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1. Introduction

$R\epsilon a1$ optioo $approa\bm{i}\infty$ have become ausefiP tool for evaluating irreversible $\bm{i}\backslash |\infty tment$

under unoertainty $8u\bm{i}a8$ R&D investment. Increasing numbers of the real options literaturoe
such as $[3, 5]$ have investigatd strategic interutions of several firms. On the other hand, there
are several studies on the $d\propto ision$ of asingle flrm with $\bm{t}$ option to $cho\propto e$ both the type td
the timing of the invaetment projrts. $\bm{t}$ this literature, [2] was the ffist study to pay attention
to the problem and D\’ecmps et al. [1] invaetigated the problem in more detail.

Daepite such active $studi\propto$ on real optioo, to our knowledge few studies have tried to
elucidate how competition between two finns ffiects their invaetment $d\infty isions$ in the $ca8e$ where
the firms have the option to choose both the type and the timing of the projects. This paper
$inv\propto tigatae$ the above problem by extending the R&D model in [5] to amodel where the fims
can&oose the target of the r\’eeari Rom two alternative trhnologiae of different $standard\epsilon$ with
the same uncertainty about the market demand. $\bm{i}$ the model, we show that the competition
$betw\infty n$ the two firms affaets not oty the firms’ $inv\infty tment$ time, but $a$]$so$ their choice of the
$techno1o_{\Psi}$ targeted in the project.

We highlight two typical cas\’e that reveal interesting implications. One is the de facto
sttdard case, in $w$.hich case afirm that $complet\propto a$ technology first ct monopolize the profit
flow regardlaes of the standard of the technology. The other is the innovative case, in which
case afirm with $hig_{er}$-standard technology can deprive afim $wIthlower-stmdrd$ teinology
of the caeh Aow by completing the $higher-standard$ technology.

We show that, in the de futo standrd caee, the competition $increas\infty$ the inoentive to
develop the lower-standard technology, whii is easy to complete, while in the innovative $C\mathfrak{B}e$,
the competition increases the incentive to develop the $higher-standard$ technoloy, which is
difflcult to complete. $\bm{t}$ partictar, we show that in the de facto standard case the competition
is likely to lead the fims to inv\’et in the lower-standard technology, whii is never iosen in the
single flrm situation. This result $expla\dot{i}S$ areal problem caused by too bItter R&D competition.
Of $cour8e,$ $a8$ daecribed in [4], practical R&D management is often much more flexible and
complex than the simple model in this paper. However, it is likely that the essenoe of the results
$rema\dot{i}S$ unianged in more practical setups.

The paper is organizd as foUows. ARer Section 2derivae the optimal $inv\infty tment$ timing for
the single fim, $S\infty tion3$ mde the aeneral fomulation of the competition betwaen two firms.
$S\infty tion4$ derives the fims’ $strate\dot{g}es$ in the two typical $case8$ , nmely, the de facto standard
case and the innovative $ca8e$.

2. Single firm situation

Throughout the paper, we assume all stochastic processes and random variables are defined
on the filtered probability spaee $(\Omega,\mathcal{F},P;\mathcal{F}_{t})$ . This paper is based on the model in [5]. This
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section considers the investment decision of the single fim without fear of preemption. The fim
can set up a research project for developing a new technology $i$ (we denote technologies 1 and 2
for the lower-standard and higher-standard technologies, respectively) by paying an indivisible
investment cost $k_{i}$ .

In developing technology $i$ , kom the time of the investment the invention takes place ran-
domly according to a Poisson distribution with constant hazard rate $h_{i}$ . The firm must pay
the research expense $l_{1}$ per unit of time during the research term and can receive the profit
flow $D_{i}Y(t)$ from the discovery. Here, $Y(t)$ represents a market demand of the technologies at
time $t$ . It must be noted that the fim’s R&D investment is affected by two different types of
uncertainty, i.e., technological uncertainty and product market uncertainty. For simplicity, $Y(t)$

obeys the following $g\infty metric$ Brownian motion, which is independent of the Poisson processes
representing technological uncertainty.

