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INTRODUCTION
This note is a quick introduction to the minimal log discrepancy, a local invariant of

log varieties. This fundamental invariant is ubiquitous in the birational classification of
algebraic varieties. First introduced by Shokurov in connection to the termination of a
sequence of flips, it has appeared in the local context of the classification of singularities,
or the global context of Fujita’s conjecture on adjoint linear systems. We present some
of the basic open problems on minimal log discrepancies, and illustrate them with toric
examples.

The plan of this note is as follows. In \S 1, we recall the construction of canonical
models and discrepancies, and its logarithmic version. This seems to us the natural
motivation for log varieties with log canonical singularities, since locally they are just
open subsets of log canonical models. We give the rigorous definition of log varieties and
minimal log discrepancies in \S 2, and present explicit combinatorial formulas for minimal
log discrepancies of toric log varieties. We present some of the basic problems on minimal
log discrepancies in \S 3, discuss their toric case and some methods, old and new.

1. BACKGROUND ON LOG CANONICAL MODELS

1-A. Canonical models, discrepancies. Let $X$ be a complex projective manifold of
general type, with canonical divisor $K_{X}$ . The canonical ring $R(X, K_{X})=\oplus_{m\in N}H^{0}(X, mK_{X})$

is expected to be finitely generated, and if it is, we would obtain a natural birational map
$\Phi:X--*Y:=Proj(R(X, K_{X}))$ .

1The author is supported by a 21st Century COE Kyoto Mathematics Fellowship, and by the JSPS
Grant-in-Aid No 17740011.

数理解析研究所講究録
第 1550巻 2007年 121-130 121



THE MINIMAL LOG DISCREPANCT

The birational model $Y$ is called the canonical model of $X$ . It depends only on the
birational class of $X$ and it has a canonical polarization, but it is singular in general. For
example, $Y$ may have some Du Val singularities in dimension two. The singularities that
may appear on $Y$ are called canonical singularities, introduced by Reid [26].

To get to the formal definition of canonical singularities, let us take a closer look at
what $\Phi$ does for $K_{X}.$ By Hironaka’s resolution of singularities, there exist a Hironaka hut

$X\underline{\nearrow f/^{x_{\Phi}’}\backslash g}\triangleright Y$

that is $X’$ is a projective manifold, $f,$ $g$ are birational morphisms and $\Phi=g\circ f^{-1}.$ By
definition, $K_{X}$ is the divisor $(\omega)$ of zeros and poles of a non-zero top rational differential
form $\omega\in\wedge^{\dim(X)}\Omega_{X}^{1}\otimes c\mathbb{C}(X)$ . Denote $K_{X’}=(f^{*}\omega)$ and $K_{Y}=(g_{*}f^{*}\omega)$ . The latter is
a well defined Weil divisor, since $Y$ is normal. Since $X$ has no singularities, the divisor
$A_{f}=K_{X’}-f^{*}(K_{X})$ is effective and supported by the exceptional locus of $f$ . Equiva-
lently, the natural map $f_{*}:$ $R(X’, K_{X’})arrow R(X, K_{X})$ is an isomorphism. In particular,
$g:X’arrow Y$ is the canonical model of $X’$ . Since $g$ is a morphism and $K_{X’}$ is a big di-
visor, it folows that there exists $m\in \mathbb{Z}\geq 1$ such that $mK_{Y}$ is a very ample divisor, and
$A_{g}= \frac{1}{m}(mK_{X’}-g’(mK_{Y}))$ is effective and supported by the exceptional locus of $g$ . In
particular, $g_{*}:$ $R(X’, K_{X’})arrow R(Y, K_{Y})$ is also an isomorphism:

Reid [26] called a normal germ $P\in Y$ a canonical singularity if $A_{g}$ is well defined and
effective, for a resolution of singularities $g:X’arrow Y$ . The coefficients of the $\mathbb{Q}$-divisor $A_{g}$

are called discrepancies. To understand discrepancies in terms of the manifolds that we
started with, we go back to our global setting and note that

