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We are concerned with the problem of finding positive solutions with prescribed isolated
singularities to semilinear elliptic equations. Choosing a finite set of points $\{a_{i}\}_{*=1}^{m}$ in $R^{N}$

and a set of positive numbers $\{\mathfrak{g}\}_{1=1}^{m}$ , we consider the existence of positive solutions of the
problem

$- \Delta u+u=u^{p}+\kappa\sum_{i=1}^{m}c_{1}\delta_{a:}$ in $\mathcal{D}’(R^{N})$ , $(1.1)_{\kappa}$

with the condition at infinity

$u(x)arrow 0$ as $|x|arrow\infty$ , (1.2)

where $N\geq 3,1<p<N/(N-2),$ $\kappa\geq 0$ is a parameter, and $\delta_{a}$ is the Dirac delta function
supported at $a\in R^{N}$ . We denote the Laplacian on $R^{N}$ by $\Delta$ and the class of distributions
on $R^{N}$ by $D’(R^{N})$ .

We recall $8ome$ known results concerning the singularities of possible solutions of the
equation. Let $\Omega$ be a bounded domain in $R^{N}$ containing $0$ . By the works due to Lions [14]
and Brezis and Lions [6], we obtain the following result.

Theorem A $[14, 6]$ . Assume that $u\in C^{2}(\Omega\backslash \{0\})$ satisfies
$-\Delta u+u=u^{q}$ $in\Omega\backslash \{0\}$ (1.3)

utth $q>1$ and $u\geq 0a.e$ . in $\Omega$ . Then $u\in L_{1oc}^{q}(\Omega)$ and

$-\Delta u+u=u^{q}+\kappa\delta_{0}$ $in\mathcal{D}’(\Omega)$ (1.4)

for some $\kappa\geq 0$ . Ihrthefmooe, the following (i) and (ii) hold.

(i) In the case $1<q<N/(N-2)$ , if $\kappa=0$ in (1.4) then $u\in C^{2}(\Omega)$ , and if $\kappa>0$

then $u$ behaves like a multiple of the hndamental solution $E_{0}for-\Delta$ in $R^{N},$ $i.e.$ ,
$-\Delta E_{0}=\delta_{0}$ in $p(R^{N})$ .
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(ii) In the case $q\geq N/(N-2)$ , there holds $\kappa=0$ in (1.4).

For the proof, see Theorem 1 in [6] and Corollary 1, Theorem 2, and Remark 2 in [14].
It should be mentioned that Johnson, Pan, and Yi [13] showed the existence and asymp-

totic behaviour of singular positive radial solution $u$ of (1.3) with $1<q<(N+2)/(N-2)$ .
In particular, they showed that, if $N/(N-2)<q<(N+2)/(N-2)$ , there exists a pos-
itive solution $u$ of (1.3) satisfying $u(x)\sim c|x|^{-2/(p-1)}$ as $|x|arrow 0$ for some constant $c>0$ .
Then, in this case, the singularity of $u$ at $x=0$ exists, but is not visible in the sense of
distribution.

In this paper, we investigate the existence of positive solutions with prescribed isolated
singularities to the equation in $R^{N}$ . By (ii) of Theorem $A$ , if $p\geq N/(N-2)$ then $(1.1)_{\kappa}$

with $\kappa>0$ has no positive solution $u\in C^{2}(R^{N}\backslash \{a:\}_{1=1}^{m})$ . Hence, the condition $1<p<$
$N/(N-2)$ is necessary for the existence of positive solutions $u\in C^{2}(R^{N}\backslash \{a_{i}\}_{1=1}^{m})$ of $(1.1)_{\kappa}$

with $\kappa>0$ .
We review some known results concerning related problems. Lions [14] studied the

existenoe of positive solutions of the problem

$\{\begin{array}{ll}-\Delta u=u^{p}+\kappa\delta_{0} in \mathcal{D}’(\Omega),u=0 on \partial\Omega,\end{array}$ (1.5)

where $\Omega$ is a bounded domain in $R^{N}$ containing $0$ with smooth boundary $\partial\Omega$ . It was
shown in [14] that there exists $\kappa^{*}>0$ such that (1.5) has at least two positive solutions for
each $\kappa\in(0, \kappa^{l})$ and no such solution for $\kappa>\kappa$ . Later, Baras and Pierre [4] studied the
existence of positive solutions for the problem

