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Abstract: In this paper, an SIS epidemic model with treatment is proposed. The
incidence rate of the model, which can include bilinear incidence rate and standard inci-
dence rate, is a general nonlinear incidence rate. We give some conditions for the existence
of multiple endemic equilibria and backward bifurcations. From the model, we can under-
stand the effect of the capacity for treatment.
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1 $\cdot$ Introduction

Recently, the phenomenon of backward bifurcation has played an important role in
disease control. In such a scenario, the classical requirement of the reproduction number
being less than 1 becomes only a necessary, but not sufficient condition for disease $elimi-\cdot$

nation ([4], [7]). Thus it is important to identify backward bifurcation to obtain conditions
for disease $co$ntrol.

For disease control, the treatment is an important factor. In this paper, we consider
the following SIS model

$\{\begin{array}{l}\frac{dS}{d}=A-dS-\lambda(S+I)^{\alpha-1}SI+rI+h(I)TtdI=\lambda(S+I)^{\alpha-1}SI-(d+r+e)I-h(I)(0\leq\alpha\leq\cdot 1)\end{array}$ (1.1)

with the same treatment function as [7]:

$\{\begin{array}{ll}h(I)=kI, 0\leq I\leq I_{0},h(I)=m, I>I_{0},\end{array}$ (1.2)

where $m=kI_{0},$ $A$ is the recruitment rate of the population, $d$ is the natural death rate
of the population, $r$ is the natural recovery rate of the infective individuals and $e$ is the
additional death rate causing by the disease. $bcat\iota nent$ arc frequently done for some
infections, such as the group of those responsible for the common cold, which do not
confer any long lasting immunity. Hence we use an SIS model here. Since mass action law
may be not suitable for human diseases, we use a general incidence force $\lambda N^{\alpha}SI/N$ , where
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$N$ is the total population number and $\alpha$ is a constant between $0$ and 1. Data for five human
diseases in communitics with population sizes from 1,000 to 400,000 ([1, p. 157], [2, $p$ .
306]) imply that $\alpha$ is between 0.03 and 0.07. Obviously, this generaJ incidence characterize
the continuous transitions from the bilinear incidence to the standard incidence and can
simulate behavior changcs of populations from random mobility in a fixed area to the
mobility with a fixed population density [5].

The organization of this paper is as follows. In the next two Sections, we analyze the
model of the cases $e=0$ and $e>0$ , rcspectively. And in Section 4, we end the paper with
a brief discussion on mathematical results and epidemiological implications.

2 Analysis of the model when $e=0$

Since some diseases, such as common cold, catarrh, measle and water pox, etc., are
not lethal or whose death rate can be ignored, we first consider the case where $e=0,i.e.$ ,

$\{\begin{array}{l}TxdS=A-dS-\lambda(S+I)^{\alpha-1}SI+rI+h(I)\frac{dI}{dt}=\lambda(S+I)^{\alpha-1}SI-(d+r)I-h(I)(0\leq\alpha\leq 1)\end{array}$ (2.1)

There always exits the disease free equilibrium, $E_{0}=(A/d, 0)$ . The total population size,
$N=S+I$, satisfies that $dN/dt=dS/dt+dI/dt=A-dN$. Hence $\lim_{tarrow\infty}N(t)=A/d$ .
This implies that the $\omega$-limit set of all positive solutions of Eq. (2.1) lics on the set
$\Omega=\{(S, I)\in R_{+}^{2}|S+I=A/d\}$ . Substituting $S=A/d-I$ into the second equation of
system (2.1), we obtain the following one-dimension system,

$\frac{dI}{d,t}=-\lambda(\frac{A}{d})^{\alpha-1}I^{2}+(\lambda(\frac{A}{d})^{\alpha}-d-r)I-h(l)=\Delta f(I))$ (2.2)

where $f(I)$ is continuous. Let $R$) $=\lambda(A/d)^{\alpha}/(d+r+k)$ , When $0<I\leq I_{0},$ $f(I)=0$
admits a unique solution $I^{*}= \frac{A}{d,}(1-F_{0}^{1_{-)}}$ where $1<R_{0} \leq\frac{1}{1-}$ When $I>I_{0}$ and

$R \mathfrak{v}\geq 1+\frac{2\sqrt{\lambda n\iota(\frac{A}{d})^{\alpha-1}}-k}{d+r+k}=AP_{0},$ $f(I)=0$ has two positive solutions $I_{1}$ and $I_{2}$ where

$I_{1}= \frac{\lambda(\frac{A}{d,})^{\alpha}-d-r-\sqrt{\Delta}}{2\lambda(\frac{A}{d})^{\alpha-1}},$ $I_{2}= \frac{\lambda(7A)\alpha-d-r+\sqrt{\Delta}}{2\lambda(A7)^{\alpha-1}}-$ .

