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1 Introduction

Russian options are path-dependent contingent claims that give the holder the right to receive
the realized supremum value of the underlying asset prior to his exercise time. The holder can
exercise the option at any time, i.e., the option is of American-style. Shepp and Shiryaev [12, 13]
introduced the Russian option, assuming no maturity date for the exercise; see Duffie and
Harrison (3] for a financial justification of their results. Shepp and Shiryaev showed that there
exists an optimal threshold level of the asset price below which it is advantageous to exercise the
option, provided that the asset pays dividends. This type of Russian options can be regarded

" as a special case of American lookback options. More specifically, it is the perpetual fixed-strike
lookback call option with null strike price (Pedersen [10]). In common with lookback options,
Russian options are not genuine option contracts, because they pay the holder the supremum
asset price, always finishing in-the-money. This means that high premiums are charged for
Russian options in compensation for “reduced regret” [12].

This paper deals with Russian options with finite time horizon, i.e., there is a finite expiry
or maturity date for the exercise. The holder may exercise the option at any time but during
the option’s lifetime. Recently, some researchers have contributed theoretical results to the
valuation of finite-lived Russian options. Ekstrém [5] showed the existence and continuity of
an optimal stopping or early ezercise boundary for the Russian option. Also, Ekstrém proved
that the option value is given by the solution of a certain boundary value problem, from which
he analyzed asymptotic behavior of the optimal stopping boundary near expiration. This free
boundary problem was further studied by Duistermaat et al. [4] who suggested a numerical
algorithm for valuing the Russian option; see Kyprianou and Pistorius [9] for related theoretical
work. Peskir {11] proved that the optimal stopping boundary can be characterized by the solution
of a nonlinear integral equaticn arising from the early exercise premium representation.

Except for Duistermaat et al. [4], there is no quantitative research of the finite-lived Russian
option, which is principally due to the lack of efficient tools for solving the free boundary problem.
Duistermaat et al. 4] have used the method of randomization of Carr [2] who proposed that the
value of an American vanilla option can be approximated by a randomization of the maturity
date using an n-stage Erlangian distribution. Asn — oo, it is possible to show convergence to the
value of the American option. This idea has its origin in the classic theory of integral transforms,
and it goes by the name of the Post-Widder inversion formula [15]; see Abate and Whitt [1,
Section 8] for an algorithm based on the Fourier series. Duistermaat et al. developed a recursive
algorithm for computing the n-th approximations of the value and the early exercise boundary
of the finite-lived Russian option. The complexity of their algorithm comes from the expression
of the n-stage Erlangian distribution, and it is directly concerned with the implementation and
speed of the algorithm. The purpose of this paper is to provide another quantitative method
for computing both the option value and the early exercise boundary.

"This paper is an abbreviated version of Kimura [8]. All proofs, remarks and some computational results
are omitted due to the page restriction. This research was supported in part by the Grant-in-Aid for Scientific
Research (No. 16310104) of the Japan Society for the Promotion of Science in 2004-2008.
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2 Basic Framework

2.1 Optimal stopping problem

The setup is the standard Black-Scholes-Merton framework where the price of the underlying
asset evolves according to a geometric Brownian motion: Let (St)t>0 be the price process of the
underlying asset, which is defined by

St=sexp{(r——6——%c72)t+0'Wt}, t>0, (2.1)

where Sp = s > 0, r > 0 is the risk-free rate of interest, § > 0 is the continuous dividend rate, o >
0 is the volatility coefficient of the asset price, and W = (W;)¢>0 is a one-dimensional standard
Brownian motion process on a filtered probability space (Q,F, (F:)s>0,P). The filtration F =
(Ft)t>0 is a natural one generated by W and the probability measure P is chosen so that the
stock has mean rate of return r. For the price process (St);>0 and a constant m > s, define the
supremum process as
My =mV sup Sy, t >0, (2.2)
0<u<t
where a V b = max{a, b}.
Given a finite time horizon T' > 0, the arbitrage-free value of the Russian option at time
t € [0,T) is given by
V(s,m,t) = esssup Es,m[e‘ro'Mgt}, (2.3)
06, <T—t
where 0; is a stopping time of the filtration F and the conditional expectation E,n,[-] =
E[- | Fo) = E[- | So = 8, Mp = m)] is calculated under the risk-neutral probability measure P. The
random variable 8} € [0,T —¢] is called an optimal stopping time if V(s,m,t) = Eq m[e~7% Mg, ).
It is clear from (2.1)-(2.3) that V(s,m,t) > m, V is nondecreasing in s and m, and V is non-
increasing in t. Ekstrém [5] proved that the value function V = V/(s,m,t) is continuous, i.e., V
is uniformly continuous in s, m and t separately. Solving the optimal stopping problem (2.3) is
equivalent to finding the points (S;, My, t) for which early exercise before maturity is optimal.
Let

