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1 Introduction

Posture control and stability has been an integral part of nonholonomIc motion planning, and
recently, hae garnered monomaniacal support and attention. Basically, noholonomic motion
planning involves finding afeaeible trajectory&om some initial configuration to adesired one
while satisfying the velocity constraints of the system. Posture control adds another dimension
to the problem wherein one is also required to harvest exact orientations at the target posltlonv.
Inclusion of obstacles makes the overall task increasingly complicated, as many more points in
the workspace are no longer reachable, hence apatently preponderant task to many researiers.

Atypical example of the nonholonomic system is the tractor-trailer mobile robot. By and large,
th\’ee articulated robots play apivotal role in the $road$ freight traoportation, nowadays. Awide
range of trailer systems have been utilized to $8upport$ research on control and motion planning of
nonholonomIc systems [2]. In this ever-growIng $reperto\ddagger re$, researiers are continuously churning
out new td more efficient algorIthms for motlon planning and control of these articulated
$or$ multi-body $veh\ddagger cles$ that are capable of performing $w\ddagger de$-rangIng $ta\epsilon ks$ in various dIfferent
environments, whii may be hazardous or even inaccessible to humans [7].

This paper embarks upon improving, in general, trajectory planning and posture control of
genefal 1-trailer robots. $Specifica^{g_{y}}$ , we control its $p_{0\dot{f}}nt$-to-point motion via anew collision-
avoidance scheme. Integral to thi8 motion planning, inter alia, is the critical $i_{88}ue$ of posture
contml and stability, the main emphasis of this paper. In [6] $||near- perfect^{|I}$ orientation8 were
obtained by employing anovel technique of fixing obstacles at regtar intervals on the boundary
lines of aparking bay. However, thIs method eaeily becomes cumbersome and the computation8
tedious if the number of fixed obstacles along the target is increased. Instead, in this paper, we
erect ghost walls along the $nonarrow entry$ routes of the target. Now to avoid these ghost wafs, we
draw inspiration from Khatib’s collision avoidance scheme in [5] to propose anew teinique to
effectively avoid $the8e$ ghost walls and per se orchestrate the desired orientations, of every solId
body of the articulated robot, at its corresponding target position. Thi8 variant teinique also
contributes in reducing the complexity of the motion planning algorithm designed in [6].
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2 Vehicle Model

In this paper we shall consider a general l-trailer system which consists of a rear wheel driven
tractor and an off-axle hitched two-wheeled passive trailer. Essentially, a kingpin joins the two
solid bodies with $c$ and $L_{2}$ as positive lengths, from the midpoint point of the rear axle of the car
and the trailer, respectively (see Fig. 1). The tractor utilised in this research basically performs
motions similar to that of a car-like robot (Reeds and Shepp’s model), with front-wheel steering
and decrees the path of the attached trailer.

$z$
$(x_{1},y_{1})\subset$

$\phi\tau$ With reference to Fig. 1, $(x_{i}, y_{i})$ represents the
Cartesian $coordInatae$ and gIves the reference point
of each solid body of the articulated robot, while
$\theta_{i}$ gives its orientation with respect to the $z_{1}$-axis.
The connections between the two bodies give rise$\backslash /$

$\epsilon$ 1 to the following holonomic constraints (defining
$c$

$\epsilon_{1}$ $c(.)=\omega s(.),$ $s(.)=sin(.)$ and $t(.)=tan(.))$ :
$L_{2}$

$\epsilon^{/}$

$\grave{I}_{\epsilon_{1}}\simarrow(x_{2}, y_{2})$

$x_{2}$ $=$ $x_{1}$
一 $( \frac{L_{1}+2c}{2})c(\theta_{1})-(\frac{L_{2}+a}{2})c(\theta_{2})$ ,

$y_{2}$ $=$ $y_{1}$ 一 $( \frac{L_{1}+2c}{2})s(\theta_{1})-(\frac{L_{2}+a}{2})s(\theta_{2})$ .
$\theta_{1}$

$\theta_{2}$

$z_{1}$

These constraints reduce the dimension of the con-
figuration space since $(x_{2}, y_{2})$ could be expressed

Figure 1: Kinematic model of a general completely in terms of $(x_{1}, y_{1}, \theta_{1}, \theta_{2})$ .
l-trailer robot