$K_{X’}=g^{*}(K_{Y})+A_{g}$

is a Zariski decomposition of $K_{X’}$ , with positive part $g^{*}(K_{Y})$ and fixed part $A_{9}$ . Since
$|mK_{Y}|$ defines a linear system free of base points, $mA_{9}$ coincides with the fixed divisor of
the linear system $|mK_{X’}|$ . Finally, it turns out that $A_{9}-A_{f}$ is effective, and $f^{*}(K_{X})=$

$g^{*}(K_{Y})+(A_{g}-A_{f})$ is a Zariski decomposition of $f^{*}(K_{X})$ .
1-B. Log canonical models of open varieties. Let $U$ be a complex quasi-projective
manifold of general type, in the sense of Iitaka [13]. By Hironaka’s resolution of singular-
ities, there exists an open embedding $U\subset X$ such that $X$ is a proper manifold, and the
complement $X \backslash U=\sum_{i}E_{i}$ is a divisor with simple normal crossings. The general type
assumption means that the log canonical divisor $K_{X}+ \sum_{i}E_{i}$ is big. The log canonical
ring

$R(X, K+ \sum_{i}E_{i})=\bigoplus_{m\in N}H^{0}(X,m(K_{X}+\sum_{:}E_{1}))$

is independent of the choice of compactification, and in fact depends only on the (proper)
birational class of $U$ . This ring is expected to be finitely generated, and if it is, we would
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obtain a natural birational map

$\Phi:X--*Y:=Proj(R((X, K+\sum_{i}E_{i}))$ .

As before, we can find a Hironaka hut with the extra property that $Exc(f)\cup(f^{-1})_{*}(\sum_{i}E_{i})$

is a simple normal crossings divisor $\sum_{i},$ $E_{i’}$ . Denote $B_{Y}=g_{*}( \sum_{i}, E_{i’})$ . We can imitate
the arguments in the compact case, and obtain isomorphisms

Again, there exists $m\in \mathbb{Z}\geq 1$ such that $m(K_{Y}+B_{Y})$ is a very ample divisor, and we have
Zariski decompositions $K_{X’}+ \sum_{i},$ $E_{i’}=g^{*}(K_{Y}+B_{Y})+A_{9}$ and $f^{*}(K_{X}+ \sum_{i}E_{i})=g^{*}(K_{Y}+$

$B_{Y})+(A_{9}-A_{f})$ . One can see that $\Phi^{-1}$ contracts no divisors of $Y$ , and $\Phi_{*}(\sum_{i}E_{i})=B_{Y}$ .
The pair $(Y, B_{Y})$ is log canonically polarized, and it’s singularities are log canonical, as
we will see shortly. The pair $(Y, B_{Y})$ is called the log canonical model of $U$.
1-C. Log canonical models of log manifolds. Log manifolds provide the natural
bridge between open and compact mamifolds. By definition, they are pairs (X, $\sum_{i}b_{i}E_{i}$),
where $X$ is nonsingular, the $E_{i}’ s$ are nonsingular divisors intersecting transversely, and
$b_{i}\in[0,1]\cap \mathbb{Q}$ for all $i$ . We $c\mathfrak{N}\sum_{i}b_{i}E_{i}$ the boundary of the log manifold, and denote it by
$B$ . Suppose moreover that (X, $B$) is of log general type, that is the log canonical divisor
$K_{X}+B$ is big. The log canonical ring $R(X, B)=\oplus_{m\in N}H^{0}(X, m(K_{X}+B))$ is expected
to be finitely generated, and if it is, we obtain a birational map

$\Phi:X--*Y:=Proj(R(X, B))$ .
Again, we construct a Hironaka hut with the extra property that $Exc(f)\cup(f^{-1})_{*}(\sum_{i}E_{i})$

is a simple normal crossings divisor. Let $\bigcup_{j}F_{j}$ be the exceptional locus of $f$ and denote
$B_{Y}=g_{*}((f^{-1})_{*}B+ \sum_{j}F_{j})$ . We imitate the previous argument, and obtain isomorphisms

