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1. Introduction

bansportation is considered as one of main factors that cause the outbreak

of diseases, because we have a good example, SARS, which broke out with some
infcction in an airplane. If we remcmber correctly, there was one person infected

with SARS and 9 people around thc man wcrc infcctcd during transportation. SARS

broke out with such kind of situatioIl caused by transport-rclated infcction. That

may lead to $i_{I)}\Psi^{0I}ta\iota lcc$ to provides a mathcmatical groundwork for discussing the
$t_{1}\cdot aIlspo\iota\cdot t- rc1_{\dot{e}1_{I}}tcd$ infcction. In tliis papcr, wc proposc a $I^{h\iota tmcr1}$) $dSC^{\backslash }-C011p_{d}\cdot ta1$ modcl

that can be basic, simple, and also mathematically tractable for the transport-

related infection.

To consider the effect of transport-related infection, [1] proposed a two-city

model where a population is divided into City 1 and City 2 with the same trans-

portation rate. The model was the following:

$S_{1}’=a- \frac{\beta S_{1}I_{1}}{S_{1}+I_{1}}-bS_{1}+dI_{1}-\alpha S_{1}+\alpha S_{2}-\frac{\gamma\alpha S_{2}I_{2}}{S_{2}+I_{2}}$ ,

$I_{1}’= \frac{\beta 6_{1}^{\gamma}l_{1}}{S_{1}+I_{1}}-(c+d+\alpha)I_{1}+\alpha I_{2}+,$ $\frac{\gamma(x_{\iota}\_{2}^{Y}I_{2}}{S_{2}+I_{2}}$ ,

$S_{2}’=a- \frac{\beta S_{2}I_{2}}{S_{2}+I_{2}}-bS_{2}+dl_{2}-\alpha S_{2}+\alpha S_{1}-\frac{\gamma\alpha S_{1}I_{1}}{S_{1}+I_{1}}$ ,

$I_{1}’= \frac{\beta S_{2}I_{2}}{S_{2}+I_{2}}-(c+d+\alpha)I_{2}+\alpha I_{1}+\frac{\gamma\alpha S_{1}I_{1}}{S_{1}+I_{1}}$ .
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$S_{1}$ and $S_{2}$ represent susceptibles in City 1 and City 2, respectively. $I_{1}$ and $I_{2}$

represent infectives in City 1 and City 2, respectively. For simplicity, the model

assumed the same parameters between the two cities and the constant birth rate
$a$ for susceptibles. It was also assumed to be infection by the standard incidence

shown here, death rates $b$ and $c$ for susceptibles and infectives, respectively, and

recovering rate, $d$ . But, there are some problems for modeling not so good on the
transport-related infection. The transport-related infection was expressed in the

last parts of the model, $\alpha S_{2}-\frac{\gamma\alpha\cdot S_{2}I_{2}}{S_{2}+I\prime\ell},$ $\alpha I_{2}+\frac{\gamma\alpha S_{2}I_{2}}{s_{z+I_{2}}}$ , a $S_{1}- \frac{\gamma\alpha S_{1}J_{1}}{S_{1}+I_{1}}$ , and $\alpha I_{1}+\frac{\gamma\alpha S_{1}I_{1}}{S_{1}+I_{1}}$ .

If we capture transport-related infection in a precise and strict way, we need

some time span for transportation. Because, we use ordinary differential equations

for $mo$dcling and we suppose to a.ssumo implicitly that the transportation occurs at
.

an instantancous time. It is clearly impossible to capturc transport-relatcd infcction

instantaneously. That’s why, strictly spcaking, some time span lias to be considcrcd

for transportation.

Let $\tau$ denote the $ti_{1}ne$ span of tralIlspOrtatiOIl. Then, susceptibles $S$ and infectives
$I$ in transportation are modeled as

$S’=- \frac{\gamma SI}{S+I}$ $I’= \frac{\gamma SI}{S+I}$ , (1)

where $\gamma$ is transport-related infection rate. It is natural to assume no birth and no
death in transportation (for example, in airplanes). Solving these equations with

initial data $\alpha S_{i}(t-\tau)$ and $\alpha I_{i}(t-\tau)$ tells us that there is too much approximation

on transport-related infection in the model. In fact, when $\tau$ is equal to $0$ , it is
easy to see that there is quite difference between the terms resulting from (1) and

tranport-related infection terms given in the model. That is the point which should

be improved in this paper.

2. Our model –a phase-compartmental model

Change the point of view for transport-related infection. Roughly speaking, it

is one of naturaJ ways to think that a population is divided into people who travel

and pcoplc who do not travcl. $Wc^{\backslash }$ now proposc a lnodcl of population dividcd into
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traveling phase and non-traveling phase as follows:

$S_{1}’=- \frac{\gamma_{1}S_{\rceil}I_{i}}{S_{1}+I_{1}}+\alpha_{S}S_{2}-\beta_{S}S_{1}$ ,

$I^{\prime^{\gamma}}J$

.
$= \frac{\gamma_{1^{\iota}1}^{\forall}l_{1}}{S_{1}+I_{1}}+\alpha_{I}I_{2}-\beta_{T}I_{1}$ ,

(2)
$S_{2}’=B(N)S_{2}- \frac{\gamma_{2}S_{2}I_{2}}{S_{2}+I_{2}}+\beta_{1}\tau S_{1}-\alpha_{S}S_{2}+\mu I_{2}$ ,

$T_{2}’= \frac{\gamma_{2}S_{2}I_{2}}{S_{2}+I_{2}}+\beta_{\dot{1}}I_{1}-(\alpha_{I}+l^{1}, +O)I_{2}$ .

