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1 Introduction
Russian options are path-dependent contingent claims that give the holder the right to receive
the realized supremum value of the underlying asset prior to his exercise time. The holder can
exercise the option at any tinle, $i.e.$ , the option is of American-style. Shepp and Shiryaev $[12, 13]$

introduced the Russian option, $ab^{\neg}suming$ no maturity date for the exercise; see Duffie and
Harrison [3] for afinancial justification of their result8. Shepp and Shiryaev showed that there
exists an optimal threshold level of the asset price below which it is advantageous to exercise the
option, provided that the asset pays dividends. This type of Russian options can be regarded
as aspecial case of American lookback options. More specifically, it is the perpetual fixed-strike
lookback call option wlth null strike price(Pedersen [10]). In common with lookback options,
Russian options are not genuine option contracts, because they pay the holder the supremum
Isset price, always finishing in-the-money. This means that high premiums are charged for
Russian optiollS in compensation $fo\iota\cdot$ “reduced $1^{\cdot}Cgl\cdot et’[12]$ .

This paper deals with Russian options $wit1_{1}fir\iota iteti_{7}nehor^{v}izon,$ $i.c.$ , there is afinite $expi_{1}\cdot y$

or maturity date for the exercise. Thc holder lnay $exelcis^{1}e$ the option at any time but durillg
the option’slifetinle. Recently, some $\iota\cdot esearchelS$ have $contrib_{l1}ted$ theoretical results to the
valuation of finite-lived Russian options. $Ekst_{1}\cdot\ddot{o}m[5]$ showed $t1_{1}e$ existence and continuity of
an optimal stopping or early $exe7cise$ boundaly for the Russian option. Also, Ekstr\"om proved
that the option value is given by the solution of acertain boundary value problem, from which
he analyzed asymptotic behavior of the optimal stopping boundary near expiration. This free
boundary $p_{1}\cdot oblem$ was $furt1_{1}er$ studied by Duistermaat et al. [4] who suggested anumerical
algorithm for valuing the Russian option;see Kyprianou and Pistorius [9] for related thmretical
wolk. Peskir [11] proved that the $opti_{1}\cdot na1$ stopping boundary can be characterized by the solution
of anonlinear integral equation arising $fi\cdot om$ the early $exel\cdot cise$ prelnium representation.

Except for Duisterm’aat et al. [4], there is no quantitative researdl of the finite-lived Russian
option, which is $\iota$)$rinci_{I)}ally$ due to the lack of efficient tools $fo1^{\cdot}$ solving the $hee$ boundary probleIn.
Duistermaat et al. [4] have used the Imethod of randomization of Carr [2] $w\mathfrak{l}_{1}o$ proposed that the
value of an American vanilla option can be approximated by arandomization of the maturity
date using an $n$-stage $E_{1}\cdot 1angian$ distribution. As $narrow\infty$ , it is possible to show convergence to the
value of the Anlerican option. This idea has its origin in the classic theory of integral transforms,
and it goes by the name of the Post-Widder inversion formula [15]; see Abate and Whitt [1,
Section 8] for all algorithm based on the Fourier $se_{\wedge}\cdot ies$ . Duistermaat et al. developed alecursive
$alg_{o1^{\backslash }}ithm$ for computing the n-th approximations of the val$ne$ and the early exercise boundary
of the finlte-lived Russian option. The complexity of $thci\iota\cdot algo\iota\cdot ith_{l}ncome_{\backslash };$ flom the $\exp_{1}\cdot ession$

of the $n$-stage Erlangial) $dist_{1}\cdot ibution$ , and it is $dil\cdot ectlyCOl$)$CC\Gamma lucd$ with the implementation and
speed of the algorithm. The $p_{\mathfrak{U}1}\cdot po_{\backslash }\backslash e$ of $this^{\neg}$ paper is to $p_{1}\cdot ovide$ another quantitative method
for colnputing both $t1_{1}e$ option value and the early exelcise boundary.

