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Abstract
In this paper we discuss the Moroshima’s example, which implies a kind of eventu-
ally asymptotical stability of solutions for a difference equation z(n + 1) = f(z(r)) for
n=0,1,2,---. We define new definitions of eventual stability of periodic points in the
meaning of the large in the same way as ones of Lakshmikantham et. al. and Yoshizawa.
- By applying the Lyapunov’s second method we give eventual stability criteria in the large
of the difference equation. In order to illustrate our main results on eventual stability
an example of a set of 2-periodic points for eventual stability is given with an analyti-
cal estimation. Finally we show another criteria to the eventual stability for difference
equations. The criteria is corresponding to Yoshizawa’s result on the eventual stability of
ordinary differential equations.

1 Introduction

In 1977 Monshlma[B] gave results on the stability, oscillation and chaos of periodic
points concerning the following difference equation.
A(n)

m forn=0,1,--- (E)

z(n+1) =

and

Am) = mex[ze(m)+{1-(1+a)m)},0],
z(n)(1 - (1 + a)z(n))
1 —z(n))?

Here a, b are positive parameters. His results[3] with a = 0.6,b = 1 were studied concern-
ing the chaos of Eq(E) independently with Li-Yorke[2] in 1975.
Morishima(4] studied the chaotic behavior and the stability of orbits of

z(n+1) = f(z(n)), (1.1)

where f : [0,1] — [0,1] is continuous, z : Z, = {0,1,2,---} — [0,1] is the price of
the commodity and also he discussed some type of stability of periodic points, where

$ 0]

B(r) = max{(l—2(m)){; -
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the stability is not globally uniformly asymptotically stable but every orbits of (1.1) has
unstable properties in the beginning and the stable behavior from some iterations.

In this paper we show results on the globally asymptotical stability for periodic points of
(1.1) as well as we discuss the globally eventually asymptotical stability. See Lakshikantham-
Leela[1], Yoshizawa|[5] concerning the eventual stability for the case of ordinary differential
equations.

2 Notations

Consider difference equation (1.1) in I™ C R™ with I = [0,1] and positive integer

m. Denote z(n) = (z1(n), z2(n), - -, Zm(n))T, where T' means the transpose, is a relative
m

price vector of m—commodities, where 0 < z;(n) < 1for j =1,2,---,m and sz (n)=1
=1

for n € Z,. See [3, 4] in detail. A function f: I™ — I™ is continuous. ’

Let k be a positive integer. Denote a set of k—peridic points by P(k) = {z* € I™}.
z* € P(k) if and only if fi(z*) # f/(z*) for 1 < i # j < k and f¥(z*) = z*. Denote
by z(n;no, zo) a solution of (1.1) for n > ny with z(ne; 19, Zo) = zo satisfying the initial
condition (ng, o) € Z4. X I™. Denote by || z | a norm of £ € R™. For r > 0 we denote
the following neighborhoods: when a point o € I"™, B(zo,r) = {z € I™ :||z -z ||< 7} ;
when a subset P C I"™, S(P,r) = UgepB(z,T).

A set of k—periodic points P(k) is called eventually uniformly stable [EV-US] if for
each € > 0 there exist No € Z, and 6 > 0 such that for every zo € S(P(k), ) and every
~ ng 2> Ny, it holds that each solution z(n;ne,zo) € S(P(k),¢) for n > ng,i.e.,

d(z(n; no, 20), P(k)) < e.

Here a distance between a point z € R™ and a subset S C R™ is defined by d(z, S) = inf{|]
z—a ||: @ € S}. A set of k—periodic points P(k) is called eventually uniformly attractive
to finite coverings [EV-UA-FC] if each finite covering {C, C I™ : UqQ.__qu D I™} and each
€ > 0, there exist No € Z; and Ty € Z. such that for every 1 < ¢ < Q, every zy € C, and
every ng > Ny, it holds that every solution z(n;ng, zo) € S(P(k),¢) for n > ng + Tp, i.e.,

d(z(n; no, zo), P(k)) < €.
The set of k—periodic points P(k) is called eventually uniformly asymptotically stable to
finite coverings [EV-UAS-FC] if P(k) is [EV-US] and [EV-UA-FC].
3 Criterion of Eventual Stability
Assume that Eq(1.1) has a set of k-periodic points
P(k) = {z1, 22, - -, 2k}

for k=1,2,.... We show two criterion for eventually uniformly asymptotically stable of
P(k) by applying Lyapunov’s second method. In case k = 1, P(1) is a set of fixed point.
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Let a set of functions denote
CIP = {a: I — R, is continuous, strictly increasing and positively definite}

and R, = [0,00). Denote A— B={zr € A:z ¢ B} forsets A,B C I™.
In the following theorem we give eventually uniformly asymptotically stable to finite
coverings of P(k).