If we let $m$ be the mass of the robot, $F$ the force along the axis of the tractor, $\Gamma$ the torque about
a vertical axis at $(x_{1}, y_{1})$ and $I$ the moment of inertia of the tractor, then the dynamic model of
a general l-trailer system, with respect to the reference point of the tractor, is given by

$\dot{x}_{1}=c(\theta_{1})v-\frac{L_{1}}{2}s(\theta_{1})\omega$ , $\dot{\theta}_{1}=\frac{v}{L_{1}}t(\phi):=\omega$ , $\dot{v}=\sigma_{1}:=F/m$ ,

$\dot{y}_{1}=s(\theta_{1})v+\frac{L_{1}}{2}c(\theta_{1})\omega$ , $\dot{\theta}_{2}=\frac{1}{L_{2}}(s((\theta_{1}-\theta_{2}))v-c((\theta_{1}-\theta_{2}))c\omega)$ , $\dot{\omega}=\sigma_{2}$ $:=\Gamma/I$ .
(.1)

Here $v$ and $\omega$ are the translational and rotational velocities and, $\sigma_{1}$ and $\sigma_{2}$ , are the instantaneous
translational and rotational accelerations, respectively, of the tractor. For simplicity, we have let
$\phi=\theta_{1}$ . A state of the l-trailer system is then described by $z=(x_{1}, y_{1}, \theta_{1}, \theta_{2}, v,\omega)\in XA=\mathbb{R}^{6}$ .
By and large, the motion is controlled via the instantaneous accelerations of the tractor.

To ensure that the entire vehicle safely steers pass an obstacle, the planar vehicle can be repre-
sented as a simpler fixed-shaped object, such as a circle, a polygon or a convex hull [8]. In [7],
the authors represented a standard l-trailer system by the smallest circle possible, given some
clearance parameters. The obvious problem of the representation was the creation of unwar-
ranted obstacle space, which further curtailed the set of reachable points in the configuration
space. In this research, given the clearance parameters $\epsilon_{1}$ and $\epsilon_{2}$ , we shall enclose the articulated
vehicle within two separate protective circular regions, i.e. a protective region for each solid
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body, which basically palliates the unnecessary growth of the C-space in [7], and subsequently,
presents a greater set of options. Hence, circular region $C_{1}$ is centered at $(x_{1}, y_{1})$ with a radius
of $r_{V1}$

$:=\sqrt{(L_{1}+2\epsilon_{1})^{2}+(l+2\epsilon_{2})^{2}/4}:=- L_{\lrcorner}2+c$ , while $C_{2}$ centered at $(x_{2}, y_{2})$ having a radius of

$r_{V2}$
$:=\sqrt{(L_{2}+\epsilon_{1})^{2}+(l+2\epsilon_{2})^{2}/4}:=\underline{L}_{22}L^{a}$ . For simplicity we treat $L_{2}$ $:=L_{1}+a$ and $c:=\epsilon_{1}+a$ ,

where $a$ is a small offset as seen in Fig. 2.

3 Formulation of the Problem

$Thi8$ section formulates collisIon free trajectories the robot system under kInodynamic constraints
in afixed and bounded workspace. It is assumed that there is $a$ $prior\dot{f}$ knowledge of the whole
workspace. Utilizing the Direct Method of Lyapunov, we want to design the acceleration con-
$troller8,$ $\sigma_{1}$ and $\sigma_{2}$ , such that the robot will navigate safely $\ln$ the workspace, reai aneighborhood
of Its target and be aligned to apre-determined final posture. To obtain afeasible solution of
thi$s$ posture control problem, we utilize the method of artIficial potentials, aprominent method
in motion planning of nonholonomic systems. We begin by daecribing precisely, the target, the
$wo$rkspace, all obstacles, and discuss the new concept of ghost walls whii facilitates the desired
orientatioo.

3.1 Posture

We shall consider position and the orientation separately to highlight and elucidate the impor-
tance of our new technique.