’This paper is an abbreviated version of Kimura [8]. All proofs, remarks and .gome computational results
are omitted due to the page restriction. This research was supported $i_{11}$ part by the Grant-in-Aid for Scientific
Research (No. 16310104) of the Japan Society for the Promotion of Sciencc ill 2004-2008.
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2 Basic Framework

2.1 Optimal stopping problem

The setup is the standard Black-Scholes-Merton framework where the price of the underlying
asset evolves according to a geometric Brownian motion: Let $(S_{t})_{t\geq 0}$ be the price process of the
underlying asset, which is defined by

$S_{t}=s$ exp $\{r-\delta_{f}^{1}\sigma^{2})t+\sigma W_{t}\}$ , $t\geq 0$ , (2.1)

where $S_{0}=s>0,$ $r>0$ is the risk-free rate of interest, $\delta\geq 0$ is the continuous dividend rate, $\sigma>$

$0$ is the volatility coefficient of the asset price, and $W\equiv(W_{t})_{t\geq 0}$ is a one-dimensional standard
Brownian motion process on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_{t})_{t\geq 0}, \mathbb{P})$ . The filtration $F\equiv$

$(\mathcal{F}_{t})_{t\geq 0}$ is a natural one generated by $W$ and the probability measure $\mathbb{P}$ is chosen so that the
stock has mean rate of return $r$ . For the price process $(S_{t})_{t\geq 0}$ and a constant $m\geq s$ , define the
supremum process as

$M_{t}=m \vee\sup_{0\leq u\leq t}S_{u}$
, $t\geq 0$ , (2.2)

where $a \vee b=\max\{a, b\}$ .
Given a finite time horizon $T>0$ , the arbitrage-free value of the Russian option at time

$t\in[0,T]$ is given by
$V(s,m, t)=e ss\sup_{0\leq\theta\iota\leq T-t}E_{s,m}[e^{-r\theta}{}^{t}M_{\theta_{t}}]$ , (2.3)

where $\theta_{t}$ is a stopping time of the filtration $F$ and the conditional expectation $E_{s,m}[\cdot]\equiv$

$E[\cdot|\mathcal{F}_{0}]=E[\cdot|S_{0}=s, M_{0}=m]$ is calculated under the risk-neutral probability measure P. The
random variable $\theta t\in[0, T-t]$ is called an optimal stopping time if $V(s, m, t)=E_{s,m}[e^{-r\theta_{t}}M_{\theta_{t}}\cdot]$ .
It is clear from $(2.1)-(2.3)$ that $V(s, m, t)\geq rn,$ $V$ is nondecreasing in $s$ and $m$ , and $V$ is non-
increasing in $t$ . Ekstr\"om [5] proved that the value function $V\equiv V(s, m, t)$ is continuous, $i.e.,$ $V$

is uniformly continuous in $s,$ $m$ and $t$ separately. Solving the optimal stopping problem (2.3) is
equivalent to finding the points $(S_{t}, \Lambda l_{t}, t)$ for which early exercise before maturity is optimal.
Let

$\mathcal{D}=\{(s, m, t)\in \mathbb{R}+\cross[s, +\infty)x[0, T]\}$

be the whole domain, and $\mathcal{E}$ and $C$ denote the exercise region and continuation region, respec-
tively. In terms of the value function $V(s, m, t)$ , the continuation region $C$ is defined by

$C=\{(s, m,t);V(s, m, t)>m\}$ ,

which is an open set since $V$ is continuous. The exercise region $\mathcal{E}$ is the complement of $C$ in $\mathcal{D}$

and the optimal stopping time $\theta_{t}^{*}$ satisfies

$\theta_{t}^{*}=\inf\{u\in[0,T-t];(S_{u}, M_{u}, t+u)\in \mathcal{E}\}$ .

