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ABSTRACT. A slow-fast system in $R^{4}$ includes a possibility having a constrained
surface with a 2-dimensional differentiable manifold. The system in $R^{4}$ having such
a constrained surface is analyzed in this paper. Although it is difficult to analyze
these systems in general, we will give some sufficient conditions to make it possible.
Reducing the system to the problem in $R^{3}$ with a transversality condition, it is
possible to show the existence of the duck solutions by using Benoit’s criterion. In the
case reducing the system to the problem in $R^{2}$ directly with another transversality
condition, it can be done up a direct analysis using a l-dimensional differentiable
manifold.

1. INTRODUCTION

A slow fast system in $R^{4}$ includes a possibility having a constrained surface
with l-dimensional or 2-dimensional or 3-dimensional differentiable manifold. In
this paper, we take up the system in $R^{4}$ with a 2-dimensional constrained surface.
There are two different approaches, which is an indirect method and the other is a
direct one to find the duck solutions in $R^{4}$ ([5]). A typical example of this system
is a 2-paralleled FitzHugh-Nagumo equations. S.A.Campbell, one of author$s$ of [3],
investigated first the coupled FitzHugh-Nagumo equations as a bifurcation problem.
In the system, we, I and S.A.Campbell, have already proved the existence of the
winding duck solutions in $R^{4}$ ([4]). As the associated slow-fast system (or singular
perturbation problem) has a 2-dimensional slow manifold (constrained surface), we
can reduce it to the slow-fast one in $R^{3}$ . It turns to have two kinds of projected
slow-fast systems in $R^{3}$ : one has 2-dimensional constrained surface, the other has
l-dimensional constrained surface. Giving transversality conditions in each case, it
will be shown that there exists the duck in the original system. Recently, we, I and
Miki and Nishino, investigated a trading dynamical economics model using both
methods. See ([6]).

2.SLOW-FAST SYSTEM IN $R^{3}$

Let us consider the following slow-fast system:
$\epsilon dx/dt=h(x,y, \epsilon)$ ,

(2.1) $dy_{1}/dt=f_{1}(x, y, \epsilon)$ ,
$dy_{2}/dt=f_{2}(x, y, \epsilon)$ ,
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where $x\in R^{1},$ $y=(y_{1}, y_{2})\in R^{2}$ , are variables, and $\epsilon$ is a parameter, which is
infinitesimally small in the sense of non-standard analysis of Nelson. We give the
following assumptions in the system(2.1).

$(A1)h\in C^{2},$ $f=(fi, f_{2})\in C^{1}$ are defined on $R^{3}\cross R^{1}$ ,
$(A2)$ The set $S_{1}=\{(x, y)\in R^{3}|h(x, y, 0)=0\}$ is a 2-dimensional differentiable

manifold and the set $S_{1}$ intersects the set $T_{1}=\{(x, y)\in R^{3}|\partial h(x, y, O)/\partial x=$

$0\}$ transversely so that the pli set $PL=\{(x, y)\in S_{1}\cap T_{1}\}$ is a l-dimensional
differentiable manifold.

$(A3)fi(x, y, 0)\neq 0$ , or $f_{2}(x, y, 0)\neq 0$ at any point $(x,y)\in PL$ .
Let $(x(t, \epsilon),y(t, \epsilon))$ be a solution of (2.1). When $\epsilon=0$ , differentiating $h(x,y,0)$

with respect to the time $t$ , the following equation holds:

(2.2) $h_{y1}(x,y, 0)f_{1}(x, y,0)+h_{y2}(x, y,0)f_{2}(x,y,0)+h_{x}(x,y, O)dx/dt=0$ ,

where $h_{i}(x, y_{1}, y_{2},0)=\partial h(x, y_{1}, y_{2}, O)/\partial i,$ $i=x,$ $y_{1},y_{2}$ . The above system(2.1)
restricted in $S_{1}$ becomes the following system:

