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Abstract
In this paper we discuss the Moroshima’s example, which implies a kind of eventu-

ally asymptotical stability of solutions for a difference equation $x(n+1)=f(x(n))$ for
$n=0,1,2,$ $\cdots$ . We define new definitions of eventual stability of periodic points in the
meaning of the large in the same way as ones of Lakshmikantham et. al. and Yoshizawa.
By applying the Lyapunov’s second method we give eventual stability criteria in the large
of the differenc$e$ equation. In order to illustrate our main results on eventual stability
an example of a set of 2-periodic points for eventual stability is given with an analyti-
cal estimation. Finally we show another criteria to the eventual stability for difference
equations. The criteria is corresponding to Yoshizawa’s result on the eventual stability of
ordinary differential equations.

1 Introduction
In 1977 Morishima[3] gave results on the stability, oscillation and chaos of periodic

points concerning the following difference equation.

$x(n+1)= \frac{A(n)}{A(n)+B(n)}$ for $n=0,1,$ $\cdots$ $(E)$

and

$A(n)$ $= \max[\frac{a}{b}x(n)+\{1-(1+a)x(n)\}, 0]$ ,

$B(n)$ $= \max[(1-x(n))\{\frac{a}{b}-\frac{x(n)(1-(1+a)x(n))}{(1-x(n))^{2}}\}, 0]$

Here $a,$ $b$ are positive parameters. His results[3] with $a=0.6,$ $b=1$ were studied concern-
ing the chaos of Eq(E) independently with Li-Yorke[2] in 1975.

Morishima[4] studied the chaotic behavior and the stability of orbits of

$x(n+1)=f(x(n))$ , (1.1)

where $f$ : $[0,1]arrow[0,1]$ is continuous, $x$ : $Z_{+}=\{0,1,2, \cdots\}arrow[0,1]$ is the price of
the commodity and also he discussed some type of stability of periodic points, where
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the stability is not globally uniformly asymptotically stable but every orbits of (1.1) has
unstable properties in the beginning and the stable behavior from some iterations.

In this paper we show results on the globally asymptotical stability for periodic points of
(1.1) as well as we discuss the globally eventually asymptotical stability. See Lakshikantham-
Leela[l], Yoshizawa[5] concerning the eventual stability for the case of ordinary differential
equations.

2 Notations
Consider difference equation (1.1) in $I^{m}\subset R^{m}$ with $I=[0,1]$ and positive integer

$m$ . Denote $x(n)=(x_{1}(n),x_{2}(n),$ $\cdots,x_{m}(n))^{T}$ , where $T$ means the transpose, $mis$ a relative
price vector of $m$-commodities, where $0\leq x_{j}(n)\leq 1$ for $j=1,2,$ $\cdots,m$ and $\sum_{j=1}x_{j}(n)=1$

for $n\in z_{+}$ . See $[3, 4]$ in detail. A function $f$ : $I^{m}arrow I^{m}$ is continuous.
Let $k$ be a positive integer. Denote a set of $k$ -peridic points by $P(k)=\{x^{s}\in I^{m}\}$ .

$x$ $\in P(k)$ if and only if $f^{i}(x^{r})\neq f^{j}(x^{r})$ for $1\leq i\neq j\leq k$ and $f^{k}(x^{*})=x^{*}$ . Denote
by $x(n;n_{0}, x_{0})$ a solution of (1.1) for $n\geq n_{0}$ with $x(n_{0};n_{0},x_{0})=x_{0}$ satisfying the initial
condition $(n_{0},x_{0})\in z_{+}\cross I^{m}$ . Denote by $\Vert x||$ a nom of $x\in R^{m}$ . For $r>0$ we denote
the following neighborhoods: when a point $x_{0}\in I^{m},$ $B(x_{0}, r)=\{x\in I^{m}:\Vert x-x_{0}\Vert<r\}$ ;
when a subset $P\subset I^{m},$ $S(P, r)= \bigcup_{x\in P}B(x,r)$ .

A set of $k$ -periodic points $P(k)$ is called eventually uniformly stable [EV-US] if for
each $\epsilon>0$ there exist $N_{0}\in Z_{+}$ and $\delta>0$ such that for every $x_{0}\in S(P(k),\delta)$ and every
$n_{0}\geq N_{0}$ , it holds that each solution $x(n;n_{0},x_{0})\in S(P(k),\epsilon)$ for $n\geq n_{0}$ , i.e.,

$d(x(n;n_{0},x_{0}),$ $P(k))<\epsilon$ .
Here a distance between a point $x\in R^{m}$ and a subset $S\subset R^{m}$ is defined by $d(x, S)= \inf\{||$

$x-a\Vert:a\in S\}$ . A set of $k$-periodic points $P(k)$ is called eventually uniformly attractive
to finite coverings [EV-UA-FC] if each finite covering $\{C_{q}\subset I^{m} : \bigcup_{q=1}^{Q}C_{q}\supset I^{m}\}$ and each
$\epsilon>0$ , there exist $N_{0}\in Z_{+}$ and $T_{0}\in Z_{+}$ such that for every $1\leq q\leq Q$ , every $x_{0}\in C_{q}$ and
every $n_{0}\geq N_{0}$ , it holds that every solution $x(n;n_{0}, x_{0})\in S(P(k),\epsilon)$ for $n\geq n_{0}+T_{0}$ , i.e.,

$d(x(n;n_{0},x_{0}),$ $P(k))<\epsilon$ .