D = {(s,m,t) € R} x [s,+00) x [0,T]}
be the whole domain, and £ and C denote the ezercise region and continuation region, respec-
tively. In terms of the value function V'(s,m,t), the continuation region C is defined by
C = {(s,m,t); V(s,m,t) > m},

which is an open set since V is continuous. The exercise region £ is the complement of C in D
and the optimal stopping time 8} satisfies

= inf{u € [0,T — t}; (Sy, My,t +u) € E}.

Since V is nondecreasing in s, (s, m,t) € C implies (z,m,t) € C for all = satlsfylng s<z<m.
Hence, there exists a function S(m,t) with 0 < S(m,t) < m such that

S(m,t) = inf {s € [0,m]; (s,m,t) €C}, (2.4)

and (S(m,t))ieio,r) is called the early exercise boundary. The boundary function S(m,t) is
nondecreasing in ¢ since V' is nondecreasing in ¢, and it is continuous in ¢ if § > 0; see Theorem 2
in Ekstrém [5]. In terms of the function S(m,t), the continuation region C can be represented
as

C = {(s,m,t); S(n,t) < s <m}.
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2.2 Free boundary problem

It has been known that the optimal stopping problem (2. (2.3) of finding the option value V can
be deduced to a parabolic free boundary problem (see Theorem 1 in Ekstrém [5]): The value V
of the Russian option with finite time horizon is given by a solution of the PDE

WV 1,228V
ot 57

together with the boundary conditions

+ 102 +(r —®&~~mV—0 S(m.t) < s <m, (2.5)

lilm V(s,m,t) =m,
8
ov
im3s =0 . (2.6)
oV
m 2 — 0o
1111:112 om ’
and the terminal condition
V(s,m,T) = (2.7)

The boundary conditions in (2.6) are respectively called the value matchmg, smooth pasting and
Neumann conditions in order.

From (2.3), we see that the value V depends on time only through the time T — ¢ remaining
to maturity. For notational convenience, we introduce the time-reversed quantities

V’(s,m, T)=V(s,m, T — 1) = V(s,m,t),

and
S(m,7) = S(m,T — 1) = S(m,t),

with the change of variables 7 := T — ¢. It follows from the definition (2.3) of the value function
V that

V(ks,km,7) = kV (s, m,T), (2.8)
for arbitrary k € Ry. In particular, if we set k = m~!, then

~ ~ 8
= —y 1a 3
V(s,m,T) mV(m T)

which permits a reduction in the dimensionality of the problem by a similarity variable. That
is, we may find a solution of the form

V(s,m,7) = mW(£,7), (2.9)

with the change of variables & := s/m.
Using the relations

ov _ow PV _ 10w
0s ~ 08¢’ s m €2’
oV v i
om = T ~¢5F e R
we can rewrite the PDE (2.5) as
_ow o2 262W ow <
= 2.10
5 +50% e +(r—68)¢— FF -tW =0, €(r) <€L1, (2.10)
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where £(7) (€ [0,1]) is defined by
() = - B(m, ),

being nonincreasing in 7. The boundary conditions for W are given by

lim W(E,
§1€(7T) (6 )
lim oW =0
elgr) 06 (2.11)
ow
Iim{W-—] =0,
€11 ( o€ )
and the initial condition is
W(&,0) =1. (2.12)

3 Valuation with Laplace-Carlson Transforms

For A > 0, define the Laplace-Carlson transform (LCT) of the time-reversed quantity W (¢, 7)
as

W*(E, ) = LCW(E,7)](A) = /0 " AW (e, 7)dr.

Similarly, we denote the LCT of {(7) by attaching the asterisk, i.e., £*(A) = LC[{(7)](A). No

doubt, there is no essential difference between the LCT and the Laplace transform (LT) defined
by

Wi = LOvE, Iy = [ e W (e, )

Obviously, we have W*(&, ) = z\W(E, A) for A > 0. The principal reason why we prefer LCTs
to LTs is that LCTs generate relatively simpler formulas than LTs for option pricing problems
because constant values are invariant after taking transformation. In the context of option
pricing, LCTs have been adopted in the randomization of Carr [2] as an initial approximation.
Let V* = V*(s,m, ) = LC[V(s,m,7)]()\) be the LCT of the time-reversed value V. From
the PDE (2.10) with the conditions (2.11) and (2.12), we obtain a closed-form solution as follows:

