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Abstract

The paper considers a viral infection model with saturating expansion and immune
impairment. The model may exhibit a bistable behavior in some parameter regions,
which means that infection will result in disease or immune control outcome, depending
on the initial conditions. It is shown that the disease could change from a diseaee
progression and tend to an immune $CO1^{-}itro1$ outcome if some phase of drug therapy is
introduced, despite that the therapy is not necessarily lifelong.
Keywords: Virus dynamics; Immune impairment; Immune control; Stability; Perma-
nence.

1 Introduction

Many models have been proposed to describe virus dynamics in different situations. In
virus dynamics we usually examine which conditions are necessary for virus increasing or
decreasing. This is important for studying the evolutionary process of disease and can be
described well with models of differential equations.

Taking immune response into consideration, Nowak and May [1] presented several basic
models, which differ mainly in terms of describing the expansion of the immmune response.
It is true that virus infections typically evoke immune responses composed of antibodies
and $CD8+cytotoxicT$ cels, but several human pathgens have the ability to suppress im-
mune responses, allowing themselves to establish a persistent and productive infection that
eventually results in pathology. A potent strategy is to impair virus-specific CD4 $T$ helper
cell responses (directly or indirectly), because they are the central component orchestrating
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antiviral effector mechanisms. According to clinical data, the most prominent examples of
this are HIV, hepatitis $C$ virus (HCV), and hepatitis $B$ virus (HBV) infections ([2, 3]).

In this paper, based on the previous models and considering both antigenic stimulation
and immune impairment, we introduce a vIral infection model, and then study its dynamics,
especially the effect of immune impairment.

Let $x,$ $y,$ $v$ and $z$ represent the concentration of susceptible cells, productively infected
cells, &ee virus particles and virus-specific CTL cells, respectively. The following equations
represent the rate of change of these populations:

$\frac{dx}{dt}=\lambda-dx-\beta xv$ ,

$\frac{dy}{dt}=\beta xv-\delta y-pyz$ ,

$\frac{dv}{dt}=n\delta y-rv$ ,
(1.1)

$\frac{dz}{dt}=f(y, z)-bz$ ,

The constant $\lambda$ represents a source of susceptible cells, and $d$ is their death rate. $\beta$ is
the infection rate constant, and infection is assumed to occur at a rate proportional to the
product of the concentration of virus and target cells, an assumption which is valid for a
well-mixed system with relatively high concentrations of each product. $\delta$ is the death rate
of infected cells, $p$ is the efficacy of the immune response in killing infected cells, $n$ is the
number of free viral particles produced during the average infected cell life span, and $r$ is
the death rate of the ffee virus. The function $f(y, z)$ represents the increasing of immune
activity, and $b$ is the decay rate of CTL cells.

Since the mechanism how immune cells are induced is largely unknown, there are many
forms of $f(y, z)$ ([1]), such as $f(y, z)=c,$ $f(y, z)=w$ and $f(y, z)=wz$ , which describe self-
regulating CTL-reaction, linear immune response and bilinear CTL-reaction, respectively.
However, interactIons between two populations are not always as simple as these, and the
form of such expressions may change, among other ways, as the relative and absolute popu-
lation sizes varying. Here, we take both antigenic stimulation and lmmune impairment into
consideration, and consider the following form of $f(y, z)$ :

$f(y,z)= \frac{cyz}{1+\epsilon y}-qyz$,

which ls an example in [7] for describing the dynamics of the populations of virus and
inmune ceUs. Here the immune response expands at a rate cy$z/(\epsilon y+1)$ , i.e., expansion
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is a saturating function of the amount of infected cells. The infected cells population also
inhibits the immune respomse at a rate $qyz$ .

Furthermore, we assume that the turnover of free virus is much faster than that of infected
cells (see [4]), and study a simplified system by assuming that $v$ ls at a steady state given
by $\dot{v}=0$ , whlch implies $v=n\delta y/r$ . Let $k=\beta\delta n/r$ , and these assumptions lead to

$\frac{dx}{dt}=\lambda-dx-kxy$ ,

$\frac{dy}{dt}=kxy-\delta y-pyz$ , (1.2)

$\frac{dz}{dt}=\frac{cyz}{1+\epsilon y}-qyz-bz$ .

Our purpose is to investigate the effect of immune impairment via mathematical analysis of
(1.2). The equihbria and their stability are discussed in Section 2, and the pemanence of
the system is given in Section 3. In the final section, we will discuss our results.