The set of $k$-periodic points $P(k)$ is called eventually uniformly asymptotically stable to
finite coverings [EV-UAS-FC] if $P(k)$ is [EV-US] and [EV-UA-FC].

3 Criterion of Eventual Stability
Assume that Eq(l.l) has a set of k-periodic points

$P(k)=\{x_{1}, x_{2}, \cdots, x_{k}\}$

for $k=1,2,$ $\cdots$ . We show two criterion for eventually uniformIy asymptotically stable of
$P(k)$ by aPplying Lyapunov’s second method. In case $k=1,$ $P(1)$ is a set of fixed point.
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Let a set of functions denote

$CIP=$ {$a:Iarrow R_{+}$ is continuous, strictly increasing and positively definite}

and $R+=[0, \infty$ ). Denote $A-B=\{x\in A:x\not\in B\}$ for sets $A,$ $B\subset I^{m}$ .
In the foIlowing theorem we give eventually uniformly asymptotically stable to finite

coverings of $P(k)$ .

Theorem. $k$-periodic points $P(k)$ is eventually uniformly asymptotically stable to
finite coverings under that there exists a function $V$ : $z_{+}\cross I^{m}arrow R+satis\phi ing$ the
following condition $(a)-(b)$ .

(a) For any $r>0$ there exist a nonnegative integer $N_{0}\geq 0$ and two functions $a_{r},$ $b_{r}\in$

CIP such that
$o_{\tau}(d(x, P(k)))\leq V(n,x)\leq b_{r}(d(x, P(k))$

for any $n\geq N_{0}$ and any $x\in I^{m}-S(P(k), r)$ .

(b) Let $\Delta V(n, x)=V(n+k, f^{k}(x))-V(n, x)$ for $(n,x)\in z_{+}\cross I^{m}$ . For any $r>0$ there
exist a nonnegative integer $N_{0}\geq 0$ and a function $c_{r}\in CIP$ such that

$\Delta V(n, x)\leq$ 一果 $(d(P(k), x))$

for any $n\geq N_{0}$ and any $x\in I^{m}-S(P(k),r)$ .

Outline of Proof At first, we get the following inequalities.

$\tilde{a}_{\gamma}(d(x, P(k)))\leq V(n,x)\leq b_{r}(d(x, P(k)))$ ; (32)
$\Delta V(n,x)\leq-4^{\tilde{\backslash }}(d(x, P(k)))$ . (33)

where $\tilde{a}_{r}(d)=\min[a_{f}(d), c_{r}(d)]$ and $\tilde{c}_{r}(d)=\frac{1}{2}\tilde{a}_{r}(d)$ for $d>0$ . For a sufficiently large
$\alpha_{1}>0$ and small $\alpha_{2}>0$ and any $p_{\omega}\in P(k)$ it can be seen that $I^{m}\subset S(P(k), \alpha_{1})$ and
that

if $x\in B(p_{\omega}, \alpha_{2})$ , then $f^{k}(x)\in B(p_{\omega}, \alpha_{1})$ . (3.4)

For any $\epsilon>0$ define

$\phi_{\omega}(\epsilon)=\inf\{V(n,x) : \epsilon\leq\Vert x-p_{w}||\leq\alpha_{1},n\geq n_{O}\}$ . (3.5)

We get

$V(n,x)<\phi_{w}(\epsilon)$ for $x\in B(p_{w}, \delta_{w}),$ $n_{0}\geq N_{0}$ . (3.6)

Second, it cam be seen that there exist $1\leq k(1),$ $k(2)\leq k$ and $\delta>0$ as follows:

$\exists p_{k(1)}\in P(k),0<\exists\delta<\delta_{w}$ : $\forall y\in B(p_{k(1)},\delta),\forall n_{O}\geq N_{0}$ ;
$\forall P=1,2,$ $\cdots,$ $\exists p_{k(2)}\in P(k)$ : $x(n_{0}+\ell k;n_{O},y))\in B(p_{k(2)},\epsilon)$ . (3.7)