Theorem 1 The LCT of the time-reversed value f/"(.s, m,7) of the Russian option with finite
time horizon T < oo is given by

_ : m T {a(s)axa<s>az}+Am me* < s<m
Frem A ={ ca—aA+r | \mE L\ me* At e S8S

m, 0<s<mE,
(3.1)
where the parameters a1 > 1 and a3 < 0 are two real roots of the quadratic equation
tofa? +(r—6—1o%)a—(A+7)=0, (3.2)
and the LCT £* = £*(A) < 1 is a unique positive solution of the functional equation
0 (g 4 2T () - (33)

as(l — ap) rag(l—aj) >
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Proposition 2 The LCTs of the time-reversed Greeks

(92
82

ov

, I'=LC

for s € (m€*, m] are respectively given by
Ao o2 T omff s \* :L)”}
T ag—a A+r s me* me* ’
ajay T s \*¥ s \*
L] — - —_ 1 —_ ,
r as —ag A+7s2 {( 1= )(mé*) (o )(m{*)
Arm 1 s \* s \*
. _ S Y e (L -1].
° A+er—a1§”(m§) ‘”(mg) } ]

Proposition 3 For the early exercise boundary (S(m, t))tejo,7) of the Russian option with finite
time horizon T < oo, we have

lim S(m,t) = m. (3.4)

t—T

Applying Abelian theorem on the terminal value of LTs to the LCT ‘7"‘(3 m,A), we can
obtain the well-known result for the perpetual case; see Duffie and Harrison [3] and Shepp and
Shiryaev [12]. There exist several different proofs for valuing the perpetual Russian option 3,
7,9, 10, 12, 13]. To make this paper self-contained, however, we provide the result and a brief
proof from the view point of the Laplace transform approach.

Proposition 4 Let V,(s,m) be the value of the perpetual Russian option. For § > 0, we have

' m o S of of s \° mé_ <s<m
Voo(s,m) = { @5 —aj 2 m ! mé TR0 - (3.5)

m, 0<s<mf_,

where af = limy_,o a;(A) (¢ = 1,2) are two real roots of the quadratic equation

10%a? + (r—6- %az)a -r=0, (3.6)

and )
_ ag(l—a‘{))“r“z 3.7
= (Smay) (37

It is worthwhile noting here that the expressions for Vo (s,m) in (3.5) and €, in (3.7) of
the perpetual Russian option are symmetric with respect to the roots o} and aj. Furthermore,
motivated by some observations in numerical experiments, we obtain an interesting symmetric

property of the optimal threshold level 5 . Symbolic computation with a mathematical software
yields

Proposition 5 Denote € =&, () 0) for 7,6 > 0. Then, €. (r;6) is the symmetric function of
r and 4, i.e.,

€ (r8) =& (6,7). (3.8)
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4 Computational Results

As shown in the previous section, Laplace transforms are useful to do asymptotic analysis via
Abelian theorems. However, the primary value of the transforms is in time-dependent analysis
of the original functions via analytical or numerical transform inversion. In particular, numerical
inversion is most important when a transform cannot be analytically inverted by manipulating
tabled formulas, which is the normal case in option pricing problems. Numerical inversion
is also important when a Laplace transform is implicitly defined, e.g., as the solution of a
certain functional equation. Actually, this is the case of our problem: To invert the LCTs
V*(s,m, ) and £*()), we first have to solve the functional equation (3.3) for £*(A). Among
many numerical methods for Laplace transform inversion, the Gaver-Stehfest method [6, 14]
is especially convenient for such implicitly defined Laplace transforms, since it works with the
transform evaluated only at real arguments.

Consider the LCT G*(A) = LC[G(7)](A) for a given function G(r) € L}(R;). Gaver [6]
developed an inversion algorithm based on the asymptotic result

G(r) = 1}1{1;0 Gn(T), T>0

where G, (1) = Gl (7) (n 2 1) is defined by using a sequence {Gs,m) (1); n,m > 1} generated
by the recursion

G(()m)('r) =G" (’m 1——0;5_2) , n=20

(4.1)
m m m m m
e(n) = (1+ ) 60(n) - 26, nx 1.

To accelerate the convergence of (G,(7))n>1 to G(7), Stehfest [14] proposed an extrapolation
formula " Yk g

Guir) =3 o G (42)
which has been known under an alias of the n-point Richardson extrapolation scheme in the
context of option pricing. The procedure for generating the n-th approximation G, (7) is called
the Gaver-Stehfest method; see Abate and Whitt [1] for details. To compute the root £*(A) €
[0,1] of the functional equation (3.3) for a given A > 0, we simply use the Newton method. This
is due to the existence and uniqueness of the root in the interval [0, 1].