$dY(t)=\mu Y(t)dt+\sigma Y(t)dB(t)$ $(t>0),$ $Y(O)=y$,
where $\mu\geq 0,\sigma>0$ and $y>0$ are given constants and $B(t)$ denotes the onedimensional $\mathcal{F}_{t}$

standard Brownian motion. Quantities $k_{i},$ $h_{i},$ $D_{i}$ and $l_{i}$ are given constants satisfying
$0\leq k_{1}\leq k_{2},0<h_{2}<h_{1},0<D_{1}<D_{2},0<l_{1}\leq l_{2}$ , (1)

so that taehnology 2 is more difficult to develop and generates a higher profit flow bom its
completion than technology 1.

The flrm that monitors the market demand can set up development of either technologies 1
or 2 at the optimal timing maximizing the expected payoff under discount rate $r(>\mu)$ . Then,
the ffim $s$ problem is expressed as the following optimal stopping problem:

$V_{0}(y)= \sup_{\tau\in \mathcal{T}}E[.\max_{1=1,2}E[l_{+t_{i}}^{\infty}e^{-rt}D_{i}Y(t)dt-e^{-rr}k_{1}\cdot-\int_{\tau}^{\tau+4}e^{-rt}l_{i}dt|\mathcal{F}_{\tau}]]$ , (2)

where $\mathcal{T}$ is a set of all $F_{t}$ stopping times and $t_{i}$ denotes a random variable representing a Poisson
arrival with hazard rate $h_{i}$ independent of $B(t)$ . In problem (2), $\max_{1=1,2}E[\cdots|F_{\tau}]$ means that
the firm can choose the optimal technology at the investment time $\tau$.

Via some calculations, problem (2) can be reduced to

$V_{0}(y)= \sup_{\tau\in \mathcal{T}}E[e^{-r\tau}\max_{i=1,2}(a_{i0}Y(\tau)-I_{1})]$ , (3)

where $A0$ and $I_{i}$ are defined by

砺 0 $=$ $\frac{D_{i}h_{1}}{(r-\mu)(r+h_{1}-\mu)}$ (4)

$I_{1}$ $=$ $h+ \frac{l_{i}}{r+h_{i}}$ . (5)

Here, $a\omega Y(\tau)$ represents the expected discounted value of the future profit generated by tech-
nology $i$ at the investment time $\tau$, and $I_{i}$ represents its total expected $dis\infty unted$ cost at time $\tau$.
Eq. (1) and (5) imply $I_{1}<I_{2)}$ but the inequality $a_{10}<a_{20}$ does not necessarily hold depending
upon a trade-off between $h$: and $D_{i}$ . Let $V_{0}(y)$ and $\tau_{0}^{*}$ denote the value ftnction and the optimal
stopping time in problem (3), respectively. As in most real options lterature, we define

$\beta_{10}$ $=$ $\frac{1}{2}-\frac{\mu}{\sigma^{2}}+\sqrt{(\frac{\mu}{\sigma^{2}}-\frac{1}{2})^{2}+\frac{2r}{\sigma^{2}}}>1$ , (6)

$\beta_{20}$ $=$
$\frac{1}{2}-\frac{\mu}{\sigma^{2}}-\sqrt{(\frac{\mu}{\sigma^{2}}-\frac{1}{2})^{2}+\frac{2r}{\sigma^{2}}}<0$. (7)
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Proposition 1 The value function $V_{0}(y)$ and the optimal stopping time $\tau_{0}^{*}$ in the single ffim’s
problem (3) are given as follows:
Case 1: $0<a_{20}/a_{10}\leq 1$

$V_{0}(y)$ $=$ $\{\begin{array}{ll}A_{0}y^{\beta_{10}} (0<y<y_{10}^{*})a_{10}y-I_{1} (y\geq y_{10}^{*}),\end{array}$ (8)

$\tau_{0}^{*}$ $=$ $\inf\{t\geq 0|Y(t)\geq y_{10}^{*}\}$ . (9)

