sigma d\sigma=\frac{e^{-\mu\tau}(\mu\cos\omega\tau-\omega\sin\omega\tau)}{\mu^{2}+\omega^{2}}$,

$l^{\infty}e^{-\mu\sigma} \sin\omega\sigma d\sigma=\frac{e^{-\mu\tau}(\omega\cos\omega\tau+\mu\sin\omega\tau)}{\mu^{2}+\omega^{2}}$

and $e^{-\mu_{J}\tau}=\mu_{A}/\beta_{A}$ . Introducing complex variables

$z_{mn}$ $:=c_{mn}+is_{mn},$ $(m, n=1,2)$ (2.10)

gives

$z_{11}=\cos\varphi_{A}e^{i(w\tau+\varphi_{A})}$ ,

$z_{12}= \frac{\theta_{J}}{\omega}2sn(\frac{\omega\tau}{2})e^{i^{w_{2}}}\pm+\frac{\sin\varphi_{A}}{\omega}e^{i\varphi_{A}}\{(\theta_{A}-\theta_{J})+(\theta_{J}-b\mu_{A}\frac{g’}{g})e^{iw\tau}\}$ ,

$z_{21}=- \frac{\gamma_{A}}{\mu_{A}}e^{-\mu_{J^{\mathcal{T}}}}$ cos $\varphi_{A}e^{i(\omega\tau+\varphi_{A})}-\frac{\gamma_{J}}{\mu_{J}}\cos\varphi_{J}e^{\mathfrak{i}\varphi_{J}}(1-e^{-\mu_{J}\tau}e^{iw\tau})$,

$z_{22}= \frac{\theta_{J}}{\omega}(\frac{\gamma_{J}}{\mu_{J}}-\frac{\gamma_{A}}{\mu_{A}})e^{-\mu_{J}\tau}2$ sin $( \frac{\omega\tau}{2})e^{i\frac{w\tau}{2}}+b\frac{\mu_{J}’}{\mu_{J}}\frac{\gamma_{J}}{\mu_{J}}$cos $\varphi_{J}e^{i\varphi_{J}}(1-e^{-\mu_{J}\tau}e^{\dot{u}d\tau})$

$- \frac{\gamma_{A}}{\mu_{A}}e^{-\mu_{J^{\mathcal{T}}}}\frac{\sin\varphi_{A}}{\omega}e^{i\varphi_{A}}\{(\theta_{A}-\theta_{J})+(\theta_{J}-b\mu_{A}\frac{g’}{g})e^{iw\tau}\}$ .
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Note that

$z_{12}z_{21}-z_{11}z_{22}=\{-(c_{11}c_{22}-s_{11}s_{22})+c_{12}c_{21}-s_{12}s_{21}\}$

$+i\{-(s_{11}c_{22}+c_{11}s_{22})+(s_{12}c_{21}+c_{12}s_{21})\}$ .

Therefore, characteristic equation (2.5) with $\lambda=i\omega$ can be rewritten as

$k_{20}+i\omega-(k_{20}+i\omega)z_{11}+k_{10}z_{21}+z_{22}+z_{12}z_{21}-z_{11}z_{22}=0$. (2.11)

2.4 Food dependent uptake rate

In this subsection, we suppose that only uptake rates $\gamma_{J}$ and $\gamma_{A}$ depend on the

food density. Then it immediately foUows that $\mu_{J}’=\mu_{A}’=\beta_{A}’=g’=0$ . Note

that $k_{10}=\theta_{A}=\theta_{J}=0$ . $z_{11},$ $z_{12},$ $z_{21}$ and $z_{22}$ are reduced to

$z_{11}=\cos\varphi_{A}e^{i(\omega\tau+\varphi_{A})},$ $z_{12}=z_{22}=0$ ,

$z_{21}=- \frac{\gamma_{A}}{\mu_{A}}e^{-\mu_{J}\tau}$ cos $\varphi_{A}e^{i(\omega\tau+\varphi A)}-\frac{\gamma_{J}}{\mu_{J}}\cos\varphi_{J}e^{i\varphi_{J}}(1-e^{-\mu_{J^{\mathcal{T}}}}e^{iw\tau})$ .

Thus $z_{12}z_{21}-z_{11}z_{22}=0$ . $(2.11)$ is reduced to

$k_{20}+i\omega-(k_{20}+i\omega)z_{11}=0$ . (2.12)

Substituting $z_{11}$ and $z_{21}$ into (2.12) gives

$(k_{20}+i\omega)$ cos $\varphi_{A}e^{i\varphi_{A}}e^{iw\tau}=k_{20}+i\omega$ , (2.13)

Since 1 $e^{\dot{u}d\mathcal{T}}|=1$ ,

1 $(k_{20}+i\omega)$ cos $\varphi_{A}e^{i\varphi_{A}}|=|k_{20}+i\omega|$ . (2.14)

It follows from (2.14) that

1 cos $\varphi_{A}e^{i\varphi_{A}}|=\frac{\mu_{A}}{\mu_{A}^{2}+\omega^{2}}=1$ .

Now we are assuming that $\omega\neq 0$ . This is a contradiction. Hence there are no

pure imaginary roots of the characteristic equation.
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3 Discussion

We studied delay equations with infinite delay describing the population dy-

namics of size-structured population which is feeding on some food as a re-

source. We showed the condition for the existence of the interior equilibrium

and derived the linearized equations for system (DE) around the interior equi-

librium. The characteristic equation is defined for the linearized system. We

focused on a particular case to investigate the occurrence of population cycle

via Hopf bifurcation. In a particular case, the rates for growth $g$ , reproduction

$\beta_{A}$ , death of juveniles $\mu_{J}$ and death of adults $\mu_{A}$ are independent functions of

the food density, while consumption rates for juveniles and adults are func-

tions of the food density. In this case, we showed that no occurrence of Hopf

bifurcation is expected. This finding suggests that for the occurrence of Hopf

bifurcation, we should lmpose that at least one physiological rates $\beta_{A},$ $g,$ $\mu_{J}$

or $\mu_{A}$ depends on the food density $F$ . If we do not assume that $\beta_{A},$ $g,$ $\mu_{J}$

and $\mu_{A}$ are independent functions of the food density, we may expect there

exists a pair of complex conjugate of pure imaginary roots of characteristic

equation. Actually, extensive numerical computations and numerical simula-

tions implemented in [6] showed the occurrence of sustained population cycles.

Mathematical analysis to show the existence of pure imaginary roots of the

characteristic equation for general case is left for our future work.
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