Theorem. k—periodic points P(k) is eventually uniformly asymptotically stable to
finite coverings under that there exists a function V : Z, x I™ — R, satisfying the
following condition (a)-(b).

(a) For any r > 0 there exist a nonnegative integer No > 0 and two functions a,, b, €
CIP such that
ar(d(z, P(k))) < V(n,z) < br(d(z, P(K))

for any n > Np and any z € I™ — S(P(k),r).

(b) Let AV(n,z) = V(n+k, f¥(z)) — V(n,z) for (n,z) € Z, x I"™. For any r > 0 there
exist a nonnegative integer Ny > 0 and a function ¢, € CIP such that

AV(n,z) < —c.(d(P(k),z))

for any n > N, and any z € I™ — S(P(k),r).

Outline of Proof At first, we get the following inequalities.

d(d(z, P(k))) < V(n,z) < be(d(z, P(K))); (3.2)
AV(n,z) < ~&(d(z, P(k)))- (3.3)
where d.(d) = min[a,(d), c.(d)] and &(d) = 1d.(d) for d > 0. For a sufficiently large

a; > 0 and small o > 0 and any p, € P(k) it can be seen that I™ C S(P(k), ;) and
that.

if z € B(pu, @2), then f*(z) € B(p,, o). (3.4)
For any € > 0 define
#u(€) = inf{V(n,z) : e <|| £ — po, [|< @1,m > no}. (3.5)
We get
V(n,z) < ¢,(¢) for z € B(p,, ), 1o = No. (3.6)

Second, it cam be seen that there exist 1 < k(1),k(2) < k and § > 0 as follows:

lec(l) € P(k)’o <3< aw . Vy € B(pk(1),5),v'no 2 NO;
Ve = 1127 Yy 3pk(2) € P(k) . x(nO + Ek, nO’y)) € B(pk(2), 6)' (37)
Hence, P(k) is [EV-US], because for any 0 < € < oy there exist a positive § < min{d, :

1 € w < k} and an integer Ny > 0 such that for any ng > Np and any n > ng if
zo € S(P(k),d), then z(n;no,x0) € S(P(k),€).
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It can be seen that (1.1) is uniformly bounded as follows:
Vo > 0,38(a) > 0:Vne >0, || z(n; no, T ) < B(a) for || z ||< a,n > ny. (3.8)
Finally, if Eq(1.1) is not [EV-UA-FC], then we lead to a contradiction Therefore P(k)
is [EV-UA-FC].

In case where k = 1 the above theorem leads to an eventual stability theorem of fixed
point for (1.1).

Corollary. Eq(1.1) has a fixed point z*. The point z* is eventually uniformly asymp-
totically stable to finite coverings under that there exists a function V : Z, x I™ — R,
satisfying Condition (a)-(b).

(a) For any r > 0 there exist an integer Np > 0 and two functions a,,b, € CIP such

that
- a(llz—2* ) <V(n,z) < bl z — 2" [])

for any integers n > Ny and any initial points z € I™ — {z*}.

(b) Let AV(n,z) =V (n+1, f(z)) — V(n,z) for (n,z) € Z, x I"™. For any r > 0 there
exist an integer Ny > 0 and a function ¢, € CIP such that

AV(n,z) < —c(]| z —2* |)

for any n > Np and any z € I™ — {z*}.

4 Jllustration of Theorem

We illustrate Theorem in the case k = 2 and P(2) = {0.5,0.7} in the space R with a
numerical result. Consider Morishima’s example as follows.
A(n)
A(n)+ B(n)

Here A(n) = max[z + bE;(z(n)),0], B(n) = max[l — z + bE5(z(n)),0] and a = 0.6 and
Ey(z) = —z + 2, By(z) = M See [3] in detail. Then, in b = 0.6, we get

z(n+1) = f(z(n)) =

f(z) = 1.822 — 4.8z + 3 £ @) = 21.2422 — 36z + 12.6
"~ 9.622 — 13.8z + 6’ ~ (9.622 — 13.87 +6)2

Let
V(z) = d(z, P(2)) = min[jz — 0.5, |z — 0.7]]

for z € I. Let a,(d) = b.(d) = d (d > 0) to any » > 0. Then a,,b, € CIP and it holds
that Condition(a) of Theorem is satisfied. It can be seen that
AV(z) = min(|f*(z) ~ 0.5, |f*(z) - 0.7|) — d(z, P(2))
= min(|f*(z) — f2(0.5)|, |f*(2) — f*(0.7)]) — d(=, P(2))
. 2
= _min | 01 g;(m* +0(z - 2*)(z — 2°)d8)| — d(z, P(2))

z*=0.5,0.7
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< _min, mox| L (0)lje - o) - dlz, P)

- :L'*—~0'107 zel
= max ngf(x)ld(w, P(2)) - d(z, P(2))
= (max|f (f(@)f (2)| - Dd(z, P(2).