Case 2: $1<(a_{20}/a_{10})^{\beta_{1}0/(\beta_{1}0-1)}<I_{2}/I_{1}$

$V_{0}(y)$ $=$ $\{\begin{array}{ll}A_{0}y^{\beta_{10}} (0<y<y_{10}^{*})a_{10}y-I_{1} (y_{10}^{*}\leq y\leq y_{w}^{*})B_{0}y^{\beta_{10}}+C_{0}\theta (y_{20}^{*}<y<y_{\theta 0}^{*})a_{\mathfrak{B}}y-I_{2} (y\geq y_{30}^{*}),\end{array}$ (10)

$\tau_{0}^{*}$ $=$ $\inf\{t\geq 0|Y(t)\in[y_{10}^{*},y_{20}^{*}]\cup[y_{30}^{*}, +\infty)\}$. (11)

Case 3: $(a_{20}/a_{10})^{\beta_{10}/(\beta_{1\{\}}-1)}\geq I_{2}/I_{1}$

$V_{0}(y)$ $=$ $\{\begin{array}{ll}B_{0}y^{\beta_{10}} (0<y<y_{so}^{*})a_{\mathfrak{B}}y-I_{2} (y\geq y_{\theta 0}^{*}),\end{array}$ (12)

$\tau_{0}^{*}$ $=$ $\inf\{t\geq 0|Y(t)\geq y_{30}^{*}\}$ . (13)

Here, constants $A_{0},B_{0},C_{0}$ and thresholds $y_{10}^{*},y_{20}^{*},y_{30}^{*}$ are detemined by imposing value match-
ing and smooth pasting conditions. Note that $I_{1}<I_{2}$ and $\beta_{10}>1$ .

In Proposition 1, $A_{0}\theta^{10},$ $B_{0}y^{\beta_{10}}$ and $c_{0}P^{0}$ correspond to the values of the option to invest
in technology 1 at the trigger $y_{10}^{*}$ , the option to invest in technology 2 at the trigger $y_{30}^{*}$ and
the option to invest in technology 1 at the trigger $y_{20}^{*}$ , respectively. In Case 1, where the
expected discounted profit of technology 1 is higher than that of technology 2, the fim invests
in technology 1 at time (9) independently of $y$ . In Case 3, where technology 2 is much superior
to technology 1, on the contrary, the fim invests in technology 2 at time (13) regardless of $y$ .
In Case 2, where both projects has similar values by the tradeoff between the profltabMty and
the research term and cost, the firm’s optimal investment policy has three thresholds $y_{10}^{*},y_{20}^{*}$

and $y_{30}^{*}$ , and therefore the project chosen by the fim depends on the imitial value $y$ . Above
all, if $y\in(y_{20}^{*},y_{30}^{*})$ , the firm defers not only investment, but also choice of the project type.

Firm 1 $s$ Firm $2’s$

3. Two firms situation compIotion $Comp|\epsilon tion$
Time t

$–$

We turn to a problem of two symmetric
ffim. We assume that two Poisson pro-
cesses modeling the two firms’ $\dot{i}$novation
are independent of each other, which means
that the $proyess$ of the research project by Tech. 2 Tech $i$

one of the firms does not affect that of its
$\epsilon c$

$\ovalbox{\tt\small REJECT}$
$\langle DY(t)0)$ $(DY(t).0)$

rival. The scenarios of the cash flows into 2 2

the firms can be claesified into four cases. Figure 1: (Firm l’s cash flow, Firm 2 $s$ cash flow)
We aesume that the cash flows into the firm
that has completed a technology first (de-
noted Firm 1) and the other (denoted Firm
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2) follows Figure 1. The quantities $\alpha_{i}$ are constants satisfying $0\leq\alpha_{1},$ $\alpha_{2}\leq 1$ . We consider that
the technology’s share in the product market determines $\alpha_{1}$ and $\alpha_{2}$ .