Again, there exists $m\in \mathbb{Z}\geq 1$ such that $m(K_{Y}+B_{Y})$ is a very ample divisor, and we have
Zariski decompositions

$K_{X’}+(f^{-1})_{*}B+ \sum_{j}F_{j}=g^{*}(K_{Y}+B_{Y})+A_{g}$

$f^{*}(K_{X}+B)=g^{*}(K_{Y}+B_{Y})+(A_{g}-A_{f})$ .
One can also see that $\Phi^{-1}$ contracts no divisors of $Y$ , and $\Phi_{*}(B)=B_{Y}$ . The birational
model $\Phi:(X, B)--*(Y, B_{Y})$ is called the log canonical model of (X, $B$ ). It is polarized
by the log canonical Q-divisor $K_{Y}+B_{Y}$ , and its singularities are caJled log canonical
singularities.
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2. LOG VARIETIES, MINIMAL LOG DISCREPANCIES

Log varieties with log canonical singularities are objects which locally are open subsets
of canonical models of log manifolds of general type. For technical purposes, it is better
to work in a slightly more general context, such as non-rational boundaries (to be able to
take limits of log divisors), or even non-log canonical singularities (when “building a log
canonical center” at a prescribed point).

Definition 2.1. A log variety $(X, B)$ is a complex normal variety $X$ endowed with an
effective R-Weil divisor $B= \sum_{i}b_{i}E_{i}$ such that $K_{X}+B$ is $\mathbb{R}$-Cartier.

Recall that the canonical divisor $K_{X}=(\omega)$ is the Weil divisor of zeros and poles of
a non-zero top rational differential form $\omega$ (it depends on the choice of $\omega$ , but only up
to linear equivalence). The $E_{i}’ s$ are prime divisors and the $b_{i}’ s$ are non-negative real
numbers. The R-Cartier assumption means that locally on $X,$ $Kx+B$ equals a finite
sum $\sum_{i}r_{i}(\varphi_{i})$ , where $r_{i}\in \mathbb{R}$ and $\varphi_{i}\in \mathbb{C}(X)^{x}$ .

Let now $\mu:X’arrow X$ be birational morphism, and $E\subset X’$ a prime divisor. We use the
same form to define the canonical class of $X’$ , that is $K_{X’}=(f^{*}\omega)$ . The log discrepancy
of (X, $B$) at $E$ is defined as

$a(E;X, B)=mult_{E}(K_{X’}+E-\mu^{*}(K_{X}+B))\in \mathbb{R}$ .
The log discrepancy depends only on the valuation that $E$ induces on $\mathbb{C}(X)$ . We call such
valuations geometric, and denote $c_{X}(E)=\mu(E)$ . For example, if $E$ is a prime divisor in
$X$ , then $a(E;X, B)=1-mult_{E}(B)$ .
Definition 2.2. A log variety (X, $B$) has log canonical singularities if $a(E;X, B)\geq 0$ for
every geometric valuation $E$ of $X$ .

Log canonicity involves all geometric valuations, but it may be checked at only finitely
many valuations. Indeed, by Hironaka’s resolution of singularities, we may find a bira-
tional morphism $\mu:X’arrow X$ such that $X’$ is nonsingular, and $( \mu^{-1})_{*}(\bigcup_{i}E_{i})\cup\bigcup_{j}F_{j}$ is a
simple normal crossings divisor, where $Exc(\mu)=\bigcup_{j}F_{j}$ . Then (X, $B$ ) is log canonical if
and only if the $a(E_{i};X, B)\geq 0$ for all $i$ (that is $b_{i}\leq 1$ for all i) and $a(F_{j};X, B)\geq 0$ for
all $j$ . If this is the case, the formula

$K_{X’}+( \mu^{-1})_{*}B+\sum_{j}F_{j}=\mu^{*}(K_{X}+B)+\sum_{j}a(F_{j}; X, B)F_{j}$.