’3.1.1 Position

First, we affix a target for the robot to reach after some time $t$ . For the ith body of the tractor-
trailer system, we define a target $T_{i}=\{(z_{1}, z_{2})\in \mathbb{R}^{2} : (z_{1}-p_{i1})^{2}+(z_{2}-p_{i2})^{2}\leq rt_{i}^{2}\}$ with center
$(p_{i1},p_{i2})$ and radius $rt_{i}$ . For attraction to the targets, we consider a potential function:

$V( \mathbb{Z})=\frac{1}{2}(\sum_{i=1}^{2}\{(x_{i}-p_{i1})^{2}+(y;-p_{i2})^{2}\}+v^{2}+\omega^{2})$ , (2)

Note that if we define $z_{e}:=(p_{11},p_{12},p_{13},p_{23},0,0)\in \mathbb{R}^{6}$, then we see that $V(z_{e})=0$ . As a
consequence, the role of $V$ in the Lyapunov function is to ensure that system trajectories start
and remain close to $\mathbb{Z}_{G}$ forcing $\mathbb{Z}_{e}$ , via our controllers, to be an equilibrium point of system (1).

3.1.2 Orientation

One diMculty that exists with continuous time-invariant controllers is that although the final
position is reachable, it $is$ virtually impossible to harvest exact orientations at the equihbrium
point of this special class of dynamical systems, a direct result of Brockett’s Theorem [1]. In
[6] we provided, inter alia, a practical solution to this problem by fixing a number of obsta-
cles at regular intervals on the boundary lines of a parking bay. However, the method easily
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becomes cumbersome if the number of parking bays is increased, hence making the controllers
computationally intensive.

In this paper, we introduce a new algorithm to obtain final orientations. The first part of the
algorithm encompasses the construction of ghost walls along the sides of a target. As seen
in figure 2, two ghost walls are constructed along the side of the target parallel to the final
orientation of the robot, while a third ghost wall is erected in-front of the target to curtail the
unnecessary and time-consuming backward-forward iterations commonly found in literature. The

Figure 2: Schematic diagram of a general l-trailer system in a parking bay showing the manda-
tory safety margins $\gamma_{1},$ $\gamma_{2}$ and $\gamma_{3}$

second part of the algorithm is avoidance of these ghost walls in order to force the occurrence of
$\cdot$

desired orientations. Here we utilize an idea inspired by the work carried out by Khatib in [5].
We design a variant optimization technique where we calculate the minimum distance $hom$ the
robot to a ghost wall and avoid the resultant point on that ghost wall. Avoiding the closest point
on a ghost wall is basically affirming that the mobile robot avoids the whole wall. This algorithm
helps greatly to retain the simplicity of the navigation laws.

Now let us consider the kth ghost wall in the $z_{1}z_{2}$-plane, from the point $(a_{k1}, b_{k1})$ to the point
$(a_{k2}, b_{k2})$ . We assume that the point $(x_{i}, y_{i})$ is closest to it at the tangent line which passes
through the point. From geometry, it is known that if $(Lx_{ik}, Ly_{ik})$ is the point of intersection of
the tangent, $thenLx_{ik}=a_{k1}+\lambda_{ik}(a_{k2}-a_{k1}),$ $Ly_{ik}=b_{k1}+\lambda_{ik}(b_{k2}-b_{k1})$ ,

If $\lambda_{:k}\cdot\geq 1$ , then we let $\lambda_{ik}=1$ , if $\lambda_{ik}\leq 0$ , then we let $\lambda_{ik}=0$ , otherwise we accept the value of
$\lambda_{ik}$ between $0$ and 1, in which case there is a perpendicular line to the point $(Lx_{ik}, Ly_{ik})$ on the
ghost wall from the center $(x_{i}, y_{i})$ of $i$th body of the vehicle at every time $t\geq 0$ .

For the ith body of the robot to avoid the closest point of each of the kth ghost wall, we consider
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a repulsive function

$LS_{ik}( z)=\frac{1}{2}\{(x_{t}-Lx_{ik})^{2}+(y_{i}-Ly_{ik})^{2}-r_{Vi}^{2}\}$ , (3)

for $k=1,$ $\ldots$ , $m$ and $i=1,2$ . The main idea here is to attach necessary and sufficient repulsive
potentials to these ghost walls so that final orientations could be forced to eventuate.

3.2 Kinematic constraints

The kinematic constraints are the nonholonomy of the vehicle and any obstacle in the workspace.
The nonholonomy of the vehicle is reflected in the dynamic model of system (1). The’obstacles
are (a) the four boundaries of a rectangular workspace, (b) stationary solids in the workspace,
(c) the boundaries of the parking bay, and (d) the artificial obstacles due to the mechanical
singularities of the systems. These constraints and the corresponding potential functions, in the
interest of brevity, are discussed below.