$dy_{1}/dt=f_{1}(x, y, 0)$ ,

(2.3) $dy_{2}/dt=f_{2}(x,y,0)$ ,
$dx/dt=-\{h_{y1}(x, y, 0)fi(x,y,0)+h_{y2}(x,y, 0)f_{2}(x, y, 0)\}/h_{x}(x, y,0)$,

where $(x, y)\in S_{1}\backslash PL$ . The system (2.1) coincides with the system (2.3) at any
point $p\in S_{1}\backslash PL$ . In order to avoid the degeneracy of the system (2.3), let us
consider the following system:

$dy_{1}/dt=-h_{x}(x,y,0)f_{1}(x, y, 0)$ ,

(2.4) $dy_{2}/dt=-h_{x}(x, y,0)f_{2}(x, y, 0)$ ,
$dx/dt=h_{y1}(x, y,0)f_{1}(x, y,0)+h_{y2}(x, y, 0)f_{2}(x, y, 0)$ .

As the system(2.4) is well defined at any point of $R^{8}$ , it is well defined indeed
at any point of $PL$ . The solutions of the system(2.4) coincide with those of the
system(2.3) on $S_{1}\backslash PL$ except the velocity when they start from the same initial
points.

$(A4)$ For any point $(x, y)\in S_{1}$ , either of the following holds;

(2.5) $h_{y1}(x,y,0)\neq 0,$ $h_{y2}(x,y,0)\neq 0$ ,

that is, the surface $S_{1}$ can be expressed as $y_{1}=\varphi_{1}(x, y_{2})$ or $y_{2}=\varphi_{2}(x, y_{1})$ in the
neighborhood of $PL$ . Let $y_{2}=\varphi_{2}(x,y_{1})$ exist, then the projected system(2.6) is
obtained:

$dy_{1}/dt=-h_{x}(x, y_{1}, \varphi_{2}(x,y_{1}), 0)fi(x, y_{1},\varphi_{2}(x, y_{1}),0)$ ,

(2.6) $dx/dt=h_{y1}(x,y_{1}, \varphi_{2}(x, y_{1}), 0)fi(x,y_{1}, \varphi_{2}(x, y_{1}),0)+$

$h_{y2}(x,y_{1}, \varphi_{2}(x,y_{1}), 0)f_{2}(x, y_{1},\varphi_{2}(x, y_{1}), 0)$ .

If we take $y_{1}=\varphi_{1}(x,y_{2})$ , it can be analyzed as the same way.
$(A5)$ All the singular points of the system(2.6) are nondegenerate, that is, the

matrix induced from the linearized system of (2.6) at a singular point has two
nonzero eigenvalues.
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Remark. All these points are contained in the set $PS=\{(x, y)\in PL|dx/dt=0\}$ ,
which is called pseudo singular points. Note that these points are the singular
points in the system(2.4).

Deflnition2.1. Let $p\in PS$ and $\mu_{1},$ $\mu_{2}$ be two eigenvalues of the matrix associated
with the linearized system of (2.6) at $p$ . The point $p$ is called pseudo singular saddle
if $\mu_{1}<0<\mu_{2}$ and called pseudo singular node if $\mu_{1}<\mu_{2}<0$ or $\mu_{1}>\mu_{2}>0$ .

Deflnition2.2. A solution $(x(t, \epsilon),$ $y(t, \epsilon),$ $z(t, \epsilon))$ of the systems(2.1) are called
ducks, if there exist standard $t_{1}<t_{0}<t_{2}$ such that

(1) $*(x(t_{0}, \epsilon),$ $y(t_{0}, \epsilon),$ $z(t_{0}, \epsilon))\in S_{1}$ , where the set’(X) denotes the standard part of
the set$X$ ,

(2) for $t\in(t_{1}, t_{0})$ the segment of the trajectory $(x(t, \epsilon),$ $y(t, \epsilon),$ $z(t, \epsilon))$ is infinitesi-
mally close to the attracting part of the slow curves (the constrained surface),

(3) for $t\in(t_{0},t_{2})$ , it is infinitesimally close to the repelling part of the slow curves,
and

(4) the attracting and repelling parts of the trajectory are not infinitesimally small.