Since $V$ is nondecreasing in $s,$ $(s, m, t)\in C$ implies $(x, m, t)\in C$ for all $x$ satisfying $s\leq x\leq m$ .
Hence, there exists a function $\underline{S}(m, t)$ with $0\leq\underline{S}(m, t)\leq m$ such that

$\underline{S}(m,t)=\inf\{s\in[0, m];(s, m, t)\in C\}$ , (2.4)

and $(\underline{S}(m, t))_{t\in[0,T]}$ is called the early exercise boundary. The boundary function $\underline{S}(m, t)$ is
nondecreasing in $t$ since $V$ is nondecreasing in $t$ , and it is continuous in $t$ if $\delta>0$ ; see Theorem 2
in Ekstr\"om [5]. In terms of the function $\underline{S}(m, t)$ , the continuation region $C$ can be represented
as

$C=\{(s, m, t);S(m, t)<s\leq m\}$ .
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2.2 Free boundary problem

It has been known that the optimal stopping problem (2.3) of finding the option value $V$ can
be deduced to a parabolic free boundary problem (see Theorem 1 in Ekstr\"om [5]): The value $V$

of the Russian option with finite time horizon is given byasolution of the PDE

$\frac{\partial V}{\partial t}+\frac{1}{2}\sigma^{2}s^{2}\frac{\partial^{2}V}{\partial s^{2}}+(r-\delta)s\frac{\partial V}{\partial s}-rV=0$ , $\underline{S}(m.t)<s\leq m$ , (2.5)

together with the boundary conditions

$|m \downarrow s\lim\lim_{s\downarrow\underline{S}}\frac{\partial V}{\frac{\partial V\partial s}{\partial m}}=0\lim V(s,m, t)=ms\downarrow\underline{S}=0’,$ (2.6)

and the terminal condition
$V(s,m, T)=m$. (2.7)

The boundary conditions in (2.6) are respectively called the value matching, smooth pasting and
Neumann conditions in order.

Fkom (2.3), we see that the value $V$ depends on time only through the time $T-t$ remaining
to maturity. For notational convenience. we introduce the time-reversed quantities

$\tilde{V}(s, m,\tau)=V(s, m, T-\tau)=V(s, m, t)$ ,

and
$\tilde{\underline{S}}(m,\tau)=\underline{S}(m,T-\tau)=\underline{S}(m, t)$ ,

with the change of variables $\tau$ $:=T-t$ . It follows from the definition (2.3) of the value function
$V$ that

$\tilde{V}$ ( $ks$ , km, $\tau$ ) $=k\tilde{V}(s, m,\tau)$ , (2.8)
for arbitrary $k\in \mathbb{R}+\cdot$ In particular, if we set $k=m^{-1}$ , then

$\overline{V}(s, m, \tau)=m\tilde{V}(\frac{s}{m}, 1,\tau)$ ,

which permits a reduction in the dimensionality of the problem by a similarity variable. That
is, we may find a solution of the form

$\tilde{V}(s, m, \tau)=mW(\xi,\tau)$ , (2.9)

with the change of variables $\xi:=s/m$ .
Using the relations

$\frac{\partial V}{\partial s}=\frac{\partial W}{\partial\xi}$ , $\frac{\partial^{2}V}{\partial s^{2}}=\frac{1}{m}\frac{\partial^{2}W}{\partial\xi^{2}}$

$\frac{\partial V}{\partial m}=W-\xi\frac{\partial W}{\partial\xi}$ , $\frac{\partial V}{\partial t}=-m\frac{\partial W}{\partial\tau}$ ,

we can rewrite the PDE (2.5) as

$- \frac{\partial W}{\partial\tau}+\frac{1}{2}\sigma^{2}\xi^{2}\frac{\partial^{2}W}{\partial\xi^{2}}+(r-\delta)\xi\frac{\partial W}{\partial\xi}-rW=()$ , $\xi(\tau)<\xi\leq 1$ , (2.10)
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where $\underline{\xi}(\tau)(\in[0,1])$ is defined by
$\xi(\tau)=\frac{1}{m}\tilde{\underline{S}}(m, \tau)$ ,

being nonincreasing in $\tau$ . The boundary conditions for $W$ are given by

$| \xi\downarrow\underline{\xi}(\tau)^{\frac{\partial W}{\partial\xi}=0}\lim_{\xi\uparrow 1}^{\lim^{\lim}}(W-\frac{\partial W}{\partial\xi’})=0\xi\downarrow\underline{\xi}(\tau)W(\xi,\tau)=1$