Set $S_{i}=A/d-I_{i}$ and $E_{i}.=(S_{i}, I_{i})$ for $i=1,2$ . It is easy to chcck that $I_{i}<A/d$ and $E_{i}$ is
an endemic equilibrium of Eq. (2.1) if $I_{i}>I_{0},$ $i=1,2$ . Further, $I_{1}>I_{0}$ holds if and only
if $R_{0}>1+ \frac{2\lambda I_{()}(\frac{A}{d})^{\alpha-1}-k}{d+r+k}=\Delta P_{1}$ , and $R_{0}<1+ \frac{\lambda I_{0}(\frac{A}{d})^{\alpha-1}}{d+r+k}=\Delta P_{2}$ . Thus, $I_{1}\leq I_{0}$ if $R_{0}\leq P_{1}$ or
$R_{0}\geq P_{2}$ .

By similar arguments as above, we can get that $I_{2}\geq I_{0}$ if $R_{0}>P_{1}$ or $P_{2}<R_{0}\leq P_{1}$

and further $I_{2}\leq I_{0}$ if $R_{0} \leq\min\{P_{1}, P_{2}\}$ . So we have:

Theorem 2.1. $E_{1},$ $E_{2}$ do not exist if $R_{0}<P_{0}$ , and if $R_{0}\geq P_{0}$ , we have:

(i) If $\lambda I_{0}<k(7)$ , then both $E_{1}$ and $E_{2}$ exist when $P_{1}<R_{0}<P_{2}$ .

(ii) If $\lambda I_{0}<k(\frac{A}{d})^{1-\alpha}$ , then $E_{1}$ does not exist but $E_{2}$ exists when $R_{0}\geq P_{2}$ .

(iii) If $\lambda I_{0}\geq k(\frac{A}{d})^{1-\alpha}$ , then $E_{1}$ does not exist. Rrther, $E_{2}$ exists when $R_{0}>P_{2z}$ and $E_{2}$

does not exist when $R_{0}\leq P_{2}$ .
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Figure l: $I^{*},$ $I_{1}andI_{2}versusR_{0}$ whend $=0.1,$ $\lambda=0.02,$ $\alpha=0.5,r=0.1,$ $k=0.8,$ $I_{0}=50$ ,
it shows a backward bifurcation with endemic equilibria when $R_{0}<1$ .

Table 1: The global dynamics of of system (2.1)

As a simple consequence of Theorem 2.1 (i) , Eq.(l.l) has a backward bifurcation with
endemic equilibria when $R_{0}<1$ if $P_{1}<P_{2}$ and $P_{0}<1$ (See Fig.1). i.e., the disease
does not dic out when $R_{0}<1$ . This is a vcry important conclusion for disease control.
From this we know that there still are much work to do for eradicating the disease besides
driving $R_{0}$ below 1. Further, the increasing of $P_{0}$ can eliminate the backward bifurcation,
and the increasing of $I_{0}$ can lead to that of $P_{0}$ . So we can draw a conclusion &om Fig.1
that an insufficient capacity for treatment is a source of the backward bifurcation.

By analyzing the Jacobian matrices of right hand side of Eq. (2.1) at the equilibria,
we can obtain:

Theorem 2.2. $E_{0}$ is asymptotically stable if $R_{0}<1$ and is unstable if $R_{0}>1,$ $E^{*}$ is
asymptotically stable if $1<R_{0}\leq P_{2}$ . $E_{1}$ is a saddle and $E_{2}$ is asymptotically stable
whenever they exist.

From the theory of limit system $[3, 6]$ and Theorem 2.1, we can easily obtain the global
dynamics of system $(2.1)which$ can be summarized as Table 1.

Nom Table 1 we can see that, the smaller $R_{0}$ is, the bigger the opportunity of $E_{0}$

being global stable is, and the more possibly the disease is to die out. The valid things we
can do to control the disease are to diminish $R_{0}$ and enlarge the parameter $P_{0}$ or $P_{1}$ , that
is $\dagger_{1}0$ say, in order to eradicate the disease or control it to a lower level, we should improve
our ability of cure, and enlarge the capacity of treatment for patients.