Theorem2.1 (Benoit). If the system has a pseudo singular saddle or node point
with no resonance, then it has duck solutions.

3. SLOW-FAST SYSTEM IN $R^{4}$

Now, let us consider a slow-fast system(3.1):

$\epsilon dx_{1}/dt=h_{1}(x_{1}, x_{2},y_{1},y_{2}, \epsilon)$ ,
$\epsilon dx_{2}/dt=h_{2}(x_{1}, x_{2}, y_{1},y_{2}, \epsilon)$ ,

(3.1)
$dy_{1}/dt=f_{1}(x_{1}, x_{2},y_{1},y_{2}, \epsilon)$ ,
$dy_{2}/dt=f_{2}(x_{1}, x_{2}, y_{1}, y_{2}, \epsilon)$ ,

where $f=(f_{1}, f_{2})$ and $h=(h_{1}, h_{2})$ are defined on $R^{4}\cross R^{1}$ and $\epsilon$ is infinitesimally

small.
We assume that the system(3.1) satisfies the following generic conditions $(B1)-$

$(B5)$ :
$(B1)f$ is of class $C^{1}$ and $h$ is of class $C^{2}$ .
$(B2)$ The set $S_{2}=\{(x, y)\in R^{4}|h(x, y, 0)=0\}$ is a 2-dimensional differentiable

manifold and the set $S_{2}$ intersects the set $T_{2}=\{(x, y)\in R^{4}|det[\partial h(x,y, O)/\partial x]=0\}$

transversely so that the generalized pli set $GPL=\{(x, y)\in S_{2}\cap T_{2}\}$ is a 1-

dimensional differentiable manifold.
$(B3)$ The value of $f$ is nonzero at any point $p\in GPL$ .
$(B4)$ For any $(x,y)\in S_{2},$ $rank[\partial h(x, y, 0)/\partial x]=2$ and rank $[\partial h(x,y,O)/\partial y]=2$ .

Then the surface $S_{2}$ can be expressed as $y=\varphi(x)$ or $x=\psi(y)$ in the neighborhood
of $GPL$ . Note that we use the notations $x=(x_{1}, x_{2}),$ $y=(y_{1}, y_{2})$ and $\varphi(x)=$

$(\varphi_{1}(x), \varphi_{2}(x))$ , and $\psi(y)=(\psi_{1}(y), \psi_{2}(y))$ .
Let the latter of $(B4)$ be satisfied, then the following two projected systems (3.2),

(3.3) in $R^{3}$ can be reduced under the condition 1 $dx_{1}/dt-dx_{2}/dt|$ is limited, that
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is, $\epsilon|dx_{1}/dt-dx_{2}/dt|$ tends to zero as $\epsilon$ tends to zero:

$\epsilon dx_{1}/dt=h_{1}(x_{1}, \psi_{2}(y),$ $y_{1},$ $y_{2},$ $\epsilon$),

(3.2) $dy_{1}/dt=f_{1}(x_{1}, \psi_{2}(y),$ $y_{1},$ $y_{2},$ $\epsilon$),
$dy_{2}/dt=f_{2}(x_{1}, \psi_{2}(y),$ $y_{1},$ $y_{2},$ $\epsilon$),

since the relation $x_{2}=\psi_{2}(y)$ is established from the above assumption. To
analyze the vector field of the system(3.2) on the constrained surface, we use
$h_{2}(x_{1}, x_{2}, y_{1}, y_{2},0)$ instead of $h_{1}(x_{1},\psi_{2}(y),y_{1},y_{2},0)$ , if $x_{2}$ is a functional of $y$ in
$h_{1}$ . Because, it is complicated to analyze the system as is using $h_{1}$ . Actually,
we need the above condition in such a case. Therefore, this approach is called $an$

indirect method.
Using the other relation $x_{1}=\psi_{1}(y)$ , we can get the following:

$\epsilon dx_{2}/dt=h_{2}(\psi_{1}(y), x_{2},y, e)$ .
(3.3) $dy_{1}/dt=f_{1}(\psi_{1}(y), x_{2},y, \epsilon)$ ,

$dy_{2}/dt=f_{2}(\psi_{1}(y), x_{2},y, \epsilon)$ .

On the set $S_{2}$ , differentiating both sides of $h(x,\varphi(x),$ $0$ ) $=0$ by $x$ ,

(3.4) $[h_{x}]+[h_{y}]D\varphi=0$ ,

where $D\varphi$ is a derivative with respect to $x$ , thus the following (3.5) is established:

(3.5) $D\varphi(x)=-[h_{y}]^{-1}[h_{x}]$ .

On the other hand,

(3.6) $dy/dt=D\varphi(x)dx/dt$ ,

because of $y=\varphi(x)$ . We can reduce the slow syst$em$ to the following:

(3.7) $D\varphi(x)dx/dt=f(x, \varphi(x))$ .

Using (3.5), the system (3.7) is described by

(3.8) $[h_{x}]dx/dt=-[h_{y}]f(x,\varphi(x))$ .

Put $[h_{x}]=A$ simply, then

(3.9) $dx/dt=-B[h_{y}]f(x, \varphi(x))$ ,

where $AB=BA=(detA)I$ .
The system(3.9) is the time scaled reduced system projected into $R^{2}$ . Again, we

assume the set $T_{2}=\{(x, y)\in R^{4}|detA=0\}\neq\phi$ .
$(B5)$ All the singular points of the system(3.9) are nondegenerate, that is, the

matrix induced from the linearized system of (3.9) at a singular point has two
nonzero eigenvalues.
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Remark. All these points are contained in the set $GPS=\{(x, y)\in GPL|detA=$
$0\}$ , which is called the set of generalized pseudo singular points.

As this approach transforms the original system to the time scaled reduced sys-
tem directly, it is called a direct method.

Deflnition3.1. Let $p\in GPS$ and $\mu_{1},$ $\mu_{2}$ be two eigenvalues of the matrix associ-
ated with the linearized system of (3.9) at $p\in R^{4}$ . The point $p$ is called generalized
pseudo singular saddle if $\mu_{1}<0<\mu_{2}$ and called genemlized pseudo singular node
if $\mu_{1}<\mu_{2}<0$ or $\mu_{1}>\mu_{2}>0$ .
Deflnition3.2. If there exists a duck in the both systems (3.2) and (3.3) at the
common pseudo singular point in $R^{4}$ , it is called a duck in $R^{4}$ . If there exists a
duck in only one of the above systems, it is called a partial duck in $R^{4}$ .
Theorem3.1. The transversality condition$(B2)$ is established if and only if the
transversality condition$(A2)$ in Section2 is satisfied in the systems (3.2) and (3.3)
at the common pseudo singular point.

Theorem3.2. The system(3.2) or (3.3) have a pseudo singular saddle (or pseudo
singular node) point, if the system(3.1) has a generalized pseudo singular saddle
(or pseudo singular node) point.

Theorem3.3. If the system(3.1) has a generalized pseudo singular saddle, or sin-
gular node point without resonance, the system(3.1) has a partial duck.

(Proof)
Theorem3.2 ensures that there exists the pseudo singular saddle or pseudo sin-

gular node in the system(3.2) or (3.3). Then, Theorem2.1 ensures the existence of
a duck in these systems.