3.2.1 Workspace limitations

We desire to setup a framework for the workspace of our robot. It is a fixed, closed and bounded
rectangular region, defined as $WS=\{(z_{1}, z_{2})\in \mathbb{R}^{2} : 0\leq z_{1}\leq\eta_{1},0\leq z_{2}\leq\eta_{2}\}$ . We require the
robot to stay within the rectangular region at all time $t\geq 0$ . Therefore, we impose the following
boundary conditions; left boundary $(z_{1)}z_{2}):z_{1}=0$ ; upper boundary $(z_{1}, z_{2})$ : $z_{2}=\eta_{2}>0$ ; right
boundary $(z_{1}, z_{2})$ : $z_{1}=\eta_{1}>0$ ; and lower boundary $(z_{1}, z_{2}):z_{2}=0$ . In our Lyapunov-based
scheme, these boundaries are considered as fixed obstacles. For the robot to avoid these, we define
the following potential functions for the left, upper, right and lower boundaries, respectively:

$W_{i1}(z)=x_{i}-r_{Vi}$ , $W_{i2}(z)=\eta_{2}-(y_{i}+r_{Vi})$ , (4a-b)
$W_{i3}(z)=\eta_{1}-(x_{i}+r_{Vi})$ , $W_{u}(z)=y_{i}-r_{Vi}$ , (4c-d)

each of which is positive over its domain, for $i=1,2$ . Embedding these functions into the control
laws will contain the motions of the tractor-trailer robot to within the specified boundaries of
the workspace.

3.2.2 Fixed obstacles in the workspace

Let us fix $w$ solid obstacles within the boundaries of the workspace. We assume that the qth
obstacle is circular with center $(0_{\dot{q}1},0_{q2})$ and radius $ro_{q}$ . For its avoidance, we adopt

$FO_{iq}( z)=\frac{1}{2}\{(x_{i}-0_{q1})^{2}+(y_{i}-0_{q2})^{2}-(ro_{q}+r_{Vi})^{2}\}$ , (5)

for $q=1,$ $\ldots,$
$w$ and $i=1,2$ . This function has the same effect as the other repulsive functions

defined above. A point of caution here is that there needs to be suMcient free space between any
two fixed obstacles so that the entire mobile robot can steer through if warranted.
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3.3 Dynamics constraints

Modulus bounds on the velocities and accelerations are treated as dynamics constraints. In
practice, the steering and bending angles of an articulated robot is limited due to mechanical
singularities, while the translational speed is restricted due to safety reasons. Subsequently, we
incorporate the following constraints; (i) $|v|\leq v_{\max}$ , where $v_{\max}$ is the maximal speed of the
tractor; (ii) $| \phi|\leq\phi_{\max}<\frac{\pi}{2}$ where $\phi_{\max}$ is the maximal steering angle of the tractor; and
(iil) $|\theta_{2}-\theta_{1}|\leq\theta_{\max}<5\pi$ where $\theta_{\max}$ is the maximum bending angle of the trailer with respect
to the orientation of the tractor. The trailer can freely rotate $within]_{7}^{\pi}-$ , - [about their linking
point with the tractor [4]. We consider these mechanical constraints as artificial obstacles, and
for the avoidance, we choose positive functions

$DC_{1}(z)$ $=$ $\frac{1}{2}(v_{\max}-v)(v_{\max}+v)$ , (6)

$DC_{2}(\mathbb{Z})$ $=$ $\frac{1}{2}(\frac{v_{\max}}{|\rho_{\min}|}-\omega)(\frac{v_{\max}}{|\rho_{\min}|}+\omega)$ , (7)

$DC_{3}(z)$ $=$ $\frac{1}{2}(\theta_{\max^{-}}(\theta_{2}-\theta_{1}))(\theta_{\max}+(\theta_{2}-\theta_{1}))$ , (8)

which would guarantee the adherence to the restrictions placed upon translational velocity $v$ ,
steering angle $\phi$ , and the rotation $\theta_{2}$ of the trailer, respectively.