3 Analysis of the model when $e>0$

In this section, we study Inodel (1.1) with $e>0$ when it is lethal for some kind of
diseases, such as cholera, malaria, and cancer, etc.
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The disease free equilibrium $E_{0}=(A/d, 0)$ still exists. According to $dN/dt=A-$
$dN-el$, systcm (1.1) is $c^{1}quivalent$ to

$\{\begin{array}{l}\frac{dN}{dt}=A-dN-eI\frac{dI}{dt}=\lambda N^{\alpha-1}(N-I)I-(d+r+e)I-h(I)(0\leq\alpha\leq 1)\end{array}$ (3.1)

When $0<I\leq I_{0}$ , the endemic equilibrium satisfies

$\{\begin{array}{l}A-dN-eI=0\lambda N^{\alpha-1}(N-I)I-(d+r+e)I-kI=0\end{array}$ (3.2)

Note that $I= \frac{A-dN}{\rho_{d}}$ so $I>0$ if and only if $0<N<A/d$ . Substituting $I= \frac{A-dN}{e}$ into
the second equation of Eq. (3.2), we get

$(d+r+e+k)N^{1-\alpha}- \lambda(1+\frac{d}{e})N+\lambda\frac{A}{e}=0$ . (3.3)

This equation can not be solved explicitly. Hence we discuss the existence of its roots.
Let $R_{0e}=\lambda(A/d)^{\alpha}/(d\cdot+r+k+e)$ . . Suppose that $E^{*}=(N^{*}, I^{*})$ is an endemic

equilibrium of (3.1), we get $I^{*}=N^{*}(1- \frac{(A/d)^{\alpha}(N)^{\alpha}\sim}{R_{0e}})$ from the second equation of Eq.
(3.2). Because $0<I^{*}\leq I_{0}$ and $0<N^{*}<A/d$ , we have

$1<(A/d)^{\alpha}(N^{*})^{-\alpha}<R_{0e} \leq(A/d)^{\alpha}(N^{*})^{-\alpha}\cdot\frac{1}{1-\overline{N}^{r^{-}}Ip}$ .

Set $g(N)=(d+r+e+k)N^{1-\alpha}- \lambda(1+\frac{d}{e})N+\lambda\frac{A}{e}$ . Obviously, $g( O)=\lambda\frac{A}{e}>0$ , and
$g(A/d)=\underline{\lambda}AT$ $( \frac{1}{R_{0\epsilon}}-1)<0$ , so $g(O+)>0,$ $g(A7-)<0$ . Thus, there is at lest a root on
$(0, A/d)$ which makes $g(N)=0$ .

Further, let $g’(N)=0$ , we get a unique positive solution $\overline{N}=(\frac{(d+r+e+k)(1-\alpha)}{\lambda(1+\frac{d}{\epsilon})})^{\frac{1}{\alpha}}$ . At

the same time, $g”(\overline{N})<0$ , and $g(\overline{N})>0$ . Thercfore, Eq. (3.3) has only one root $N^{*}$

on $(0, A/d)$ and $\overline{N}<A/d$ . So when $0<I\leq I_{0}$ , system (3.1) has only one endemic
equilibrium $E^{*}=(N^{*}, I^{*})$ where $I^{*}= \frac{A-dN^{*}}{e}$ .

When $I>I_{0}$ , the endemic equilibria satisfiy

$\{\begin{array}{l}A-dN-c,I=0\lambda N^{\alpha-1}(N-I)I-(d+r+e)I-m=0\end{array}$ (3.4)

Substitute $I= \cdot\frac{A-dN}{e}$ into the second equation, we get

$N^{2}-BN^{2-\alpha}-CN+DN^{1-\alpha}+E=0$, (3.5)

wherc $B= \frac{d+r+e}{\lambda(1+\frac{d}{\epsilon})},$
$C= \frac{A(e+2d)}{d(e+d)}$ , $D= \frac{(d+r+e)A+em}{d\lambda(1+\frac{d}{\epsilon})},$ $E= \frac{A^{2}}{d(e+d)}$ . And Eq.(3.5) is equivalent

to

$N^{2}-CN^{l}+E=(BN-D)N^{1-\alpha}$ . (3.6)