Hence, $P(k)$ is [EV-US], because for any $0<\epsilon<\alpha_{2}$ there exist a positive $\delta<\min\{\delta_{w}$ :
$1\leq\omega\leq k\}$ and an integer $N_{0}\geq 0$ such that for any $n_{O}\geq N_{0}$ and any $n\geq n_{0}$ if
$x_{0}\in S(P(k),\delta)$ , then $x(n;n_{O},x_{0})\in S(P(k),\epsilon)$ .
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It can be seen that (1.1) is uniformly bounded as follows:

$\forall\alpha>0,$ $\exists\beta(\alpha)>0:\forall n_{0}\geq 0,$ $\Vert x$ ($n$ ;no, $x$ ) $\Vert<\beta(\alpha)$ for $\Vert x\Vert<\alpha,n\geq n_{0}$ . (3.8)

Finally, if Eq(l.l) is not [EV-UA-FC], then we lead to a contradiction Therefore $P(k)$

is [EV-UA-FC].

In case where $k=1$ the above theorem leads to an eventual stability theorem of fixed
point for (1.1).

Corollary. Eq(l.l) has a fixed point $x^{*}$ . The point $x^{*}$ is eventually uniformly asymp-
totically stable to finite coverings under that there exists a function $V:Z_{+}\cross I^{m}arrow R_{+}$

$satis\infty g$ Condition $(a)-(b)$ .

(a) For any $r>0$ there exist an integer $N_{0}\geq 0$ and two functions $a_{r},b_{r}\in CIP$ such
that

$a_{r}(||x-x^{*}||)\leq V(n,x)\leq b_{r}(\Vert x-x\Vert)$

for any integers $n\geq N_{0}$ and any initial points $x\in$. $I^{m}-\{x^{*}\}$ .

(b) Let $\Delta V(n,x)=V(n+1, f(x))-V(n,x)$ for $(n, x)\in z_{+}\cross I^{m}$ . For any $r>0$ there
exist an integer $N_{0}\geq 0$ and a functIon $c_{r}\in CIP$ such that

$\Delta V(n,x)\leq-c_{r}(\Vert x-x^{*}\Vert)$

for any $n\geq N_{0}$ and any $x\in I^{m}-\{x^{*}\}$ .

4 Illustration of Theorem
We illustrate Theorem in the case $k=2$ and $P(2)=\{0.5,0.7\}$ in the space $R$ with a

numerical result. Consider Morishima’s example as follows.

$x(n+1)=f(x(n))= \frac{A(n)}{A(n)+B(n)}$ .

Here $A(n)= \max[x+bE_{1}(x(n)), 0],$ $B(n)= \max[1-x+bE_{2}(x(n)), 0]$ and $a=0.6$ and
$E_{1}(x)=-x+ \frac{1-x}{a},$ $E_{2}(x)=- \frac{xE_{1}(x)}{1-x}$ . See [3] in detail. Then, in $b=0.6$, we get

$f(x)= \frac{1.\cdot 8x^{2}-4.8x+3}{96x^{2}-13.8x+6}$ , $f’(x)= \frac{21..24x^{2}-36x+12.6}{(96x^{2}-13.8x+6)^{2}}$ .

Let
$V(x)=d(x)P(2))= \min[|x-0.5|, |x-0.7|]$

for $x\in I$ . Let $a_{r}(d)=b_{r}(d)=d(d>0)$ to any $r>0$ . Then $a_{r},$ $b_{r}\in CIP$ and it holds
that Condition(a) of Theorem is satisfied. It can be seen that

$\Delta V(x)$ $=$ $\min(|f^{2}(x)-0.5|, |f^{2}(x)-.0.7|)-d(x, P(2))$

$=$ $\min$( $|f^{2}(x)-f^{2}(0.5)$鴎 $f^{2}(x)-f^{2}(0.7)|$) $-d(x, P(2))$

$= \min_{x=0.5,0.7}|\int_{0}^{1}\frac{df^{2}}{dx}(x^{*}+\theta(x-x^{*}))(x-x^{*})d\theta|-d(x, P(2))$
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$\leq$ $\min_{x’=00.7}\max_{x\in I}|\frac{df^{2}}{dx}(x)||x-x^{*}|-d(x, P(2))$

$=$ $\max_{x\in I}|\frac{df^{2}}{dx}(x)|d(x, P(2))-d(x, P(2))$

$=$ $( \max_{x\in I}|f’(f(x))f’(x)|-1)d(x, P(2))$ .

It holds that $\Delta V(x)\leq\max_{x\in I}(f’(f(x))f’(x)-1)V(x)$ .
We shall show that $\Delta V(x)\leq-cV(x)$ for $x\in I$ with a real number $c>0$ . Putting

$y(x)=f’(f(x))f’(x)-1$ , when $y(x)<0$ , then there exists a positive number $c$ such that

$\Delta V(x)\leq-cV(x)$ . (4.9)

Putting $C(d)=cd$, we have

$C\in CIP:\Delta V(x)\leq-C(V(x))$ .