,

(2.11)

and the initial condition is
$W(\xi, 0)=1$ . (2.12)

3 Valuation with Laplace-Carlson Transforms

For $\lambda>0$ , define the Laplace-Carlson transform (LCT) of the time-reversed quantity $W(\xi, \tau)$

as
$W^{*}( \xi, \lambda)=\mathcal{L}C[W(\xi, \tau)](\lambda)\equiv\int_{0}^{\infty}\lambda e^{-\lambda\tau}W(\xi, \tau)d\tau$ .

Similarly, we denote the LCT of $\xi(\tau)$ by attaching the asterisk, $i.e.,$ $\underline{\xi}^{*}(\lambda)=\mathcal{L}C[\xi(\tau)](\lambda)$ . No
doubt, there is no essential difference between the LCT and the Laplace transform (LT) defined
by

$\overline{W}(\xi, \lambda)=\mathcal{L}[W(\xi, \tau)](\lambda)\equiv\int_{0}^{\infty}e^{-\lambda\tau}W(\xi, \tau)d\tau$.

Obviously, we have $W$“ $(\xi, \lambda)=\lambda\overline{W}(\xi, \lambda)$ for $\lambda>0$ . The principal reason why we prefer LCTs
to LTs is that LCTs generate relatively simpler formulas than LTs for option pricing problems
because constant values are invariant after taking transformation. In the context of option
pricing, LCTs have been adopted in the randomization of Carr [2] as an initial approximation.

Let $\tilde{V}^{*}\equiv\tilde{V}$“ $(s, m, \lambda)=\mathcal{L}C[\tilde{V}(s, m, \tau)](\lambda)$ be the LCT of the time-reversed value $\tilde{V}$ . Hlrom
the PDE (2.10) with the conditions (2.11) and (2.12), we obtain a closed-form solution as follows:

Theorem 1 The LCT of the time-reversed value $\tilde{V}(s, m, \tau)$ of the Russian option with finite
time horizon $T<\infty$ is given by

$\tilde{V}^{*}(s, m, \lambda)=\{\begin{array}{ll}\frac{mr}{\alpha_{2}-\alpha_{1}\lambda+r}\{\alpha_{2}(\frac{s}{m\underline{\xi}^{*}})^{\alpha_{1}}-\alpha_{1}(\frac{s}{m\underline{\xi}^{*}})^{\alpha_{2}}\}+\frac{\lambda m}{\lambda+r}, m\underline{\xi}^{*}<s\leq mm, 0<s\leq m\underline{\xi}^{*},\end{array}$

(3.1)
where the parameters $\alpha_{1}>1$ and $\alpha_{2}<0$ are two real roots of the quadratic equation

$5^{\sigma^{2}\alpha^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\alpha-(\lambda+r\cdot)=0}1$ (32)

and the LCT $\xi^{*}\equiv\xi^{*}(\lambda)\leq 1$ is a unique positive solution of the functional equation

$\frac{\alpha_{1}(1-\alpha_{2})}{\alpha_{2}(1-\alpha_{1})}(\underline{\xi}^{*})^{\alpha_{1}-\alpha_{2}}+\frac{\lambda}{r}\frac{\alpha_{1}-\alpha_{2}}{\alpha_{2}(1-\alpha_{1})}(\xi^{*})^{\alpha_{1}}=1$ . (3.3)
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Proposition 2 The LCTs of $t1_{1}e$ time-reversed Greeks