As in [5], we solve the game between two firms backwards. We begin by supposing that one
of the firms has already invested, and find the optimal decision of the other. In the remainder of
this paper, we call the one who has already invested leader and call the other follower, though
we consider two symmetrical firms. Thereafter, we look at the situation where neither fims
has invested, and consider the decision of either as it contemplates whether to go first, knowing
that the other will react in the way just calculated as the follower’s optimal response. Let
$F_{i}(Y)$ and $\tau_{F_{1}}^{*}$ denote the expected discounted payoff (at time t) and the investment time of the
follower responding optimally to the leader who has invested in technology $i$ at time $tsatis\phi ing$

$Y(t)=Y$. We denote by $L_{i}(Y)$ the expected discounted payoff (at time t) of the leader who has
invested in technology $i$ at $Y(t)=Y$.
3.1. Case where the leader has invested in technology 2

This subsection derives $F_{2}(Y),\tau_{Fz}^{*}$ and $L_{2}(Y)$ . Given that the leader has invested in technol-
ogy 2 at $Y(t)=Y$, the follower’s problem can be reduced to

$F_{2}( Y)=\sup_{\tau\in \mathcal{T}}E^{Y-(r+h_{2})r_{i=1,2}}[e\max(\alpha_{2}Y(\tau)-I_{1})]$, (14)

where $a_{1j}$ are defined by

$a_{11}$ $=$ $\frac{D_{1}h_{1}}{(r-\mu)(r+2h_{1}-\mu)}$ (15)

$a_{12}$ $=$ $\frac{D_{1}h_{1}}{(r+h_{1}+h_{2}-\mu)(r+h_{2}-\mu)}(1+\frac{\alpha_{1}h_{2}}{r-\mu})$ , (16)

$a_{21}$ $=$ $\frac{D_{2}h_{2}}{(r-\mu)(r+h_{1}+h_{2}-\mu)}(1+\frac{\alpha_{2}h_{1}}{r+h_{2}-\mu})$ , (17)

$a_{22}$ $=$ $\frac{D_{2}h_{2}}{(r-\mu)(r+2h_{2}-\mu)}$ (18)

The additional discount $e^{-h_{2}\tau}$ values the possibility that the follower’s option vanishes before its
investment by the leader’s completion of technology 2. Quantity $a_{*j}Y(\tau)$ represents the expected
discounted value of the future cash flow of the firm that invests in technology $i$ at time $\tau$ when
its opponent is on the way to development of technology $j$ . IFlirom the expression (14), we can
show the following proposition.

Proposition 2 The follower’s payoff $F_{2}(Y)$ , investment time $\tau_{F_{2}}^{*}$ and the leader’s payoff $L_{2}(Y)$

are given as follows:
Case 1: $0<a_{22}/a_{12}\leq 1$

$F_{2}(Y)$ $=$ $\{\begin{array}{ll}A_{2}Y^{\beta_{12}} (0<Y<y_{12}^{*})a_{12}Y-I_{1} (Y\geq y_{12}^{*}),\end{array}$

$\tau_{F_{2}}^{*}$ $=$ $\inf\{s\geq t|Y(s)\geq y_{12}^{*}\}$ ,

$L_{2}(Y)$ $=$ $\{\begin{array}{ll}a_{20}Y-I_{2}-\tilde{A}_{2}Y^{\beta_{12}} (0<Y<y_{12}^{*})a_{21}Y-I_{2} (Y\geq y_{12}^{*}).\end{array}$
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Case 2: $1<(a_{22}/a_{12})^{\beta_{12}/(\beta_{12}-1)}<I_{2}/I_{1}$

$F_{2}(Y)$ $=$ $\{\begin{array}{ll}A_{2}Y^{\beta_{12}} (0<Y<y_{12}^{*})a_{12}Y-I_{1} (y_{12}^{*}\leq Y\leq y_{22}^{*})\ovalbox{\tt\small REJECT}^{2} <Y<y3_{2})a_{22}Y-I_{2} (Y\geq y_{32}^{*}),\end{array}$

$\tau_{F_{l}}^{*}$ $=$ $\inf\{s\geq t|Y(s)\in[y_{12}^{*}, y_{22}^{*}]\cup[y_{32}^{*},+\infty)\}$ ,