becomes a Zariski decomposition of the log manifold of relative general type (X’, $(\mu^{-1})_{*}B+$

$\sum_{j}F_{j})arrow X$ .
Example 2.3. Let $X$ be a manifold, and $\sum_{i}E_{i}$ a simple normal crossings divisor. Then
(X, $\sum_{1}b_{i}E_{i}$ ) is a log variety if $b_{i}\geq 0$ for ffi $i$ . It has log canonical singularities if and only
if $b_{i}\in[0,1]$ for all $i$ .
Example 2.4. Let $X$ be a toric variety and $X \backslash T=\bigcup_{i}E_{i}$ the complement of the torus.
Then (X, $\sum_{i}E_{i}$ ) is a log variety with log canonical $\sin\infty arities$ , and $K_{X}+ \sum_{i}E_{i}=0$ .
Definition 2.5. The minimal log discrepancy of a log variety (X, $B$) at a Grothendieck
point $\eta\in X$ is defined as

$a( \eta;X, B)=\inf\{a(E;X, B);c_{X}(E)=\overline{\eta}\}$
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If (X, $B$ ) does not have log canonical singularities at $\eta$ , then $a(\eta;X, B)=-\infty$ . Other-
wise, $a(\eta;X, B)$ is a non-negative real number. Again, it can be computed in finite time,
on a log resolution $\mu:X’arrow X$ such that $\mu^{-1}(\overline{\eta})$ is a divisor, and $\mu^{-1}(\overline{\eta}),$ $(\mu^{-1})_{*}B,$ $Exc(\mu)$

are all suported by a simple normal crossings divisor. In particular, $na(P;X, B)\in \mathbb{Z}$ if
$n(K+B)$ is a Cartier diivsor.

Example 2.6. For a nonsingular point $P\in X,$ $a(P;X)=\dim(X)$ .
2-A. Examples of minimal log discrepancies. Toric log varieties, log varieties (X, $B$)
such that $X$ is a toric variety and $B$ is supported by the complement of the torus, are a
special class of log varieties for which minimal log discrepancies can be easily computed.
We only consider here $\mathbb{Q}$-factorial, log canonical toric germs of log varieties

$P \in(X, B)=(T_{N}emb(\sigma), \sum_{i=1}^{d}b_{i}H_{i})$ .

They are in one-to-one correspondence with the following data:
$\bullet\sigma=\{x\in \mathbb{R}^{d};x_{1}, \ldots, x_{d}\geq 0\}$ .
$\bullet$

$N\subset \mathbb{R}^{d}$ is alattice, containing $(1, 0, \ldots , 0),$
$\ldots,$

$(0, \ldots , 0,1)$ as primitive vectors.
$\bullet(b_{1}, \ldots, b_{d})\in[0,1]^{d}$ .

The following basic facts provide lots of examples of minimal log discrepancies:
(a) $a(\eta_{H_{t}}; X, B)=1-b_{i}$ .
(b) Let $x\in N^{prim}\cap\sigma$ be aprimitive vector. Then $x$ defines a barycentric subdivision

$\Delta_{x}$ of $\sigma$ , and the exceptional locus of the induced birational map $T_{N}emb(\Delta_{x})arrow$

$T_{N}emb(\sigma)$ is a prime divisor $E_{x}$ . Then $a(E_{x};X, B)= \sum_{i=1}^{d}(1-b_{i})x_{i}$.
(c) Log resolutions exists in the toric category. Therefore $mi_{\dot{P}}ma1$ log discrepancies

can be computed using only valuations $E_{x}$ as in (b).
(d) The point $P$ is the unique fixed point of the torus action. Its minimal log

discrepancy is computed as follows

$a(P;X, B)= \min\{\sum_{i=1}^{d}(1-b_{i})x_{i};x\in N\cap int(\sigma)\}$ .