4.PROOFS OF $THEOREM3.1$ , AND $THEOREM3.2$

4.1 Proof of Theorem3.1
Let $\nabla h_{i}(x, y, 0)$ denote a gradient $ve$ctor of $h_{i}(x,y, 0)$ . The transversality be-

tween $S_{2}$ and $T_{2}$ at the generalized pseudo singular point $p=$ ( $x1_{0},x2_{0}$ , ylo, $y2_{0}$ ) $\in$

$R^{4}$ is checked as follows:

(4.1) rank $(\nabla h_{2}(p,0)\nabla h_{1}(p,0))=3$.

The transversality between $S_{1}$ and $T_{1}$ in the system (3.2) and (3.3) are checked
as follows. Put

$g_{1}(x_{1},y_{1},y_{2})=h_{1}(x_{1},\psi_{2}(y),$ $y_{1},y_{2},0$),
(4.2)

$g_{2}(x_{2)}y_{1},y_{2})=h_{2}(\psi_{1}(y),x_{2}, y_{1},y_{2},0)$ ,

and then put

(4.3) $(_{\nabla\partial g_{1}(p1)/\partial x1}\nabla g_{1}(p1))=M_{p1}$ ,
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where $p1=$ ( $x$ lo, $y1_{0},$ $y2_{0}$ ),

(4.4) $(_{\nabla\partial g_{2}(p2)/\partial x2}\nabla g_{2}(p2))=N_{p2}$ ,

where $p2=(x2_{0},y1_{0}, y2_{0})$ .
As the relation(4.1) is satisfied, $rankM_{p1}=rankN_{p2}=2$ holds. In fact, the

gradient vectors in (4.3) and (4.4) are independent, since only the coordinates
are changed. Conversely, pulling back the equations(4.3), (4.4) to $R^{4}$ , that is,
embeddin$g$ the corresponding 2-dimensional manifold into the original $R^{4}$ , we can
confirm that the relation(4.1) holds. In fact, the the second equation in (4.3), (4.4)
is equivalent to the third one in (4.1). The proof is complete.

4.2 Proof of Theorem3.2
Let the system(3.1) have a generalized pseudo singular saddle point
$p=$ (xlo, $x2_{0},$ $y1_{0},$ $y2_{0}$ ) $\in R^{4}$ , that is, the point $p$ is a singular point of the

system(3.9). Note that this system is described on the constrained surface. The
following slow-fast system describes the current state.

$\epsilon dx_{1}/dt=h_{1}(x_{1}, x_{2}, y_{1}, \varphi_{2}(x), \epsilon)$ ,

(4.5) $\epsilon dx_{2}/dt=h_{2}(x_{1}, x_{2}, y_{1}, \varphi_{2}(x), \epsilon)$ ,
$dy_{1}/dt=f_{1}(x_{1}, x_{2}, y_{1},\varphi_{2}(x), \epsilon)$ ,

and
$\epsilon dx_{1}/dt=h_{1}(x_{1}, x_{2},\varphi_{1}(x), y_{2}, \epsilon)$ ,

(4.6) $\epsilon dx_{2}/dt=h_{2}(x_{1}, x_{2}, \varphi_{1}(x),y_{2}, \epsilon)$ ,
$dy_{2}/dt=f_{2}(x_{1}, x_{2}, \varphi_{1}(x),y_{2}, \epsilon)$ .

The above systems have a l-dimensional slow manifold in $R^{3}$ . We can reduce
the systems(4.5), (4.6) to the system(2.6) in Section2: the latter(4.5) has the coor-
dinates $(x_{1}, y_{1})$ and the former(4.6) has the coordinates $(x_{1}, y_{2})$ . The orbits of the
linearized systems(4.5), (4.6) are equivalent to the eigenvectors of the time scaled
reduced system in the system(3.2). As the coordinate transformation is always
done by using diffeomorphism, the corresponding eigenvalues are invariant in the
sense of topological conjugacy. Therefore, the system(3.2) has a pseudo singular
saddle point. In the case of the node point, it is useful as the same way. The proof
is complete.
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