2 Equilibria and their stability

Firstly, from the epidemiological point of view, we point out that there should be some
posItive ranges of $y$ such that $z’>0,$ . Therefore, from

$\frac{w}{1+\epsilon y}-qy-b=\frac{-\epsilon qy^{2}+(c-\epsilon b-q)y-b}{1+\epsilon y}$,

we obtain that $c-\epsilon b-q>0$ and $(c-\epsilon b-q)^{2}-4b\epsilon q>0$ should always hold. Under this
assumption, there are two roots of equation $cy/(1+\epsilon y)-qy-b=0$ :

$y_{1,2}^{*}= \frac{c-\epsilon b-q\mp\sqrt{(c-\epsilon b-q)^{2}-4b\epsilon q}}{2\epsilon q}$ ,

where $0<y_{1}^{l}<y_{2}^{*}$ . Define

$h(y) \Delta=(\frac{w}{1+\epsilon y}-qy-b)’=\frac{c}{(1+\epsilon y)^{2}}-q$,

then it is easy to check that $h(y_{1}^{*})>0$ and $h(y_{2}^{*})>0$ .
Furthemore, the basic reproductive ratio of the virus is given by $R_{0}=\lambda k/\delta d$ , which

describes the average number of newly infected cells generated ffom one infected cel at the
beginning of the infectious process.
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System (1.2) has four equilibria. The first one is $E_{0}=(x_{0},0,0)=(\lambda/d, 0,0)$ , and it
represents the state in which there is no infection and no immune response. The second is

$E_{1}=(x_{1}, y_{1},0)=( \frac{\delta}{k}, \frac{\lambda}{\delta}-\frac{d}{k}, 0)=(\frac{\delta}{k}, \frac{d}{k}(R_{0}-1),$ $0$ ),

which has epidemiological meaning if $R_{0}>1$ . $E_{1}$ represents the state that the virus can
establlsh an infection in the absence of Immune response. We will refer to it as the virus
equilibrium. The third is

$E:=(x_{1}^{*}, y_{1}^{l},z_{1}^{l})=( \frac{\lambda}{d+ky_{1}^{r}},y_{1}^{*}, \frac{kx_{1}^{*}-\delta}{p})$ ,

which lies in the Interior of the first quadrant if $R_{0}>1+ky_{1}^{*}/d$. $E_{1}^{*}$ is the state that the
virus can establish an infection that is controlled by an immune response, we refer to this
outcome as the Immune control equilibrium. The last is

$E_{2}^{*}=(x_{2}^{*}, y_{2}^{*}, z_{2}^{l})=( \frac{\lambda}{d+ky_{2}^{*}},y_{2}^{l}, \frac{kx_{2}^{*}-\delta}{p})$,

which lies in the interior of the first quadrant if $R_{0}>1+ky_{2}^{l}/d$ . $E_{2}^{l}$ is always unstable
(Theorem 2.4) and therefore it is epidemiologically irrelevant.

Now we will study the local and global stability of these equilibria, via the method of
Lyapunov function and Routh-Hurwitz criterion.

Theorem 2.1. $E_{0}$ is globally asymptotically stable when $R_{0}<1$ .

Proof. Define a Lyapunov function,

$V_{0}=x-x_{0}-x_{0} \ln\frac{x}{x_{0}}+y+\frac{pz}{c}$ ,

Along the trajectories of system (1.2), we have

$V_{0}’$ $=x’-\mathfrak{B}_{X’+y’+}xcz’$

$=$ $- \frac{1}{dx}(\lambda-dx)^{2}-\delta(1-R_{0})y-e_{\frac{z}{\epsilon}(\frac{2}{y}+qy+b)}1\mp\epsilon\propto\mu$ .
Thus $V_{0}’\leq 0$ when $R_{0}<1$ , and the result follows from LaSalle’s invariance principle. $\square$

Theorem 2.2. $E_{1}$ is globally asymptotically stable if $1<R_{0}<1+ky_{1}^{l}/d$, and is locally
asymptotically stable if $R_{0}>1+ky_{2}^{*}/d$ .
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Proof. Define a function,

$V_{1}=(x-x_{1}-x_{1} \ln\frac{x}{x_{1}})+(y-y_{1}-y_{1}\bm{i}\frac{y}{y_{1}})+\frac{p}{h(y_{1}^{*})}z$ .

Along the trajectories of system (1.2), we have
$V_{1}’$ $=\text{儒_{}xy\overline{h}(yi\overline{)}^{Z’}}’-\lrcorner x+y’y’+$.