$S_{1}$ atid $I_{1}$ represent susceptibles and infectives in traveling $p1_{1}aee$ , respectively. On
the other hand, $S_{2}$ and $I_{2}$ represent susceptibles and infectives in non-traveling
phase, respectively. Note that $\alpha_{S)}\beta_{S}$

)
$\alpha_{I}$ , and $\beta_{I}$ are not the transportation rates

but the phase-changing rates of population. $\alpha_{S}$ and $\beta_{S}$ are parameters representing
the changing rates of $\grave{s}$usceptibles between traveling phase and non-traveling phase.

Also, $\alpha_{I}$ and $\beta_{I}$ are parameters representing the changing rates of infectives between
the two phases. $\gamma_{1}$ and $\gamma_{2}$ are infection rates in traveling-phase and non-traveling-
phase, respectively.

We assume no birth and no death in traveling phase because it is natural to
think that nobody has a baby and nobody dies, for example, in an airplane. This
is a quite different point from well known compartmental population models $(i.e$ .
geographically divided compartment models). For non-traveling phase, however, we
have to consider a population growth rate $B(N)$ . Thc growth rate $B(N)$ is a.ssumed
to be differontiablc and havc thc dcnsity dependence as the derivative of $\mathcal{B}(N)$ is
$negative$ . Furthermore, $B(N)$ is a.ssnmed to be expressed as $B=B^{+}-B^{-}$ whcrc
$B^{+}$ and $B^{-}$ arc positive functions of $N$ , which is some technical assumption but has
little $r(\prime striction$ on a biological scnse. ALso, we considcr the death rate and recovery

of infcctives in non-travcling phasc, cxprcsscd by $\Gamma$) and $\mu$ , rcspcctively (We do not
considcr tlrc diseasc recovcry in travcling phasc, which should bc ncglected as no
birth and no death are assumed in traveling).

It may be thought that our model (2) has the same framework as ever well-
known compartment models including the population model mentioned before [1-3,

and references cited therein]. But, we notice that this model is not that kind of com-
partment population models. The model mentioned before is a city-compartment
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model, that is, a geographically divided population model. On the other hand,

our model proposed here is a phase-qualitatively divided population model, such as

traveling phase and non-traveling phase. We call the model as ‘phase-compartment’

model.

3. Result –basic reproduction ratio
$B_{C}\backslash sic$ reproduction $ratio$ is a key concept in considering epidemiological models.

In order to find the basic reproduction ratio of our phase-compartment mode1(2), we
$s$

use a method established by van den Driessche and Watmough [2]. To do this, we

need several important procedures. Actually we can $Stlccessf\iota 11ly$ check and confirm

that those proccdures $r\mathbb{Y}C^{\backslash }$ satisficd (which arc not mentioned hcrc). And then, we

obtain thc ba.sic reproduction ratio $I?\cdot 0$ as follows:

$R_{0}=\ovalbox{\tt\small REJECT}_{2/i_{I}(\prime\iota+/\dot{J})}\gamma_{1}(\alpha_{I}+\mu+D)+\gamma_{2}\beta_{I}+\sqrt{[\gamma_{1}(\alpha_{I}+\mu+D)+\gamma_{2}\beta_{I}]^{2}-4\gamma_{1}\gamma_{2}\beta_{I}(\mu+D)}(3)$

Most surprising thing is that there are no parameters related to changing rates of

susceptibles. This implies that the susceptibles travel does not have any influence

on whether the disease will spread or not. That is the difference between an in-

tuitive point and mathematical result, which we have never known unless we do

mathematical modeling.,
Illustrating $R_{0}$ with a figure gives us Figure 1. Horizontal axis $gamma_{1}$ is the

infection rate in traveling, and vertical axis $gamma_{2}$ is the infection rate in non-

traveling. Curve in red, which is express by

$\gamma_{2}=\frac{\gamma_{1}(\alpha_{I}+\prime/,+O)-\beta_{I}(\mu+l))}{\gamma_{1}-\beta_{I}}$

plays a rolc of thrcshold for thc diseasc sprcad. III fact, there can be no sprcad of

discasc inside of the rcd curvc and can be sprcad of disease outsidc. It is mathc-

matically clcarcd $tha\ovalbox{\tt\small REJECT} t$ thc dangcr of thc discasc sprcad increascs if infcctious pcoplc

who travel increase, because of $\alpha$ ’ in denominators and $\beta_{T}$ in numerators.

4. Discussion

A phase-compartmental model was proposed as basic, simple, and also mathe-

motaically tractable model for discussing the transport-related infection. Rom our
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result we understand two things. First, the basic reproduction ratio $R_{0}$ does not

depend on the parameters corresponding to changing rates of susceptibles, which

is interesting point since we have difference between intuition and mathematics.

Second, $R_{0}$ suggests that restricting travel of infected individuals is important for

controlling disease spread (which is obvious and within our intuition). And also

our result actually partially generalizes and realizes results of [1] (not shown here

in detail).

Since the result of this present work is just at a starting point, there are many

future works. First one is to clear the stability for an endemic equilibrium, which

is also a key concept for understanding the disease spread, and also permanence,

which is onc of important propcrties. Second one is to generalize, that is, make the

model more detail and more realistic. For example,a two-city model with travcling

phasc should bc considcrd in ordcr to undcrstand thc effcct of thc transport-relatcd

infcctioIi in morc $dc^{\backslash }tai1$ way. Aftcr $1_{1}aving$ clear answcr about thcsc works, I will

colIlplete analysis $t1_{1}e$ most generalized systems with arbitrary $n$ cities arid $m$ kinds

of traveling phase, which is left for final future work.
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