(e) Let $P\in C\subset X$ be the toric cycle corresponding to a face $\tau\prec\sigma$ . The minimal
log discrepancy at its generic point is

$a( \eta c;X, B)=\min\{\sum_{i=1}^{d}(1-b_{i})x_{i};x\in N\cap relint(\tau)\}$ .

(f) The global minimal log discrepancy $a(X, B)$ is defined as the smaJlest log dis-
crepancy of (X, $B$ ). It is computed as follows

$a(X, B)= \min\{\sum_{i=1}^{d}(1-b_{i})x_{i};x\in N\cap\sigma\backslash O\}$ .

(g) In all minimums above, it suffices to consider only the finitely many lattice
points $x\in N\cap[0,1]^{d}$ .

Example 2.7. Suppose $N=\mathbb{Z}^{d}$ , that is $X=\mathbb{C}^{d}$ and the $H_{i}’ s$ are the coordinate hyper-
planes. For the cycle $C:(x_{1}=\cdots=x_{s}=0)$ , we have $a(\eta c;X, B)=s-b_{1}-\cdots-b_{\epsilon}$.
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Example 2.8. Suppose $B=0$ . Since $\sigma$ is fixed, only the lattice $N$ varies.
(i) Take $N= \mathbb{Z}^{2}+\mathbb{Z}(\frac{1}{q}L^{-\underline{1}}q)$, for some integer $q\geq 2$ . The surface germ $P\in X$ is a

$A_{q-1}$ -singularity. We compute $N \cap(O, 1]^{2}=\{(\frac{k}{q}q_{\frac{-k}{q});1}\leq k\leq q-1\}U\{(1,1)\}$ ,
so $a(P;X)=1$ .

(ii) Take $N= \mathbb{Z}^{2}+\mathbb{Z}(\frac{1}{k}, \frac{1}{k})$ , for some positive integer $k$ . As above, we compute
$a(P;X)= \frac{2}{k}$ .

(iii) Take $N= \mathbb{Z}^{3}+\mathbb{Z}\frac{1}{q}(1,p, q-p)$ , where $p,$ $q$ te integers with $1\leq p\leq q-$

$1,$ $gcd(p, q)=1$ . Then $P\in X$ is a terminal 3-fold singularity, with $a(P;X)=$
$1+ \frac{1}{q}$ .

(iv) Take $N= \mathbb{Z}^{3}+\mathbb{Z}\frac{1}{2q}(1, q, 1+q)$ , with $q\geq 1$ . Then $P\in X$ is a 3-fold singularity
with $a(P;X)=1+ \frac{1}{q}$ . This germ has the minimal log discrepancy of a terminal
singularity, but it’s not terminal, since it is not an isolated singularity. The
singular locus of $X$ is $C_{2}$ : $(x_{1}=x_{3}=0)$ , and $a( \eta c_{2}; X)=\frac{2}{q}$ .

Minimal log discrepancies of toric varieties $are$ related to lattice-point-hee convex bod-
ies. To see this, consider the simplex $\Delta=\{x\in \mathbb{R}^{d};x_{1}, \ldots,x_{d}\geq 0, \sum_{i=1}^{d}(1-b_{i})x_{i}\leq 1\}$ .
Then $a(P;X, B)= \inf\{t\in \mathbb{R}\geq 0;N\cap int(t\Delta)\neq\emptyset\}$.

3. PROBLEMS ON MINIMAL LOG DISCREPANCIES

Minimal log discrepancies originate in the problem of the termination of log flips: start-
ing with a given log variety, can we perform log flips infinitely many times? Log flips are
surgery operations which preserve codimension 1 cycles, and improve the singularities of
higher codimensional cycles. As a measure of this improvement, log discrepancies may
only increase after a log flip, and some of them increase strictly. This has been the heuris-
tic behind the termination of a sequence of log flips, and it lead Shokurov [27] to question
the existence of an $\dot{i}$finite increasing sequence of minimal log discrepancies.