From a financial point of view, the no-dividend case § = 0 is the most interesting one for
the Russian option with finite time horizon, because we have to require the condition § > 0
when we deal with the perpetual Russian option. Tables 1 and 2 show the normalized option
value V (s, m,7)/m for some cases with and without dividends, respectively. The initial value
of the Newton method is fixed to 1 and the 4-point extrapolation is adopted in our inversion
algorithm. We see from these tables that the premiums of Russian options with short maturity
are not so expensive especially for s/m < 1, which implies that the (normalized) guaranteed
discounted value e~"” is dominant in the option value for those cases. For cases with § = 0
and long maturity, the premiums are extremely high such that the commercial value of Russian
options is doubtful. From these observations, we may say that the Russian option is intrinsically
valuable when the maturity T is relatively short.

Figures 1(a) and 1(b) illustrate some curves of the normalized early exercise boundary £(t) =
S(m,T —t)/m of the Russian option with finite horizon T = 10 as functions of ¢ € [0, 10], where
dashed lines represent the optimal threshold levels _§_°° for the associated perpetual cases. The
effect of the interest rate r can be shown in Figure 1{a) and the dividend yield 4 in Figure 1(b).
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Table 1: Option values v(s,m,r)/m with dividends (r = 0.05,8 = 0.03)

o s/m 17=1 7=5 17=10 T=00
0.2 1.0 1.1308 1.2244 1.2600 1.2910
0.9 1.0403 1.1150 1.1453 1.1723
0.8 1.0008 1.0378 1.0571 1.0781
03 1.0 1.2188 1.4228 1.5273 1.6904
0.9 1.1125 1.2890 1.3816 1.5273
0.8 1.0426 1.1741 1.2517 1.3775
04 10 13130 1.6535 1.8572 2.3065
0.9 11940 14950 1.6771 2.0803
0.8 1.1014 1.3514 1.5049 1.8644

Table 2: Option values 17(3, m,T)/m with no dividends (r = 0.05,4 = 0)

o s/m 1t=1 1=5 7=10 T=100
0.2 1.0 1.1475 1.3066 1.4144 2.0519
0.9 1.0518 1.1835 1.2780 1.8478
0.8 1.0061 1.0800 1.1545 1.6468
0.3 1.0 1.2372 1.5256 1.7391 3.2714
0.9 1.1274 1.3793 15696 2.9456
0.8 1.0508 1.2472 14101 2.6229
0.4 10 13329 1.7766 2.1287 5.0986
09 1.2110 1.6045 1.9199 4.5903
0.8 1.1138 1.4446 1.7202 4.0855

In these figures, we can see that each curve of the boundaries reaches the value 1 at maturity,
which is consistent with Proposition 3. The algorithm works well even near expiration, depicting
rapidly increasing curves as t — T. Note that Figures 1(a) and 1(b) provide a numerical check
for the symmetry relation proved in Proposition 5. All of the figures indicate a general property
that the lower the threshold level € the slower convergence of {(7) as 7 — oo.

5 Conclusion

In this paper, we analyzed the Russian option with finite time horizon via the Laplace transform
approach to obtain the LCT's of the option value, the early exercise boundary and some hedging
parameters, all of which can be expressed in terms of the unique real root of a functional
equation. Our numerical analysis showed that the accuracy of this root plays an important role
in numerical inversion of Laplace transforms with the Gaver-Stehfest method that requires more
than 20-digits precision. Although the Gaver-Stehfest method generates sufficiently accurate
solutions for almost all cases as shown in Section 4, the solutions sometimes behave unstably for
the situations where V' (s, m,t) ~ m, typically occurred when t — T or.s — S(m,t). Removing
this instability especially around the smooth-pasting point is an important problem to be solved
as future work.
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(a) r = 0.02,0.04,0.06, 5 = 0.04 (b) r = 0.04, 6 = 0.02,0.04,0.06

Figure 1: Early exercise boundaries S(m,T —t)/m (T' =10, 0 = 0.2) -

The Laplace transform approach is so general that it could be applied to other American-

style path-dependent options whose payoff functions are sufficiently smooth with respect to state
variables, e.g., lookback, barrier, exchange and so on. Also, the approach could be extended to
the cases that the underlying asset price has jumps and that it is dlacxetely monitored. These
extensions still remain as future work.
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