3.4 Auxiliary Function

To guarantee the convergenoe of the tractor-trailer mobile robot to its target. This inclusion also
takes care of other associated problems, in particular, goals nonreachable with obstacles nearby
(GNRON) [3]. Thus we introduce

$G( z)=\frac{1}{2}\sum_{i=1}^{2}(x_{i}-p_{i1})^{2}+(y-p_{i2})^{2}+(\theta_{i}-p_{i3})^{2}\}\geq 0$ . (9)

4 Design of Control Laws

Combining all the potential functions, (2-9), and introducing control parameters, $\alpha_{ik}>0,$ $\beta_{ij}>$

$0,$ $\gamma_{iq}>0,$ $\zeta_{s}>0$ , for $i,j,$ $k,$ $q,$ $s\in N$ , we define a candidate Lyapunov function for system (1) as

$L( z)=V(z)+G(z)\sum_{:=1}^{2}(\sum_{k=1}^{2}\frac{\alpha_{ik}}{LS_{ik}(z)}+\sum_{j=1}^{4}\frac{\beta_{ij}}{W_{ij}(z)}+\sum_{q=1}^{w}\frac{\gamma_{iq}}{FO_{iq}(z)})+G(z)\sum_{s=1}^{3}\frac{\zeta_{\epsilon}}{DC_{\delta}(z)}$ . (10)

Clearly, $L$ is lo$c$ally positive and continuous on the domain $D(L)$ . Moreover, we see that $z_{e}\in$

$D(L)$ and $L(z_{\epsilon})=0$ . To extract the control laws for the l-trailer system, we differentiate the
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various component$s$ of $L(z)$ separately, carry out the necessary substitutions from (1) to obtain

$\dot{L}(z)$ $=$ $\frac{1}{L_{2}}(\frac{L_{2}+a}{2}$ ( $f_{2}(z)$ sin $\theta_{2}-g_{2}(z)$ cos $\theta_{2}$ ) $+h_{2}(z))$ sin $(\theta_{1}-\theta_{2})v$

$+$ ( $(f_{1}(z)+f_{2}(z))$ cos $\theta_{1}+(g_{1}(z)+g_{2}(z))$ sin $\theta_{1}+k_{1}(z)\sigma_{1}$ ) $v$

$+ \frac{c}{L_{2}}$ ( $\frac{L_{2}+a}{2}$ ($g_{2}(\mathbb{Z})$ cos $\theta_{2}-f_{2}(z)$ sin $\theta_{2}$ ) $-h_{2}(z)$) cos $(\theta_{1}-\theta_{2})\omega$

$+(c(f_{2}( z)sIn\theta_{1}-g_{2}(z)\cos\theta_{1})+\frac{L_{1}}{2}(g_{1}(z)\cos\theta_{1}-f_{1}(z)\sin\theta_{1})+h_{1}(z)+k_{2}(z)\sigma_{2})\omega$ ,

where functions $f_{i}(z),g_{i}(z),$ $h_{2}(z)$ and $k_{i}(z)$ , for $i=1,2$ are defined as (on suppressing z),

$f_{i}$ $=$ $(1+ \sum_{k=1}^{2}\frac{\alpha_{ik}}{LS_{ik}(z)}+\sum_{j=1}^{4}\frac{\beta_{ij}}{W_{ij}(z)}+\sum_{q=1}^{w}\frac{\gamma_{iq}}{FO_{iq}(z)}+\sum_{s=1}^{3}\frac{\zeta_{s}}{DC_{\delta}(z)})(x_{i}-p_{i1})$

$-G \{\frac{\beta_{i1}}{W_{i1}^{2}}-\frac{\beta_{i3}}{W_{i3}^{2}}+\sum_{q=1}^{w}\frac{\gamma_{iq}}{FO_{iq}^{2}}(x_{i}-0_{q1})\}$

$-G \sum_{k=1}^{2}\frac{\alpha_{ik}}{LS_{ik}^{2}}([1-(a_{k2}-a_{k1})d_{k}](x_{1}-Lx_{ik})-(b_{k2}-b_{k1})d_{k}(y_{i}-Ly_{ik}))$ ,

$h_{i}$ $=$ $( \sum_{k=1}^{2}\frac{\alpha_{ik}}{LS_{ik}(z)}+\sum_{j=1}^{4}\frac{\beta_{ij}}{W_{ij}(z)}+\sum_{q=1}^{w}\frac{\gamma_{iq}}{FO_{iq}(z)}+\sum_{s=1}^{3}\frac{\zeta_{s}}{DC_{s}(z)})(\theta_{i}-p_{i3})$