$\{\begin{array}{ll}-\Delta u=u^{p}+\kappa\mu in \mathcal{D}’(\Omega),u=0 on \partial\Omega,\end{array}$ (1.6)

where $\mu$ is a positive bounded Radon measure in $\Omega$ . In [4] they showed that (1.6) has at least
one positive solution for each sufficiently smffi $\kappa>0$ by investigating the corresponding
integral equations. See also Roppongi [16]. Amann and Quittner [3] exhibited the existence
of $\kappa^{*}>0$ such that (1.6) has at least two positive solutions for $0<\kappa<\kappa^{*}$ and no solution
for $\kappa>\kappa^{*}$ . Bidaut-Veron and Yarur [5] gave the existence results and a priori estimates for
(1.6) including the case where $\mu$ is unbounded. In [3], [5], they also consider the problems
involving measures as boundary data. We also refer a survey by Veron [19], [20], and the
references therein. In [17] the second author studied the existence of positive solutions for
the problem

$- \Delta u+f(u)=\sum_{i=1}^{m}q\delta_{a_{1}}$ in $\mathcal{D}’(R^{N})$
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in the cases where $f$ is nonnegative. In [17] he also showed the nonexistenoe of positive
solutions for some $f$ with sign changing.

Concerning nonhomogeneous semilinear elliptic problems of the form

$-\Delta u+u=u^{q}+\kappa f(x)$ in $R^{N}$

with $q>1$ and $f\in H^{-1}(R^{N})$ , we refer to Zhu [21], Deng and Li [10], [11], Cao and Zhou [7],
and Hirano [12]. They successfully showed the existence of at least two positive solutions
of the problems under suitable conditions. See also $[18, 8]$ for closely related problems.

In order to state our results, we introduce some notations. Let $E_{1}$ denote the fundamental
solution $for-\Delta+I$ in $R^{N}$ , that is,

$E_{1}(x)=E_{1}(|x|)= \frac{1}{(2\pi)^{N/2}|x|^{(N-2)/2}}K_{(N-2)/2}(|x|)$ for $x\in R^{N}\backslash \{0\}$ ,

where $K_{\nu}$ is the modified Bessel function of order $\nu$ . We see that $E_{1}$ has the following
properties:

$E_{1}(x) \sim\frac{1}{(N-2)N\omega_{N}|x|^{N-2}}$ as $|x|arrow 0$ , and

$E_{1}(x)\sim c_{1}|x|^{-(N-1)/2}e^{-|x|}$ as $|x|arrow\infty$ ,

where $w_{N}$ denotes the volume of the unit ball in $R^{N}$ and $c_{1}>0$ is a constant depends on
$N$ . In particular, $E_{1}\in C^{\infty}(R^{N}\backslash \{0\})$ and $E_{1}\in L^{r}(R^{N})$ for all $1\leq r<N/(N-2)$ . Define
$f_{0}$ by

$f_{0}(x)= \sum_{:=1}^{m}qE_{1}(x-a_{i})$ .

Then $f_{0}\in C^{\infty}(R^{N}\backslash \{a_{i}\}_{1=1}^{m})$ and $f_{0}\in L^{r}(R^{N})$ for all $1\leq r<N/(N-2)$ , and $f_{0}$ satisfies

$- \Delta f_{0}+f_{0}=\sum_{:\approx 1}^{m}q\delta_{a_{I}}$ in $\mathcal{D}’(R^{N})$ .

In this paper we refer to $u$ as a positive solution of $(1.1)_{\kappa}$ if $u\in L_{1oc}^{p}(R^{N})$ satisfies $(1.1)_{\kappa}$

in the sense of distribution and $u>0$ a.e. in $R^{N}$ .
Proposition 1.1. Let $u\in L_{1oc}^{p}(R^{N})$ be a positive solution of $(1.1)_{\kappa}$ with $\kappa>0$ . Then

$u\in C^{2}(R^{N}\backslash \{a_{i}\}_{i=1}^{m})$ and $u(x)>0$ for $x\in R^{N}\backslash \{a_{i}\}_{i=1}^{m}$ . Assume, in addition, that (1.2)
holds. Then $u\in L^{q}(R^{N})$ for all $q\in[1,N/(N-2))$ and $u$ satisfies

$u=E_{1}*[u^{p}]+\kappa f_{0}$ $a.e$. in $R^{N}$
$(1.7)_{\kappa}$

and $u(x)=O(E_{1}(x))$ as $|x|arrow\infty$ , where the $symbol*denotes$ the convolution.