First, we fix a log variety (X, $B$), and investigate the set of minimal log discrepancies
of all cycles of $X[4]$ . The basic formula $a(\eta_{C};X, B)=a(P;X, B)-\dim(C)$ , for a
general closed point $P$ on a cycle $C\subset X$ , shows that closed points contain the essential
information. Consider now the minimal log discrepancy $a(P;X, B)$ as a function on the
set of closed points $P\in X$ . This function has a finite image, and in particular the
set of minimal log discrepancies of all cycles of $X$ is finite. Moreover, the level sets
$\{P\in X;a(P;X, B)\leq t\}(t\geq 0)$ are constructible. Simple examples, such as a Du Val
singularity $P\in X$ , with $a(x;X)=2$ for $x\neq P$ , and $a(P;X)=1$ , suggest that these level
sets are in fact closed.
Conjecture 3.1 ([3]). The minimal log discrepancy $a(P;X, B)$ is lower semi-continuous
as a function on the closed points $P$ of $X$ .

This behaviour is conflrmed in several vpecial cases: a) dim(X) $\leq 3[3,4];b$ ) $(X, B)$ is
a toric log variety [4]; c) $X$ is a local complete intersection $[11, 10]$ . Also, it is equivalent
to the inequality $a(P;X, B)\leq a(\eta_{C};X, B)+1$ , for every closed point on a curve in $X[4]$ .

Now consider the general case, when log flips change the log variety (X, $B$) in codimen-
sion at least 2. The coefficients of the boundary are preserved, so we may assume that
they belong to a given finite set. More generally, let $\mathcal{B}\subset[0,1]$ be a set satisfying the
descending chain condition ($\mathcal{B}=\{1-\frac{1}{n};n\geq 1\}\cup\{1\}$ is a typical example), and define

$Mld(d, \mathcal{B})=$ {$a(P;X,B);\dim(X)=d$ , coefficients of $B$ belong to $\mathcal{B}$ }.
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The set $Mld(1, \mathcal{B})=\{1-b;b\in \mathcal{B}\}$ clearly satisfies the ascending chain condition.

Conjecture 3.2 (Shokurov [27]). The following properties hold:
(1) $Mld(d, \mathcal{B})$ satisfies the ascending chain condition.
(2) $a(P;X, B)\leq\dim(X)$ . Moreover, if $a(P;X, B)>\dim(X)-1$ , then $P\in X$ is

a nonsingular point and $a(P;X, B)=\dim(X)$ –mult$P(B)$ .
(3) Assume $\mathcal{B}\cap[0,1-\frac{1}{n}]$ is a finite set for every $n\geq 2$ . Then the accumulation

points of $Mld(d, \mathcal{B})$ are included in $Mld(d-1, \mathcal{B}’)$ , for a suitable set $\mathcal{B}’$ .
This conjecture was confirmed for surfaces $[28, 1]$ , and toric log varieties $[7, 5]$ . By

the classification of terminal 3-fold singularities, $Mld(3, \{0\})\cap(1, +\infty)=\{1+\frac{1}{q};q\geq$

$1\}\cup\{3\}[17,22]$ . Ako, (2) holds if $X$ is a local complete intersection $[11, 10]$ . Ri
cently, Shokurov [31] reduced the termination of a sequence of log flips to the lower
semi-continuity and ascending chain condition of minimal log discrepancies.

Another interesting problem, called precise inversion of adjunction, is to compare min-
imal log discrepancies under adjunction.

Conjecture 3.3 (Shokurov [29], Koll\’ar [18]). Let $P\in S\subset(X, B)$ be the germ of a
log vanety and a normal pmme divisor $S$ vnth mult$s(B)=1$ . By adjunction, we have
$(K_{X}+B)|_{S}=K_{S}+B_{S}$ . Then $a(P;X, B)=a(P;S, B_{S})$ .

This formula is useful in inductive arguments in the log category. It follows from the
Log Minimal Model Program if $a(P;X, B)\leq 1[18]$ , and it holds if $X$ is a local complete
intersection $[11, 10]$ .