$+(-1)^{i}G \frac{\zeta_{3}}{DC_{3}^{2}}(\theta_{2}-\theta_{1})$ ,

$g_{i}$ $=$ $(1+ \sum_{k=1}^{2}\frac{\alpha_{ik}}{LS_{ik}(z)}+\sum_{j=1}^{4}\frac{\beta_{ij}}{W_{ij}(z)}+\sum_{q=1}^{w}\frac{\gamma_{iq}}{FO_{iq}(z)}+\sum_{e=1}^{3}\frac{\zeta_{s}}{DC_{\epsilon}(z)})(y_{i}-p_{i2})$

$-G \{\frac{\beta_{i4}}{W_{i4}^{2}}-\frac{\beta_{i2}}{W_{i2}^{2}}+\sum_{q=1}^{w}\frac{\gamma_{iq}}{FO_{iq}^{2}}(y_{i}-0_{q2})\}$

$-G \sum_{k=1}^{2}\frac{\alpha_{ik}}{LS_{ik}^{2}}([1-(b_{k2}-b_{k1})r_{k}](y_{i}-Ly_{ik})-(a_{k2}-a_{k1})r_{k}(x_{i}-Lx_{ik}))$ ,

$k_{i}$ $=$ $1+G \frac{\zeta_{i}}{DC_{i}^{2}}$ .

Next, given the convergence parameters $\delta_{1},$ $\delta_{2}>0,\dot{L}(z)$ can be made non-positive by letting the
translational and rotational speeds for the l-trailer system have the following form:

$-\delta_{1}xv$ $=$ $\frac{1}{L_{2}}$ ( $\frac{L_{2}+a}{2}$ ( $f_{2}(z)$ sin $\theta_{2}-g_{2}(z)$ cos $\theta_{2}$ ) $+h_{2}(z).$) sln $(\theta_{1}-\theta_{2})$

$+(f_{1}(z)+f_{2}(z))$ cos $\theta_{1}+(g_{1}(z)+g_{2}(z))$ sin $\theta_{1}+k_{1}(\mathbb{Z})\sigma_{1}$ ,

$-\delta_{2}\cross\omega$ $=$ $\frac{c}{L_{2}}$ ( $\frac{L_{2}+a}{2}$ ($g_{2}(z)$ cos $\theta_{2}-f_{2}(z)$ sin $\theta_{2}$ ) $-h_{2}(z)$) cos $(\theta_{1}-\theta_{2})$

$+c$ ( $f_{2}(z)$ sin $\theta_{1}-g_{2}(z)$ cos $\theta_{1}$ ) $+ \frac{L_{1}}{2}$ ($g_{1}(z)$ cos $\theta_{1}-f_{1}(z)$ sin $\theta_{1}$ ) $+h_{1}(z)+k_{2}(z)\sigma_{2}$ .
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The aforementioned conditions lead us to a negative semi-definite expression of the proposed
candidate Lyapunov function provided our state feedback nonlinear controllers governing the
robot are of the form:

$\sigma_{1}=-\frac{1}{L_{2}}$ ( $\frac{L_{2}+a}{2}$ ( $f_{2}(z)$ sin $\theta_{2}-g_{2}(z)$ cos $\theta_{2}$ ) $+h_{2}(z)$) sin $(\theta_{1}-\theta_{2})/k_{1}(z)$ (lla)

- ($\delta_{1}v+((f_{1}(z)+f_{2}(z))$ cos $\theta_{1}+(g_{1}(z)+g_{2}(z))$ sin $\theta_{1})$ ) $/k_{1}(z)$ ,

$\sigma_{2}=-\frac{c}{L_{2}}$ ( $\frac{L_{2}+a}{2}$ ($g_{2}(z)$ cos $\theta_{2}-f_{2}(z)$ sin $\theta_{2}$ ) $-h_{2}(z)$) cos $(\theta_{1}-\theta_{2})/k_{2}(z)$ (llb)

$-$ $( \delta_{2}\omega+c(h(z)\sin\theta_{1}-g_{2}(z)\cos\theta_{1})+\frac{L_{1}}{2}(g_{1}(z)\cos\theta_{1}-f_{1}(z)\sin\theta_{1})+h_{1})/k_{2}(z)$ .