$L_{2}(Y)$ $=$ $\{\begin{array}{ll}a_{20}Y-I_{2}-\tilde{A}_{2}Y^{\beta_{12}} (0<Y<y_{12}^{*})a_{21}Y-I_{2} (y_{12}^{*}\leq Y\leq y_{22}^{r})a_{2}0Y-Iz-\tilde{B}_{2}Y^{\beta_{12}}-\tilde{C}_{2}Y \text{ん }(y2_{2}<Y<y3_{2})a_{22}Y-I_{2} (Y\geq y_{32}^{*}).\end{array}$

Case 3: $(a_{22}/a_{12})^{\beta_{12}/(\beta_{12}-1)}\geq I_{2}/I_{1}$

$\ovalbox{\tt\small REJECT}(Y)$ $=$ $\{\begin{array}{ll}B_{2}Y^{\beta_{12}} (0<Y<y_{32}^{*})a_{22}Y-I_{2} (Y\geq y_{32}^{*}),\end{array}$

$\tau_{Pb}^{*}$ $= \inf\{s\geq t|Y(s)\geq y_{32}^{*}\}$ ,

$L_{2}(Y)$ $=$ $\{\begin{array}{ll}a_{20}Y-I_{2}-\tilde{B}_{2}Y^{\beta_{12}} (0<Y<y_{32}^{*})a_{22}Y-I_{2} (Y\geq y_{32}^{*}).\end{array}$

Here, $\beta_{12}$ and $\beta_{22}$ denote (6) and (7) replaced $r$ by $r+h_{2}$ , respectively. Constants $A_{2},B_{2},C_{2}$ and
thresholds $y_{12}^{*},$ $y_{2l}^{*},y_{\S 2}^{*}$ are determined by both value matching and $sm\infty th$ pasting conditions,
while constants $A_{2},$ $B_{2}$ and $\tilde{C}_{2}$ are detemined by the value matching condition alone. Note that
$I_{1}<I_{2}$ and $\beta_{12}>1$ .

Constants $A_{2},$ $B_{2},$ $C_{2}$ and thresholds $y_{12}^{*},y_{22}^{*},y_{32}^{*}$ in Proposition 2 correspond to constants
$A_{0},B_{0},C_{0}$ and thresholds $y_{10}^{*},y_{20}^{*},y_{30}^{*}$ in Proposition 1, respectively. Constants $\tilde{A}_{2},\overline{B}_{2}$ and $\tilde{C}_{2}$

value the possibility that $Y$ rises above $y_{12}^{*}$ prior to the leader’s completion, the possibility that
$Y$ rises above $y_{32}^{*}$ prior to the leader’s completion, and the possibility that $Y$ falls beUow $y_{22}^{*}$

prior to the leader’s completion, respectively.

3.2. Case where the leader has invested in technology 1

In this subsection, unlike in the previous subsection, there remains the follower’s option to
invest in technology 2 after the leader’s invention of technology 1 if the follower has not invested
yet. Due to this option value, we need more complicated discussion in this subsection.

Let $f_{1}(Y)$ and $\tau_{f}^{*}1$ be the expected discounted payoff and the optimal stopping time of
the follower respondin$g$ optimally to the leader who has already succeeded in development of
technology 1 at $Y(t)=Y$. In other words, $f_{1}(Y)$ represents the remaining option value to invest
in teinology 2 after the leader’s completion of technology 1. We need to derive $f_{1}(Y)$ and $\tau_{f\iota}^{*}$

before analyzing $F_{1}(Y)$ and $\tau_{F_{1}}^{*}$ . Given that the leader has already completed technology 1 at
$Y(t)=Y$, the foUower’s problem becomes

$f_{1}( Y)=\sup_{\tau\in \mathcal{T}}E^{Y}[e^{-r\tau}(\alpha_{2}a_{20}Y(t)-I_{2})]$ . (19)

It is easy to obtain the value function $f_{1}(Y)$ and the optimal stopping time $\tau_{f}^{*}1$ in problem (19).
If $\alpha_{2}>0$ , then