$\Delta^{*}=\mathcal{L}C[\frac{\partial\tilde{V}}{\partial s}]$ , $\Gamma^{*}=\mathcal{L}C[\frac{\partial^{2}\tilde{V}}{\partial s^{2}}]$ and $\Theta^{*}=\mathcal{L}C[\frac{\partial\tilde{V}}{\partial\tau}]$

for $s\in(m\xi^{*}, m$] are respectively given by

$\Delta^{*}=\frac{\alpha_{1}\alpha_{2}r}{\alpha_{2}-\alpha_{1}\lambda+r}\frac{m}{s}\{(\frac{s}{m\underline{\xi}^{*}})^{\alpha_{1}}-(\frac{s}{m\underline{\xi}^{*}})^{\alpha_{2}}\}$ ,

$\Gamma^{*}=\frac{\alpha_{1}\alpha_{2}r}{\alpha_{2}-\alpha_{1}\lambda+r}\frac{m}{s^{2}}\{(\alpha_{1}-1)(\frac{s}{m\underline{\xi}^{*}})^{\alpha_{1}}-(\alpha_{2}-1)(\frac{s}{m\underline{\zeta}^{*}})^{\alpha_{2}}\}$,

$\Theta^{*}=\frac{\lambda rm}{\lambda+r}[\frac{1}{\alpha_{2}-\alpha_{1}}\{\alpha_{2}(\frac{s}{m\underline{\xi}^{*}})^{\alpha_{1}}-\alpha_{1}(\frac{s}{m\underline{\xi}^{*}})^{\alpha_{2}}\}-1]$ .

Proposition 3 For the early exercise boundary $(\underline{S}(m, t))_{t\in[0,T]}$ of the Russian option with finite
time horizon $T<\infty$ , we have

$\lim_{tarrow T}\underline{S}(m, t)=m$ . (3.4)

Applying Abelian theorem on the terminal value of LTs to the LCT $\tilde{V}^{*}(s, m, \lambda)$ , we can
obtain the well-known result for the perpetual case; see Duffie and Harrison [3] and Shepp and
Shiryaev [12]. There exist several different proofS for valuing the perpetual Russian option [3,
7, 9, 10, 12, 13]. To make this paper self-contained, however, we provide the result and a brief
proof from the view point of the Laplace transform approach.

Proposition 4 Let $V_{\infty}(s, m)$ be the value of the perpetual Russian option. For $\delta>0$ , we have

$V_{\infty}(s, m)=\{\begin{array}{ll}\frac{m}{\alpha_{2}^{o}-\alpha_{1}^{o}}\{\alpha_{2}^{o}(\frac{s}{m\underline{\xi}_{\infty}})^{\alpha_{1}^{O}}-\alpha_{1}^{o}(\frac{s}{m\underline{\xi}_{\infty}}I^{\alpha_{2}^{O}}\}, m\underline{\xi}_{\infty}<s\leq mm, 0<s\leq m\underline{\xi}_{\infty\text{。}},\end{array}$ (3.5)

where $\alpha_{i}^{o}=\lim_{\lambdaarrow 0}\alpha_{i}(\lambda)(i=1,2)$ are two real roots of the quadratic equation

$\frac{1}{2}\sigma^{2}\alpha^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\alpha-r=0$ , (3.6)

and

$\underline{\xi}_{\infty}=(\frac{\alpha_{2}^{o}(1-\alpha_{1}^{O})}{\alpha_{1}^{o}(1-\alpha_{2}^{o})})^{\frac{1}{\alpha_{1}-\alpha_{2}}}$ . (3.7)

It is worthwhile noting here that the expressions for $V_{\infty}(s, m)$ in (3.5) and $\xi$ in (3.7) of
the perpetual Russian option are symmetric with respect to the roots $\alpha_{1}^{o}$ and $\alpha_{2^{-}}^{o}.F$ rthermore,
motivated by some observations in numerical experiments, we obtain an interesting symmetric
Property of the optimal threshold level $\underline{\xi}_{\infty}$ . Syobolic computation with a mathematical software
yields

Proposition 5 Denote $\underline{\xi}_{\infty}\equiv\underline{\xi}_{\infty}(r, \delta)$ for $r,$ $\delta>0$ . Then. $\underline{\xi}_{\infty}(r, \delta)$ is the symmetric function of
$r$ and $\delta,$ $i.e.$ ,