It holds that AV(z) < max( F(f@)f (z) - DYV (z).

We shall show that AV(z) < —cV(z) for z € I with a real number ¢ > 0. Putting
y(z) = f (f(z))f (z) — 1, when y(z) < 0, then there exists a positive number ¢ such that

AV (z) < —cV(z). (4.9)
Putting C(d) = cd, we have
CeCIP: AV(z) < -C(V(z)).

Therefore it holds that Condition (b) of Theorem is satisfied.
Denote
p=21.24x% - 36z + 12.6, g = (9.62% — 13.8z + 6)?,

then we have f’ = p/q and max Ip/gq| < 1. In fact

P-q
q2
_(-9)p+49)
= pe
= [(21.242% — 36z + 12.6) — (9.62% — 13.82 + 6)?]
x[21.24z% — 36z + 12.6 + (9.62> — 13.8z + 6)?]/¢*
= [-92.162* + 264.962° — 284.42% — 118.8z — 23.4]
X[21.24(z — (1.18)71) + 12.6 — (9/5.09) + (9.6z% — 13.8z + 6)?] /¢?

and 12.6 — (9/5.09) > 0, 264.96z® — 284.42% = 264.96x%(z — 284.4/264.96) < 0 for 0 <
z < 1, then we have |f ()| < max .~ Il < 1. Hence it holds that on z € [0, 1]

1dl
v(e) = £ (F(&)f () ~ 1 < (mx {”')2

Since y is continuous and [0, 1] is compact, then there exists a positive number ¢ such
that y(z) < —c < 0 on [0,1].

5 Future Study

In this paper we considered a definition of [EV-UAS-FC] (eventually uniformly asymp-
totic stability to finite coverings) in the same way as theory of ordinary differential equa-
tions.
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We showed a theorem for [EV-UAS-FC] of difference equation z(n + 1) = f(z(n))
by Lyapunov’s second method but including-a computational result and also analytical
estimation of AV.

Moreover we illustrated the eventual stability theorem by applying it to the Morishima’s
example.

In [5] Yoshizawa gave an eventual stability theorem where the following ordinary dif-

ferential equation , ‘
r =F(t,z) fort € Ry =[0,00),z € R™. (ODE)

Here F' is continuous on R, x R™. Let N C R™ be closed. Moreover it is assumed
that the solutions for (ODF) are uniform-bounded and there exists a Lyapunov function
V(t,z) : Ry x R™ — R, which satisfies the following conditions(i) and (ii).

(i) a(d(z,N)) < V(t,z) < bd(z, N), || z ||) for any (t,z),
where @ is continuous and a(r) > 0 for r > 0. b(r, s(r)) is continuous and increasing
in r and b(r, s(r)) — 0 as r — 0 for s = s(r) > 0, which is dependent on r.

(ii) V'(t,z) + V*(t,z) — 0, uniformly on 0 < A < d(z,N) S p, z € Su = {]| z ||I< o}
for any A, 4, as t — oo. Here

V'(t,7) = limsup LT M2 hl;(t,:v)) _V(t,2)
h—+0

and V* is a continuous function such that V*(¢,z) > W (z) for any (¢, z), where W
is positively definite with respect to N.

Then the set IV is an eventually uniform-asymptotically stable set of (ODE) in the large.
Moreover if N satisfies F'(t, N) C N for any ¢, then N is a uniform-asymptotically stable
set in the large. ,

In the case of the k—periodic points P(k) to (1.1) w consider N = P(k). It is expected
that P(k) is eventually uniform-asymptotically stable in the large if AV (n, 2)+V*(n, ) —
0 as n — oo uniformly on 0 < A < d(z, P(k)) < p, z € Sy = {]| z ||< a} for any A, p, .
Moreover V*(n,z) > W(z) for any n =0,1,2,---, and = € I"™ and W is continuous and
positively definite to N provided with the above condition (i) in [5].
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