$=$ $- \frac{\lambda}{k\delta x}(\delta-kx)^{2}-\frac{1}{h(yi)}pz[h(y_{1}^{*})(y-y_{1})-(R-qy-b)]$ .
Let $g(y)=cy/(1+\epsilon y)-qy-b$ , then $h(y)=g’(y)=c/(1+\epsilon y)^{2}-q$ , and $g”(y)=-2c\epsilon/(1+$

$\epsilon y)^{3}<0$ . Then by intemediate vdue $th\infty rem$ , there is $\xi_{1}$ between $y$ and $y_{1}^{s}$ such that

$g(y)=g(y)-g(y_{1}^{*})=h(y_{1}^{l})(y-y_{1}^{*})+ \frac{1}{2}g’’(\xi_{1})(y-y_{1}^{l})^{2}$ . (2.1)

(a) If $1<R_{0}<1+ky_{1}^{*}/d$ , which is equivalent to $0<y_{1}<y_{1}^{*}$ , from (2.1), we have

$g(y)\leq h(y_{1}^{l})(y-y_{1}^{*})<h(y_{1}^{*})(y-y_{1})$ ,

for all $y>0$ . Thus, $V_{1}’\leq 0$ , and therefore, $V_{1}$ is a global Lyapunov function.

(b) If $R_{0}>1+ky_{2}^{l}/d$ , which is equivalent to $y_{1}>y_{2}^{*}$ , we have

$g(y)<h(y_{1}^{*})(y-y_{1})$ (2.2)

for $y>y_{1}$ , since $g(y)<0$ , but $h(yi)(y-y_{1})>0$ . It is clear that (2.2) $stiU$ holds for
all $y>y_{1}-\xi_{2}$ , where $\xi_{2}>0$ is sufficiently small. Thus, $V_{1}’\leq 0$ , and therefore, $V_{1}$ is a
local Lyapunov function near $E_{1}$ .

The result follows from LaSalle’s invariance principle. 口

Theorem 2.3. $E_{1}^{*}$ is locally asymptotically stable if it $e$ zis$ts$ .

Proof. The characteristic equation of the Jacobin matrix at $E_{1}^{*}$ is

$s^{3}+a_{1}s^{2}+a_{2}s+a_{3}=0$ , (2.3)

where
$a_{1}=d+ky_{1}^{t}>0$,
$a_{2}=py_{1}^{l}z_{1}^{*}h(y_{1}^{l})+k^{2}y_{1}^{l}x_{1}^{*}$ ,
$a_{3}=py_{1}^{l}z_{1}^{*}h(y_{1}^{*})(d+ky_{1}^{*})>0$ ,
$a_{1}a_{2}-a_{3}=k^{2}y_{1}^{l}x_{1}^{*}(d+ky_{1}^{l})>0$ .

The result follows from Routh-Hurwitz criterion. $\square$

The stability of the last equilibrium ls given in the following theorem without proof,
because it is similar to the above one, except that $h(y_{2}^{*})<0$ .
Theorem 2.4. $E_{2}^{*}$ is unstable if it exists.
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3 Permanence

Firstly, we show that system (1.2) is unlformly bounded above.

Theorem 3.1. There $ex\dot{j}sts$ an $M>0$ such that all the solutions of system (1.2) satisfy
$x(t),y(t),$ $z(t)\leq M$ for all large $t$ .

Proof. It is easy to check that all solutions of (1.2) are nonnegative for $t>0$ . Furthemore,
we have

$x’+y’+\epsilon_{t}c$ $=\lambda-dx-\delta y-pyz+_{c}z(1\ovalbox{\tt\small REJECT}_{\frac{z}{\epsilon y}}+-qyz-bz)$

$\leq\lambda-\alpha(x+y+_{c}zz)$ ,

where $\alpha=\min\{d, \delta, b\}$ . Hence by comparison $th\infty ry$ of differential equations, it is easy to
verify that there exists $t_{1}>0$ such that $x(t)+y(t)+pz(t)/c \leq M=A\max\{1, c/p\}\lambda/\alpha+\epsilon_{0},t>$

$t_{1}$ for $\epsilon_{0}>0$ . The proof is $\infty mplete$ . $\square$

Theorem 3.2. If $1+ky_{1}^{*}/d<R_{0}<1+ky_{2}^{*}/d$, then system (1.2) is uniformly persis-
tent, i.e., there exists an $\epsilon>0$ such that $\lim\inf_{tarrow+\infty}x(t)\geq\epsilon$ , $\lim\inf_{tarrow+\infty}y(t)\geq\epsilon$ , and
$\lim\inf_{tarrow+\infty}z(t)\geq\epsilon$.

Proof By Theorem 3.1, there exists an $M>0$ such that $y(t)<M$ for all $t>t_{1}$ , Thus we
have

$x’=\lambda-dx-kxy\geq\lambda-(d+kM)x$ ,

for all $t>t_{1}$ , and the result for $x$ follows immediately. Therefore, it suffices to prove that
$\lim\inf_{tarrow+\infty}y(t)\geq\epsilon$, and $\lim\inf_{tarrow+\infty}z(t)\geq\epsilon$, which follows from an applicatlon of Theorem
4.6 in [5], with $X_{1}=int(R_{+}^{3})$ and $X_{2}=bd(R_{+}^{3})$ . The left of the proof is to verify that $E_{0}$ and
$E_{1}$ are weak repellers for $X_{1}$ , and we omit it here since it is similar to that of [6, Theorem
3.2]. $\square$