$f_{1}(Y)$ $=$ $\{\begin{array}{ll}B’Y^{fl_{0}} (0<Y<y’)\alpha_{2}a_{20}Y-I_{2} (Y\geq y’),\end{array}$ (20)

$\tau_{f_{1}}^{*}$ $=$ $\inf\{s\geq t|Y(s)\geq y’\}$ , (21)
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where $B’$ and $y’$ are constants determined by the value matching and smooth pasting conditions
(we omit the explicit solutions to avoid cluttering). If $\alpha_{2}=0$ , then we have $f_{1}(Y)=0$ and
$\tau_{f_{1}}^{*}=+\infty$ .

Assuming that the leader has begun developing technology 1 at $Y(t)=Y$, the follower’s
problem can be expressed as follows:

$F_{1}( Y)=\sup_{\tau\in T}E^{Y}[e^{-(r+h_{1})}‘ \max_{l=1,2}(a_{i1}Y(\tau)-I_{i})+1_{\{\tau\geq\epsilon_{1}\}}e^{-r\epsilon_{1}}f_{1}(Y(s_{1}))]$ , (22)

where $s_{1}$ denotes the time when the leader completes technology 1. Compared with the follower’s
problem (14), problem (22) has the additional tem $E^{Y}[1_{\{\tau\geq\iota_{1}\}}e^{-re_{1}}f_{1}(Y(s_{1}))]$ . This tem cor-
responds to the value of the option for the inactive follower to invest in technology 2. Generally,
problem (22), unhke (14), is difficult to solve analytically because of the additional term. In the
next section, we overcome the difBculty by focusing on two typical cases, namely, the de fact
standard case, where $(\alpha_{1}, \alpha_{2})=(1,0)$ , and the innovative case, where $(\alpha_{1},\alpha_{2})=(0,1)$ .
4. Analysis in two typical cases

In order to exclude a situation where both fims mistakenly invest simultaneously, we assume
that the initial value $y$ is small enough, that is, $\max_{1=1,2}(*oy-I_{i})<0$ (Assumption A), as
in [5], when we discuss the preemption equilibrium. We $mor\infty ver$ restrict our attention to the
case where the fim always chooses the higher-standard technology 2 in the single firm situation
to contrast the competitive situation with the single firm situation. To put it more concretely,
we assume $(a_{20}/a_{10})^{\beta_{10}/(\beta_{10}-1)}\geq I_{2}/I_{1}$ (Assumption B), so that Case 3 follows in Proposition
1.

In the first place, we analytically derive the $f_{0}n_{ower’ s}$ payoff $F_{1}(Y)$ and the leader’s payoff
$L_{1}(Y)$ in both the de fact standard and innovative cases. Note that the results on $F_{2}(Y)$ and
$L_{2}(Y)$ in Proposition 2 hold true by substituting $(\alpha_{1}, \alpha_{2})=(1,0)$ and $(\alpha_{1},\alpha_{2})=(0,1)$ into (16)
and (17). Then, using $L_{1}(Y)$ and $L_{2}(Y)$ , we define

$L(Y)$ $=$ $i1,2 \max_{=}L_{i}(Y)$ ,

$F(Y)$ $=$ $\{\begin{array}{ll}F_{1}(Y) (L_{1}(Y)>L_{2}(Y))F_{2}(Y) (L_{1}(Y)\leq L_{2}(Y)).\end{array}$

Comparing $L(Y)$ with $F(Y)$ , we examine the situation where both firm try to preempt each
other.