$\xi_{\infty}(r, \delta)=\underline{\xi}_{\infty}(\delta, r)$ . (3.8)
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4 Computational Results

As shown in the previous section, Laplace transforms are useful to do asymptotic analysis via
Abelian theorems. However, the primary value of the transforms is in time-dependent analysis
of the original functions via analytical or numerical transform inversion. In particular, numerical
inversion is most important when a transform cannot be analytically inverted by manipulating
tabled formulas, which is the normal case in option pricing problems. Numerical inversion
is also important when a Laplace transform is implicitly defined, $e_{9}.$ , as the solution of a
certain functional equation. Actually, this is the case of our problem: To invert the LCTs
$\tilde{V}^{*}(s, m, \lambda)$ and $\underline{\xi}^{*}(\lambda)$ , we first have to solve the functional equation (3.3) for $\xi^{*}(\lambda)$ . Among
many numerical methods for Laplace transform inversion, the Gaver-Stehfest method $[6, 14]$

is especially convenlent for such implicitly defined Laplace transforms, since it works with the
transform evaluated only at real arguments.

Consider the LCT $G^{*}(\lambda)=\mathcal{L}C[G(\tau)](\lambda)$ for a given function $G(\tau)\in L^{1}(\mathbb{R}_{+})$ . Gaver [6]
developed an inversion algorithm based on the asymptotic result

$G( \tau)=\lim_{narrow\infty}G_{n}(\tau)$ , $\tau\geq 0$

where $G_{n}(\tau)\equiv G_{n}^{(n)}(\tau)(n\geq 1)$ is defined by using a sequence $\{G_{n}^{(m)}(\tau);n, m\geq 1\}$ generated
by the recursion

$\{\begin{array}{ll}G_{0}^{(m)}(\tau)=G^{*}(m\frac{\log 2}{\tau}), n=0G_{n}^{(m)}(\tau)=(1+\frac{m}{n})G_{n-1}^{(m)}(\tau)-\frac{m}{n}G_{n-1}^{(m+1)}(\tau), n\geq 1.\end{array}$ (41)

To accelerate the convergence of $(G_{n}(\tau))_{n\geq 1}$ to $G(\tau)$ , Stehfest [14] proposed an extrapolation
formula

$\overline{G}_{n}(\tau)=\sum_{k=1}^{n}\frac{(-1)^{(n-k)}k^{n}}{k!(r\iota-k)!}G_{k}(\tau)$ , (4.2)

which has been known under an alias of the n-point Richardson extrapolation scheme in the
context of option pricing. The procedure for generating the n-th approximation $\overline{G}_{n}(\tau)$ is called
the Gaver-Stehfest method; see Abate and Whitt [1] for details. To compute the root $\xi^{*}(\lambda)\in$

$[0,1]$ of the functional equation (3.3) for a given $\lambda>0$ , we simply use the Newton method. This
is due to the existence and uniqueness of the root in the interval $[0,1]$ .

From a financial point of view, the no-dividend case $\delta=0$ is the most interesting one for
the Russian option with finite time horizon, because we have to require the condition $\delta>0$

when we deal with the perpetual Russian option. Tables 1 and 2 show the normalized option
value $\tilde{V}(s, m, \tau)/m$ for some cases with and without dividends, respectively. The initial value
of the Newton method is fixed to 1 and the 4-point extrapolation is adopted in our inversion
algorithm. We see from these tables that the premiums of Russian options with short maturity
are not so expensive especially for $s_{l,\prime}’m<1$ , which implies that the (normalized) guaranteed
discounted value $e^{-r\tau}$ is dominant in the option value for those cases. For cases with $\delta=0$

and long maturity, the premiums are extremely high such that the commercial value of Russian
options is doubtful. From these observations, we may say that the Russian option is intrinsically
valuable when the maturity $T$ is relatively short.