For each $\kappa>0$ , we define $U_{j}^{\kappa}$ for $j=0,1,2,$ $\ldots$ , inductively, by

$U_{0}^{\kappa}=\kappa f_{0}$ and $U_{j}^{\kappa}=E_{1}*[(U_{j\sim 1}^{\kappa})^{p}]+\kappa f_{0}$ for $j=1,2,$ $\ldots$ . (1.8)
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Take $q_{0}\in(p, N/(N-2))$ arbitrarily, and define $\{q_{j}\}$ by

$\frac{1}{q_{j}}=\frac{1}{q_{0}}-(\frac{2}{N}-\frac{p-1}{q_{0}})j=\frac{1}{q_{j-1}}-(\frac{2}{N}-\frac{p-1}{q_{0}}I$ for $j=1,2,$ $\ldots$ . (1.9)

From $p<N/(N-2)$ and $q_{0}>p$ , it $f_{0}nows$ that $2/N-(p-1)/q_{0}>0$ . Then, by choosing
suitable $q_{0}$ if necessary, there exists an positive integer denoted by $j_{0}$ satisfying

$\frac{1}{q_{jo-1}}>0>\frac{1}{q_{j_{0}}}$ . (110)

We use the notation $C_{0}(R^{N})=$ {$u\in C(R^{N}):u(x)arrow 0$ as $|x|arrow\infty$ }.

Proposition 1.2. For each $\kappa\in(0, \infty)$ , the following (i) -(iii) are equivalent to each
other:

(i) $u=w+U_{jo}^{\kappa}\in L_{1oc}^{p}(R^{N})$ is a positive solution of $(1.1)_{\kappa}-(1.2)$ ;

(ii) $w\in C_{0}(R^{N})$ is positive in $R^{N}$ and satisfies
$w=E_{1}*[(w+U_{jo}^{\kappa})^{p}-(U_{jo-1}^{\kappa})^{p}]$ in $R^{N}$ ; $(1.11)_{\kappa}$

(iii) $w\in H^{1}(R^{N})$ is a weak positive solution of

$-\Delta w+w=(w+U_{j_{0}}^{\kappa})^{p}-(U_{j_{0}-1}^{\kappa})^{p}$ in $R^{N}$ , $(1.12)_{\kappa}$

that is, $w>0a.e$ . in $R^{N}$ and satisfies

$\int_{R^{N}}(\nabla w\cdot\nabla\psi+w\psi)dx=\int_{R^{N}}((w+U_{jo}^{\kappa})^{p}-(U_{j_{0}-1}^{\kappa})^{p})\psi dx$ $(1.13)_{\kappa}$

for any $\psi\in H^{1}(R^{N})$ .

By Proposition 1.2, the problem $(1.1)_{\kappa}-(1.2)$ can be reduced to the problems $(1.11)_{\kappa}$ in
$C_{0}(R^{N})$ and $(1.12)_{\kappa}$ in $H^{1}(R^{N})$ . We will investigate the problems $(1.11)_{\kappa}$ and $(1.12)_{\kappa}$ by
an approach based on adaptation of the methods by [1, 2, 9, 14].

Our main results are stated in the following theorems.

Theorem 1. There exists $\kappa^{*}\in(0, \infty)$ such that

(i) if $0<\kappa<\kappa^{*}$ then the problem $(1.1)_{\kappa}-(1.2)$ has a positive minimal solution $\underline{u}_{\kappa}$ , that
is, $u_{\kappa}\leq ua.e$. in $R^{N}$ for any positive solution $u$ of $(1.1)_{\kappa}-(1.2).$ Ihnhermooe, if
$0<\kappa<\hat{\kappa}<\kappa^{l}$ then $y$い $<g_{\hslash}a.e$ . in $R^{N}$ ;

(ii) if $\kappa>\kappa^{*}$ then the prvblem $(1.1)_{\kappa}-(1.2)$ has no positive solution.
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Theorem 2. If $\kappa=\kappa^{*}$ then the problem $(1.1)_{\kappa}-(1.2)$ has a unique positive solution.

Theorem 3. If $0<\kappa<\kappa$ then the problem $(1.1)_{\kappa}-(1.2)$ has a positive solution $\varpi_{\kappa}$

satisfying $\overline{u}_{\kappa}>\underline{u}_{\kappa}$ .

Proofs of Theorems 1-3 can be found in [15]. In the proof of Theorem 1, we will employ

the bifurcation results and the comparison argument for solutions of $(1.12)_{\kappa}$ and $(1.11)_{\kappa}$ ,
respectively, to obtain the minimal solutions. We will prove Theorem 2 by establishing
a priori bound for the solutions of $(1.12)_{\kappa}$ . We will prove Theorem 3 by employing the
variational method with the Mountain Pass Lemma. In the proofs of Theorems 2 and
3, the results concerning the eigenvalue problems to the linearized equations around the
minimal solutions play a crucial role.
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