Therefore it holds that Condition (b) of Theorem is satisfied.
Denote

$P=21.24x^{2}-36x+12.6$ , $q=(9.6x^{2}-13.8x+6)^{2}$ ,

then we have $f’=p/q$ and $\max_{x\in I}|p/q|<1$ . In fact

$\frac{p^{2}-q^{2}}{q^{2}}$

$= \frac{(p-q)(p+q)}{q^{2}}$

$=[(21.24x^{2}-36x+12.6)-(9.6x^{2}-13.8x+6)^{2}]$

$x[21.24x^{2}-36x+12.6+(9.6x^{2}-13.8x+6)^{2}]/q^{2}$

$=[-92.16x^{4}+264.96x^{3}-284.4x^{2}-118.8x-23.4]$

$\cross[21.24(x-(1.18)^{-1})^{2}+12.6-(9/5.09)+(9.6x^{2}-13.8x+6)^{2}]/q^{2}$

and $12.6-(9/5.09)>0,264.96x^{3}-284.4x^{2}=264.96x^{2}(x-284.4/264.96)<0$ for $0\leq$

$x\leq 1$ , then we have $|f’(x)| \leq\max_{x\in I}\frac{|p|}{|q|}<1$ . Henoe it holds that on $x\in[0,1]$

$y(x)=f’(f(x))f’(x)-1 \leq(\max_{x\in I}\frac{|p|}{|q|})^{2}-1<0$ .

Since $y$ is continuous and $[0,1]$ is compact, then there exists a positive number $c$ such
that $y(x)\leq-c<0$ on $[0,1]$ .

5 Future Study
In this paper we considered a definition of [EV-UAS-FC] (eventually uniformly asymp-

totic stability to finite coverings) in the same way as theory of ordinary differential equa-
tions.
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We showed a theorem for [EV-UAS-FC] of difference equation $x(n+1)=f(x(n))$
by Lyapunov’s second method but including,a computational result and also analytical
estimation of $\Delta V$.

Moreover we illustrated the eventual stability theorem by applying it to the Morishima’s
example.

In [5] Yoshizawa gave an eventual stability theorem where the following ordinary dif-
ferential equation

$x’=F(t,x)$ for $t\in R_{+}=[0, \infty$ ), $x\in R^{m}$ . (ODE)

Here $F$ is continuous on $R_{+}xR^{m}$ . Let $N\subset R^{m}$ be closed. Moreover it is assumed
that the solutions for (ODE) are uniform-bounded and there exists a Lyapunov function
$V(t,x):R_{+}xR^{m}arrow R_{+}$ which satisfies the following conditions(i) and (ii).

(i) $a(d(x, N))\leq V(t, x)\leq b(d(x, N),$ $\Vert x\Vert$ ) for any $(t,x)$ ,
where $a$ is continuous and $a(r)>0$ for $r>0$ . $b(r, s(r))$ is continuous and increasing
in $r$ and $b(r, s(r))arrow 0$ as $rarrow 0$ for $s=s(r)\geq 0$ , which is dependent on $r$.

(ii) $V’(t, x)+V^{*}(t, x)arrow 0$ , uniformly on $0<\lambda\leq d(x, N)\leq\mu,$ $x\in S_{\alpha}=\{||x||\leq\alpha\}$

for any $\lambda,$ $\mu,$ $\alpha$ as $tarrow\infty$ . Here

$V’(t, x)= \lim_{harrow}\sup_{+0}\frac{V(t+h,x+hF(t,x))-V(t,x)}{h}$

and $V$“ is a continuous function such that $V^{*}(t, x)\geq W(x)$ for any $(t, x)$ , where $W$

is positively definite with respect to $N$.

Then the set $N$ is an eventually uniform-asymptotically stable 8et of (ODE) in the large.
Moreover if $N$ satisfies $F(t, N)\subset N$ for any $t$ , then $N$ is a uniform-asymptotically stable
set in the large.

In the case of the $k$-periodic points $P(k)$ to (1.1) $w$ consider $N=P(k)$ . It is expected
that $P(k)$ is eventually uniform-asymptotically stable in the large if $\Delta V(n, x)+V$“ $(n, x)arrow$
$0$ as $narrow\infty$ uniformly on $0<\lambda\leq d(x, P(k))\leq\mu,$ $x\in S_{\alpha}=\{\Vert x||\leq\alpha\}$ for any $\lambda,\mu,\alpha$ .
Moreover $V$“ $(n,x)\geq W(x)$ for any $n=0,1,2,$ $\cdots$ , and $x\in I^{m}$ and $W$ is continuous and
positively definite to $N$ provided with the above condition (i) in [5].
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