Another interesting local question posed by Shokurov is the relationship between min-
imal log discrepancy and the index of a singularity. Suppose $P\in X$ is the germ of a
d-fold with log canonical singularities. If $nK_{X}\sim 0$ and Conjecture 3.2.(2) holds, then the
minimal log discrepancy can take at most finitely many values: $a(P;X)\in\{0, \underline{1}\ldots\underline{nd}\}$ .
Conversely, does there exists an integer $n$ , depending only on $d$ and $a(P;X)^{n}such$ that
$nK_{X}\sim 0$? The answer is positive if $d=2$ (Shokurov, unpublished). Also, suppose
$a(P;X)=0$. If $d=2$ , then $n\in\{1,2,3,4,6\}[29]$ . If $d=3$ , then $\varphi(n)\leq 20$ and $n\neq 60$ ,
where $\varphi$ is the Euler number [14]. See also [12] for a higher dimensional reduction to a
global problem on Calabi-Yau varieties in one dimension less.

Minimal log discrepancies also appear in global contexts, such as FUjita’s Conjecture
on adjoint linear systems. Another global problem is to bound Fano varieties in terms of
its minimal log discrepancies.

Conjecture 3.4 (Alexander and Lev Borisov [6]-Alexeev [2]). Let $\epsilon\in(0,1$] and $d\in \mathbb{Z}_{>1}$ .
Then log Fano d-folds, with log discrepancies at least $\epsilon$ , form a bounded family.

This conjecture is known in several cases: a) $X$ is toric [6]; b) $X$ nonsingular [19]; c)
$d=2[2];d)d=3,$ $\epsilon=1[16,20];e$ ) $d=3$, and the index of $K_{X}$ is fixed [9].

3-A. Toric case. In the assumptions and notations of \S 2-A, we illustrate some of the
local problems on minimal log discrepancies. For lower semi-continuity, it is enough to
see that $a(P;X, B)\leq a(\eta_{C};X, B)+1$ for a torus-invariant curve $P\in C$ . Suppose $C$

corresponds to the face $\tau=\sigma\cap(x_{d}=0)$ . There exists $(x’, 0)\in N^{prim}\cap relint(\sigma)$ such
that $a( \eta c;X, B)=\sum_{i=1}^{d-1}(1-b_{i})x_{i}$ . Then $(x’, 1)\in N\cap int(\sigma)$ and there exists $x\in N^{p\sim m}$
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and a positive integer $m\geq 1$ with $mx=(x’, 1)$ . We have

$a(E_{x};X, B) \leq ma(E_{x};X, B)=\sum_{i=1}^{d-1}(1-b_{i})x_{i}’+1-b_{d}\leq a(\eta c;X, B)+1$.

Therefore $a(P;X, B)\leq a(\eta c;X, B)+1$ .
For precise inversion of adjunction, suppose $B= \sum_{i=1}^{d-1}b_{i}H_{i}+H_{d}$ . Then $S=H_{d}$ is

the toric variety $T_{N_{d}}emb(\sigma_{d})$ , where $\sigma_{d}=\{x\in \mathbb{R}^{d-1};x_{1}, \ldots,x_{d-1}\geq 0\}$ and $N_{d}=\{x\in$

$\mathbb{R}^{d-1};^{\exists}t\in \mathbb{R},$ $(x, t)\in N$ }. To bring this to the normal form in \S 2-A, note that there are
positive integers $n_{1},$ $\ldots,$ $n_{d-1}$ such that $\frac{1}{n_{1}}(0, \ldots, 1i\ldots , 0)$ are primitive vectors of $N_{d}^{prim}$ .
Then $S=T_{N’}emb(\sigma’)$ , where $N’=\{x’\in \mathbb{R}^{d-1};(n_{1}x_{1}’, \ldots, n_{d-1}x_{d-1}’)\in N_{d}\}$ and $\sigma’$ is the
usual positive cone. Let $H_{1}’,$

$\ldots,$
$H_{d-1}’$ the torus invariant prime divisors of $S$ . The key

observation is that the log canonical divisor $K+B= \sum_{i=1}^{d-1}-(1-b_{i})H_{i}$ is independent of
$H_{d}$ . It follows that the boundary of $S$ induced by adjunction is $B_{S}= \sum_{i=1}^{d-1}(1_{n}^{\underline{1}}-\frac{-b}{i})H_{i}’$,
and the equality $a(P;X, B)=a(P;S, B_{S})$ is clear.