4.1. De facto standard case

Since $\alpha_{2}=0$ holds in this case, the follower’s option value $f_{1}(Y)$ vanishes just like in
Subsection 3.2. Thus, we can solve the follower’s problem (22) in the same way as problem (14).
Indeed, $F_{1}(Y)$ and $\tau_{F_{1}}^{*}$ agree with $F_{2}(Y)$ and $\tau_{F_{2}}^{*}$ replaced $\alpha_{2},\beta_{t2}$ with $a_{11},\beta_{i1}$ , respectively in
Proposition 2, where $\beta_{11}(>1)$ and $\ _{1}(<0)$ denote (6) and (7) replaced discount rate $r$ with
$r+h_{1}$ , respectively. In this case, we denote three thresholds corresponding to $y_{12}^{*},y_{22}^{*}$ and $y_{32}^{*}$

in Proposition 2 by $y_{11}^{*},y_{21}^{*}$ and $y_{31}^{*}$ , respectively. Then, the payoff $L_{1}(Y)$ of the leader who
has invested in technology 1 at $Y(t)=Y$ coincides with $L_{2}(Y)$ replaced $a_{\lambda},I_{2},\beta_{i2}$ and $y_{12}^{*}$ by
$a_{1i},I_{1},\beta_{11}$ and $y_{i1}^{*}$ , respectively in Proposition 2.

Let us compare the follower’s decision in the de facto standard case with the $monopoli\epsilon t’ s$

decision derived in Section 2. Using $r-\mu>0$ and $h_{1}>h_{2}>0$ , we have

$\frac{a_{21}}{a_{11}}<\frac{a_{22}}{a_{12}}<\frac{a_{\mathfrak{B}}}{a_{10}}$ . (23)
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Eq. (23) states that the relative expected profit of technology 2 to technology 1 is smaller than
that in the single firm case. Using $1<\beta_{10}<\beta_{12}<\beta_{11}$ , we also obtain

$1< \frac{\beta_{11}}{\beta_{11}-1}<\frac{\beta_{12}}{\beta_{12}-1}<\frac{\beta_{10}}{\beta_{10}-1}$ (24)

Eq. (23) and (24) sugg\’et apossibility that $(au/a_{1i})^{\beta_{1i}/(\beta_{1i}-1)}$ is smaller than $I_{2}/I_{1}$ and 1even
under Assumption B. Then the follower’s optimal choice could be technology 1. In $\infty oequenoe$ ,
the presence of the leader incre\"ases the follower’s incentive to choose the lower-standard tech-
nology 1, whii is easy to complete, compared with in the single fim situation. It can be shown
that $F_{1}(Y)<F_{2}(Y)$ $(Y>0)$ . That is, &om the foUower’s viewpoint, the case where the leder
has ioeen teciology 2is preferable to the case where the leader has ioeen technology 1. This
is due to that the leader who has $inv\infty td$ in technology 1is more hkely to preempt the foUower
because of its short researi tem.

Finally, we consider the situation where neither fim has $inve8ted$. Let us sae that there $exist_{8}$

a $poesibili\Psi$ that technology 1can be developed due to the competition, even if technoloy 2
$generat\infty$ much more profit than teinology 1at its completion. Although, as $hu$ baen pointed
out, $(a_{21}/a_{11})^{\beta_{1i}/(\beta_{1\}-1)}$ could be $smaUer$ than $I_{2}/I_{1}$ and 1under Assumption $B$ , we now consider
the case where

$( \frac{a_{2i}}{a_{1i}})^{a_{-1}}1i\geq\frac{I_{2}}{I_{1}}$ (25)

holds, which means that acaeh flow resulting $bom$ technoloy 2is $\exp\propto td$ to be mui greater
than that of teinoloy 1.

Since the initial value $Y(O)=y$ is small enough (Assumption A), in the single fim situation
the flrm invaet8 in technoloy 2(Assumption B) ae soon as the markt demand $Y(t)ri_{8}ae$ to
the level $y_{30}^{*}$ . Development of technology 1is meaninglaes because the ffim without fear of
praemption can defer the investment sufflciently. However, the fim with fear of praemption by
its rival will attempt to obtain the leader’s payoff by $inv\infty ting$ aslight bit earlier than $ib$ rival
when the leader’s payoff $L(Y)$ is larger tht the foUower’s payoff $F(Y)$ . Repeating this $pro\varpi s$