If

$( \frac{D}{B})^{2}-C(\frac{D}{B})+E=0$ , (3.7)
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then $N= \frac{D}{B}$ is a root of (3.6). But note that $\frac{D}{B}=\frac{(d+r+e)A+em}{d(d+r+e)}>\frac{A}{d}$ so we discuss the

time, $p”(N_{1})>0,$ $p(O)<0$ , and $N_{1}=( \frac{(d+r+e)(1-\alpha)}{\lambda(1+\frac{d}{e})})^{\frac{1}{\alpha}}<\overline{N}<\frac{A}{d,}$,. So equation $p(N)=0$

has a unique root on $(0, A/d)$ if and only if $p( \frac{A}{d})=\frac{A}{d}-\frac{(d+r+e)A^{2}}{(e+d)[(d+r+e)A+em]}-(\frac{A}{d})^{1-\alpha}>0$.
That is to say, the endemic equilibria still exist under some conditions. For example,

fix $A=100,$ $d=0.1,$ $\lambda=0.02,$ $\alpha=0.5,$ $r=0.1,$ $k=\cdot 0.8,$ $e=0.01,$ $I_{0}=50$ . Thus,
$R_{\{Ie}=0.626<1$ . $(3.1)$ have two endemic equilibria, one is stable, the other is a saddle.

Figure 2: One region of disease persistence and one region of disease extinction when
$A=1OO,$ $d=0.1,$ $\lambda=0.02,$ $\alpha=0.5,$ $r=0.1,$ $k=0.8,$ $e=0.O1,$ $I_{0}=50$ .

Rom this example, we can see in Fig.2 that the disease does not die out even if $R_{0e}<1$ ,
that is to say, system (3.1) still has the backward bifurcation with endemic equilibria when
$R_{0e}<1$ in this case.

By calculating the Jacobian matrices of Eq. (3.1) at the equilibria, we have:

Theorem 3.1. The disease free equilibrium $E_{0}$ is asymptotically stable if $R_{0e}$ . $<1$ and
unstable if $R_{0e}>1$ .

Theorem 3.2. If $1<(A/d)^{\alpha}(N^{*})^{-\alpha}<R_{0e} \leq(A/d)^{\alpha}(N^{*})^{-\alpha}\cdot\frac{1}{1-\prime*}$ , the endemic equi-

librium $E^{*}$ is asymptotically stable

Proof. Note that $\lambda(N^{*})^{\alpha-1}(N^{*}-I^{*})=d+r+e+k$, we can obtain that the Jacobian
matrix of Eq. (3.1) at $E_{0}=(A/d, 0)$ is

$J$
. $=(\begin{array}{lll} -d -e(\alpha -1)(N^{*})^{-1}I^{*}(d+r+e+k)+\lambda(N^{*})^{\alpha-l}I^{*} -\lambda(N^{*})^{\alpha-1}I^{*}\end{array})$ .

Obviously, $tr(J(E^{*}))<0$ , and $R)_{P}$. $>(A/d)^{\alpha}(N^{*})^{-\alpha}$ is equivalent to $\frac{\lambda(N^{*})^{a}}{d+r+e+k}>1$ , so
$\frac{\lambda(N^{*})^{\alpha}}{d+r+e+k}>1-.\alpha$, certainly $det(J(E^{*}))>0$ , and $E^{*}$ is asymptotically stable. $\square$

Lastly, we discuss the conditions under which we can exclude the limit cycle. Take a
Dulac function $D=1/I$ in $R_{+}^{2}$ , then system (1.1) have $T= \frac{\partial(DJ_{1})}{\partial S}+\frac{\partial(Df2)}{\partial I}=_{7}^{d}--\lambda(S+$

$I)^{\alpha-1}<0$ if $0<I<I_{0}$ . If $I>I_{0}$ , it is easy to see that $T<0$ if $d>k$ . Hence, by Wang
[7, Lemma 3.2], system (1.1) does not have a limit cycle when $d>k$ .

39



4 Discussion

In this paper, we have studied an SIS epidemic $mo$del, the incidence of which is a
general incidence including bilinear and standard incidence. When $e=0$ , We have shown
that backward bifurcation occurs because of the insufficient capacity for treatment. So in
order to eradicate the disease, it is not enough to drive the basic reproduction number
below 1, we should improve our medical technology and invest more medicines, beds for
the patients to enlarge the capacity of treatment. When $e>0$ , the backward bifurcation
still exists under some conditions, but the equilibria cannot be solved explicitly. So it is
difficult for us to establish threshold for the control of the disease. How to find out the
critical paralneter values at the turning point, how is the global dynamics of the system,
and how to eliminate the backward bifurcation? We shall do these in our future work.
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