We note that $\dot{L}(z)\leq 0$ for af $z\in D(L)$ , and $\dot{L}(\mathbb{Z}_{e})=0$ . Interestingly, having $c=0$ gives the
controllers for the corresponding standard l-trailer system. A careful scrutiny of the properties
of our candidate function reveals that $z_{e}$ is an equilibrium point of system (1) and $L$ is a legit-
imate Lyapunov function that, per se, guarantees its stability. The following theorem ends our
discussions thus far:

Theorem 1 The equilibrium point $z_{e}$ of system (1) is stable provided $\sigma_{1}$ and $\sigma_{2}$ are defined as
in $(lla)$ and $(llb)$, respectively.

5 Implementation of the Control Laws

To illustrate the effectiveness of the proposed controllers we fabricate a scenario where the tractor-
trailer robot has to maneuver from an initial to a final state, in the workspace cluttered with fixed
obstacles, by and by, attain a pre-determined posture at the target. We will verify numerically
the stability results obtained from the Lyapunov function. The corresponding initial and final
states and other details for the simulation are listed below (assuming that appropriate units have
been taken into account).

1. Robot Parameters: $L_{1}=2;L_{2}=2.24;l=1;c=0.34$.

2. Initial Configuration: $(x_{1},y_{1})=(5,8);(\theta_{1}, \theta_{2})=(\pi/4,0);(v,\omega)=(0.9,0.5)$ .

3. Final Configuration: $(p_{11},p_{12},p_{13},p_{23})=(22,16.5,0,0);rt_{1}=0.1$.

4. Fixed Obstacle: Center: $(0_{11},0_{12})=(12,10)$ , radius: $ro_{1}=2$ .
5. Physical Limitations: $v_{\max}=0.95$ and $\phi_{\max}=60^{o}$ .
6. Control Parameters:
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7. Parameters: Clearance: $\epsilon_{1}=\epsilon_{2}=0.1$ ; Convergence: $\delta_{1}=180$ and $\delta_{2}=200$ .

9. Boundaries and Ghost Walls: as shown in fig. 3

The controllers were implemented to gen-
erate afeasible robot trajectory from an
initial to afinal state. Fine tuning of
the control and convergence parameters
were carried out to accoaplish our r\’eearch
goal. $F\ddagger gure38hows$ how the tractor-
trailer mobile robot convergae to the $de8ired$

state. With the inclusion of ghost walls td
the new optimization technique, we gener-
ated the maneuvers that culminated to a
pre-defined orientation at the target posi-
tion (see Fig. 4), achieving the final $pr$e-
defined posture. Figure 5shows explicitly
the time evolution of the acceleration con-
trollers along the trajectory of atwo-body
articulated vehicle. One can clearly notice

$z_{1}$

the convergence of the controllers at the fi-

Figure 3: The resulting stable trajectory of the nal state implying the $effectivene\epsilon s$ of the
new controllers.tractor-trailer robot in aspecific traffic scenario.

6 Discussion

This paper praeents anew set of continuous time-invariant acceleration control laws that improves
upon, in general, the posture control, with theoretically guaranteed poInt and posture $stabilitie8$ ,
convergence and collision avoidance properties of ageneral tractor-trailer robot in $a$ $pf\dot{\tau}ori$ known
environment. We basically utilize ghost walls and the new optimization teinique to strengthen
posture $stabih\cdot ty$, in the sense of Lyapunov, of our dynamical model. The ghost walls are erected
ae required in the $work_{8}pace\bm{t}d$ then we utilize the optimization technique to garner the pre-
determined final postures. This teinlque emerges as aconvenient meianism for obtaining
$fea\epsilon ible$ orientations of eai and every body of the articulated robot system.

In anutshell, we have acentralized trajectory planning, whit to certain extent, demonstrates
autonomy and multitasking capabilities of humans. The new algorithm provides us with a
$8uitable$ and fitting platform to harvest coliision-free trajectories from initial to desired states
and aiieving final postures within adynamic environment, whIlst satisfying the nonholonomic
constraints of the system. The proposed controllers stabilize the configuratlon coordinates of the
vehicle to an $ar$bitrary small neighborhood of the taxget. We note here that convergence is oty
laranteed $kom$ anumber of initial states of the system. For now, we are satIsfied with searching
for these initial conditions numerically via the computer. This is, admittedly, still along way
from proving asymptotic stability, but we have now astarting point for using continuous control
laws that guarrtee, for $8ome$ initial conditions, point and posture stabllities.
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Figure 4: The resulting orientations of the
tractor (dashed line) and the trailer.

Figure 5: Evolution of the transla-
tional (dashed line) and rotational ac-
celerations.
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