$caus\infty$ the $inv\infty tment$ trigger to $fa\mathbb{I}$ to the point (denoted, $y_{P}$ )$whereL(Y)$ is qual to $F(Y)$ . At
the point the firms are indifferent between the two $ro1\infty$ , and then one of the firms invoets at
time $\inf\{t\geq 0|Y(t)\geq y_{P}\}$ as leader, while the other invoet\S at time $\tau_{F_{i}}^{*}$ (if there rmaio the
option to invoet) $u$ foUower. This asymmetric outcome is called preemption $equd|b\dot{n}um$ If the
$kar$ of $pr\infty mption$ hasteo the $inv\infty tment$ time sufficiently, the preemption trigger $y_{P}$ is much
smaller than $y_{\theta 0}^{*}$ , and bromae the intersection of $L_{1}(Y)$ and $F_{1}(Y)$ rather than that of $L_{2}(Y)$

and $F_{2}(Y)$ . It suggaets apoesibility that in the preemption equilibrium the leader $inv\infty t_{8}$ in
technoloy 1, even if (25) $i\epsilon$ satisfied.

4.2. Innovative case

This subsection examines the innovative case. We consider the follower’s optimal response
assuming that the leader has invested in technology 1 at $Y(t)=$ Y. We can show that in the
innovative case the folower’s best response $\tau_{F_{1}}^{*}$ coincides with $\tau_{f_{1}}^{*}$ and that $F_{1}(Y)=f_{1}(Y)=$
$V_{0}(Y)$ hold. That is, the follower behaves as if there were no leader. Using the follower’s
investment time, we have the leader’s payoff $L_{1}(Y)$ as $L_{2}(Y)$ replaced $a_{2i},I_{2},\beta_{12}$ and $y3_{2}$ by
$a_{1i},I_{1},\beta_{11}$ and $y_{30}^{*}$ , respectively in Case 3 in Proposition 2.

Next, we compare the follower’s decision in the innovative case with the monopolist’s decision.
We can easily show

$1< \frac{a_{20}}{a_{10}}<\frac{a_{2i}}{a_{1}1}$ $(i=1,2)$ . (26)
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Eq. (26) means that the relative expect$ed$ profit of technology 2 to technology 1 is greater than
that in the single firm case, contrary to (23) in the de facto standard case. Since (24) remains
true, the relationship between $(a_{22}/a_{12})^{\ /(\beta_{12}-1)}2$ and $I_{2}/I_{1}$ depends on the parameters even
under Assumption B. However, in most cases the effect of (26) dominates the effect of (24).
To sum up, the presence of the leader, unlike in the de facto standard case, tends to decrease
the incentive of the lower-standard technology 1, which is easy to complete. By definition of
the follower’s problem (14), we can show $F_{2}(Y)<V_{0}(Y)=F_{1}(Y)$ $(Y>0)$ , contrary to the
de facto standard case. With respect to the preemption equilibrium, we obtain the $fo$bowing
proposition.

Proposition 3 The inequality

$L_{1}(Y)<F_{1}(Y)$ $(Y>0)$ (27)

holds, and therefore in the preemption equilibrium the leader always chooses technoloy 2.
Furthermore, if $(a_{22}/a_{12})^{\beta_{12}/(\beta_{12}-1)}>I_{2}/I_{1}$ , in the preemption equilibrium the folower, ako,
always chooses technology 2.

Table 1 summarizes the comparison results between the two cases.

Table 1: Comparison between the de facto standard and innovative cases.

De facto standard Innovative
Relative$eRxp\infty td_{P}rofi\ovalbox{\tt\small REJECT}$profit $a_{21}/a_{1i}<azo/a_{10}$ $a_{2i}/a_{11}>a_{20}/a_{10}$

$FoUowers$ value$fFoUowersuncti\ovalbox{\tt\small REJECT}$value function $F_{1}(Y)<F_{2}(Y)$ $F_{1}(Y)>F_{2}(Y)$

Preemption equilibrium Both fiffim: likely tohBothfiffim:likelyto hoose $L$ ader: $Th2$, Follower:
Tech. 1 Tech. 2
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