Figures 1 (a) and l(b) illustrate some curves of the normalized early exercise $boundm\cdot y\xi(t)=$

$\underline{S}(m, T-t)/m$ of the Russian option with finite horizon $T=10$ as functions of $t\in[0,10]$ , where
dashed lines represent the optimal threshold levels $\underline{\xi}_{\infty}$ for the $a_{\wedge}\backslash \backslash sociated$ perpetual cases. The
efiect of the interest rate $r$ can be shown in Figure l(a) and the dividend yield $\delta$ in Figure l(b).
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Table 1: Option values $\tilde{V}(s, m, \tau)/m$ with dividends $(r=0.05, \delta=0.03)$

$\ovalbox{\tt\small REJECT} 0.2101.13081.22441260012910\sigma s/.m\tau=1\tau=5\tau.=10\tau.=\infty$

0.9 1.0403 1.1150 11453 11723
0.8 1.0008 1.0378 1.0571 1.0781

0.3 1.0 1.2188 1.4228 1.5273 1.6904
0.9 1.1125 12890 13816 15273
0.8 1.0426 1.1741 1.2517 1.3775

0.4 1.0 1.3130 1.6535 1.8572 2.3065
0.9 1.1940 14950 16771 20803

$\ovalbox{\tt\small REJECT} 0.81.1014$1.35141.50491.8644

Table 2: Option values $\tilde{V}(s, m, \tau)/m$ with no dividends $(r=0.05, \delta=0)$

$\frac{\ovalbox{\tt\small REJECT}\sigma s/.m\tau.=1\tau=5\tau=10\tau=100}{0.210114751.30661.41442.0519}$

0.9 10518 11835 1,2780 18478
0.8 1.0061 1.0800 1.1545 1.6468

0.3 1.0 12372 1.5256 1.7391 3.2714
0.9 1.1274 13793 1.5696 29456
0.8 1.0508 1.2472 1.4101 2.6229

0.4 1.0 13329 17766 2.1287 5.0986
0.9 12110 16045 1,9199 45903
0.8 11138 14446 1.7202 40855

In these figures, we can see that each curve of the boundaries reaches the value 1 at maturity,
which is consistent with Proposition 3. The algorithm works well even near expiration, depicting
rapidly increasing curves as $tarrow T$ . Note that Figures l(a) and l(b) provide a numerical check
for the symmetry relation proved in Proposition 5. All of the figures indicate a general property
that the lower the threshold level $\underline{\xi}_{\infty}$ , the slower convergence of $\underline{\xi}(\tau)$ as $\tauarrow\infty$ .

5 Conclusion
In this paper, we analyzed the Russian option with finite time horizon via the Laplace transform
approach to obtain the LCTs of the option value, the early exercise boundary and some hedging
parameters. all of which can be expressed in terms of the unique real root of a functional
equation. Our numerical analysis showed that the accuracy of this root plays an important role
in numerica.‘ inversion of Laplace transforms with the Gaver-Stehfest method that requires more
than 20-digits precision. Although the Gaver-Stehfest method generates sufficiently accurate
solutions for almost all cases as shown in Section 4, the solutions sometimes behave unstably for
the situations where $V(s, m, t)\approx m$ , typically occurred when $tarrow T$ or $sarrow\underline{S}(m, t)$ . Removing
this instability especially around the smooth-pasting point is an important problem to be solved
as future work.
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$t$ $t$

(a) $r=0.02,0.04,0.06,$ $\delta=0.04$ (b) $r=0.04,$ $\delta=0.02,0.04,0.06$

Figure 1: Early exercise boundaries $\underline{S}(m, T-t)/m(T=10, \sigma=0.2)$

The Laplace transform approach is so general that it could be applied to other American-
style path-dependent options whose payoff functions are sufficiently smooth with respect to state
variables, $e.g.$ , lookback, barrier, exchange and so on. Also, the approach could be extended to
the cases that the underlying asset price has jumps and that it is discretely monitored. These
extensions still remain as future work.
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