Theorems 3.1 and 3.2 imply that (1.2) is permanent provided that $1+ky_{1}^{\wedge}/d<R_{0}<$

$1+ky2/d$.
Fbom the results in Sections 2 and 3, we can summarize the stability of the equilibria

and the behaviors of system (1.2) in the following table:
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Table 1: The stability of the equilibria and the behaviors of system (1.2). Here $R_{1}=1-$}$-$

$ky_{1}^{*}/d,$ $R_{2}=1+\cdot ky_{2}^{*}/d$ . :GAS’, ‘LAS’, ‘US’ and ‘-, represent that the equilibrium is globally
asymptotically stable, locally asymptotically stable, unstable and nonexistent, respectively.

4 Discussion

As what Komarova et al. [7] suggested, $E_{1}$ describes the failure of long-tem control in
the model and can correspond to an in vivo scenario where suboptimal immune responses
are temporarily maintained and subsequently collapse. Such suboptimal responses are not
explicitly included in the model but can be assumed to be implicit in parameters determining
virus load (such as the replication rate and the death rate). To use specific examples,
the immune control outcome $(E_{1}^{*})$ in the model can correspond to the state of long-tem
nonprogression In HIV infection ([8]), whereas failure of long-term control in the model $(E_{1})$

corresponds to typical HIV disease progression. A similar difference can be seen in HCV
infection: a small fraction of patients control the virus (or clear virus from blood) and
establIsh long-tem immunity $(E_{1}^{*})$ , whereas most patlents fail to do so and eventually may
develop disease $(E_{1})$ ([9]).

We seek to understand the stability of these equilibria as $R_{0}$ increases from low to high,
because it is influenced by drug therapy. These results suggest that

(i) If $R_{0}$ is very smail, the virus cannot infect the host, and the system converges to $E_{0}$ .
(ii) If $R_{0}$ crosses a threshold, an infection can be established, but the amount of antigenic

stimulation is too low to trlgger sustained immunity. The system converges to $E_{1}$ .

(iii) If $R_{0}$ is higher and crosses another threshold, levels of antigen are sufficient to trigger
sustained immunity. The system converges to the equilibrium describing long-tem
immunological control, $E_{1}^{*}$ .

(iv) If $R_{0}$ is still higher and crosses a final threshold, the immune response can be signif-
icantly impaired. In this parameter region, both the immune control $(E_{1}^{l})$ and the
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virus equilibrium $(E_{1})$ are stable, and the outcome of infection depends on the initial
conditions.

Now we assume that the patient is in the bistable parameter region (iv). Thus, infection
will result in disease or immune control outcome, depending on the lnitial condltions, i.e.,
which region does $(x(O),y(O),$ $z(O))$ belong to, the basin of attraction for $E_{1}$ or $E_{1}^{*}$ ? How-
ever, the model suggests that therapeutic intervention may shift the dynamics toward the
immune control outcome. During therapy, $R_{0}$ is reduced in the model and the amount of
reductlon corresponds to the efficacy of the drugs. On cessation of therapy, $R_{0}$ is reset to
its pretreatment value. If therapy is efficient enough to reduce $R_{0}$ at least from parameter
region (iv) to region (iii), then after one phase (or several phases) of therapy, the system
may enter the basin of attraction for $E_{1}$ . Then the therapy could be stopped, since $R_{0}$ has
been reset to region (iv), thus the system may result in the immune control outcome, $E_{1}^{l}$ .

Figure 1: Time series of $z$ . The phase of treatment is indicated by dash line. (a) Without therapy,
$z(t)$ tends to zero. (b) After a phase of therapy, which begins at $t=30$ , the system will tend to
inimune control outcome, although the treatment has $l$)$eer\iota$ stopped at $l=180$ . Parameter values
are chosen $a8$ follows: $\lambda=1,$ $d–0.05.k-0.5,p_{-}--0.3,$ $c-0.6,\epsilon--0.5_{r}.q--0.2,$ b—-0.2, $\delta--0.3$.
During therapy, $\delta--\cdot 0.6$ .

An simulation is shown in Fig. 1. The initial values of the two trajectories are the same
(20, 10, 10), but there is a phase of therapy (from $t=30$ to 180) in the right one. The results
are obviously different, i.e., the phase of the therapy leads to an immunological control,
instead of the disease outcome in the left one.

Theoretically, the optImal timing of when therapy should be stopped $and/or$ restarted
can be determined by monitoring the dynamics of the system.
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Finally, we point out that the bistable behavior as described in this paper hinges on the
assumption that the virus impairs specific immune responses. Therapy can therefore shift
the patient from a disease progression to a control outcome. With viruses that do not impair
immunity, there is no bistability.
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