Finally, for the ascending chain condition, assume by contradiction that we have a
strictly increasing sequence $a^{1}<a^{2}<a^{3}<\cdots$ , where $a^{n}=a(P^{n};T_{N^{n}}emb(\sigma))$ for $n\geq 1$ .
For simplicity, we assume that the boundary is zero, so only the lattice changes. We may
find $x^{n}\in(0,1]^{d}\cap N^{n}$ such that $a^{n}= \sum_{i=1}^{d}x_{i}^{n}$ . In particular, $a^{n}\leq d$ for all $n$ . Consider
now the strictly increasing sequence of open sets

$U^{n}= \{x\in(0, +\infty)^{d};\sum_{1=1}^{d}x_{i}<a^{n}\}$ .

By [21], $G^{n}=\{x\in \mathbb{R}^{d};U^{n}\cap(\mathbb{Z}^{d}+\mathbb{Z}x)=\emptyset\}$ is the union of finitely many closed subgroups
containing $\mathbb{Z}^{d}$ (the Flatness Theorem of Khinchin [15] gives an altemative proof). We
have $G^{n}\supsetneq G^{n+1}$ since $a^{n}<a^{n+1}$ and $x^{n}\in G^{n}\backslash G^{n+1}$ , so we obtain a strictly decreasing
sequence of finite unions of closed subgroups containing $\mathbb{Z}^{d}$ . This is impossible, since
the set of finite unions of closed subgroups containing $\mathbb{Z}^{d}$ satisfies the descending chain
condition.

3-B. Methods. The toric case (see also [23, 8]) suggests that behind the $ascend_{\dot{i}}g$ chain
condition of minimal log discrepancies lies a deeper fact, the boundedness of singularities
with minimal log discrepancy bounded away from zero. Some log canonical $\sin\infty aritiae$

are classified in low dimension, but in general we could only expect general structure
theorems and boundedness results in terms of minimal log discrepancies. For example,
Du Val singularities are classified as follows: $A_{n},$ $D_{n},$ $E_{6},$ $E_{7},$ $E_{8}$ . FYom the above point
of view, Du Val singularities $are$ nothing but surface singularities having minimal log
discrepancy at least 1, and they come in two types: a l-dimensional series with two
components (A and $D$), and a O-dimensional series $(E)$ .

The known method for bounding germs $P\in X$ is to study the singularities at $P$ of
the linear systems 1 $mK|(m<0)$ , and reduce this local problem to the global problem of
bounding log Fano or log Calabi-Yau varieties in one dimension less $[30, 25]$ . Given that
minimal log discrepancies are actually invariants objects of general type, as \S 1 suggests, it
also seems natural to investigate the singularities at $P$ of the linear systems $|mK|(m>0)$ ,
and relate germs with log canonical $mo$dels in one dimension less.
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Finally, it is likely that minimal log discrepancies can be understood from several points
of view: analytic, birational, motivic or p-adic. The motivic interpretation of minimal log
discrepancies is known in the case when the canonical divisor is $\mathbb{Q}$-Cartier $[24, 32]$ . As
for the analytic side, the description of log discrepancies as the coefficients of a Zariski
decomposition suggests an interpretation of minimal log discrepancies in terms of Lelong
numbers. For example, the bound of Conjecture 3.2.(2) is equivalent to the following
problem. Suppose $X$ is a projective manifold of general type which admits a Zariski
decomposition $K_{X}=P+F$ such that the fixed part $F$ has a support with simple normal
crossings. Then some coefficient of $F$ is at most dim(X).
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