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1 Introduction
Strange attractors of some dynamical systems seem to be nonarcwisely

connected ([1], [2]). The purpose of this paper is to prove this fact. We
shall consider the 2-dimensional diffeomorphism $T$ :

$T(x,y)=(x’,y’)$ , $x’=\varphi(x,y),y’=\psi(x,y)$ ,

where $x,x’,y,y’\in R$ and $\varphi(x, y)$ and $\psi(x,y)$ are once continuously dif-
ferentiable with respect to $x$ and $y$ . In the following, $DT(P)$ denotes
the Jacobi’s matrix of $T$ for $P=(x,y)$ and $|DT(P)|$ the Jacobian.
Our main theorem is the foMowing.

Theorem 1
Assume that conditions $(i)\sim$ (iv) hold:

(i) $|DT(P)|<1$ fOr $P\in R^{2}$ ,

(ii) there exis$ts$ a compact, simply connected set $K$ such that $T(K)\subset$

$K$ ,

(iii) there exis$ts$ at least two distinct&ed points in $K$ ,

(iv) for one of the&ed points in $K$, say $P_{1}$ , the eigenvalues ofDT$(P_{1})$ ,
say $\lambda_{1}$ an$d\lambda_{2}$ , satisffes that

$\lambda_{1}<-1<\lambda_{2}<0$ .
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Under these conditions, the se$t\bigcap_{n=0}^{\infty}T^{n}(K)$ , say $\Omega$ , is T-invariant and

nonarcwisely connected.

Remark 1 It is obvious that $\Omega$ is T-invariant, compact, connected
and a null set and moreover that $\Omega$ is attractive to $K$, that is, for any
$P$ of $K,$ $T^{n}(P)$ approachae $\Omega$ as $n$ tends to infinity.
Remark 2 $P_{1}$ is said to be inversely unstable if (iv) holds.

2 Proof of Theorem 1
To the contrary, suppoee that $\Omega$ is axcwisely connected. Since $P_{1},P_{2}\in$

$\Omega$ , there exists asimple, continuous arc $\gamma$ joining $P_{1}\bm{t}dP_{2}$ in $\Omega,.that$

is, $\gamma\subset\Omega$ . Since $P_{1}$ is inversely unstable, there exists a $C^{1}$-curve $\beta$

contnining $P_{1}$ , which is the unstable manifold around $P_{1}$ (see [3, Thmrem
5.1]). For convenience we shall take asmall neighbourhood of $P_{1}$ , say $U$,
$\bm{t}d$ show that $\gamma\cap U$ is identical to apart of $\beta$ . In fact, if $\gamma\cap U$ is distinct
ffom $\bm{r}y$ part $of.\beta,$ $T(\gamma\cap U)$ must be located on tother side of $U$ with
respect to $\beta,$ $b\propto au8e\lambda_{1}<0\bm{t}d\lambda_{2}<0$ (see Figure 1). Therefore $\gamma$ td
$T(\gamma)$ are distinct $hom$ each other. Since both $\gamma \bm{t}dT(\gamma)$ join $P_{1}$ td
$P_{2}$ , we ct ioose asimple closd curve $C$ as parts of $\gamma \bm{t}dT(\gamma)$ , whose
interior is set to be D. Clearly the area of $D$ , denoted by $|D|$ , is positive.
Since $C\subset\gamma\cup T(\gamma)\subset\Omega$, it foUows that $C\subset T^{\iota}K$ for integers $n$ , and
hence $D\subset 2^{m}K$ , because $T^{n}K$ is simply connected. Thus $|D|<|T^{n}K|$ .
On the other htd, it foUows $hom$ condition (i) that $|T^{n}K|$ tend8 to zero
as $n$ tends to inflnity, $\bm{t}d$ hence $|D|=0$ . This contradiction shows that
$\gamma\cap U$ is identical to a $p_{\mathfrak{N}}t$ of $\beta$ . Thus, $\gamma\cap U$ is locatd on one side of $\beta$

with respect to $P_{1}$ .
Now we ct sae that $T(\gamma\cap U)$ is located on tother side of $\beta$ with

respect to $P_{1},$ because $\lambda_{1}<-1$ (see Figure 2). Therefore $\gamma$ and $T(\gamma)$

are distinct $bom$ eai other, $\bm{t}d$ hence we ct ioose apart of $\gamma$ and
$T(\gamma)$ as asimple closd curve. Thus by the $s$ame argument.ae above
there arises acontradition. The proof is completd.
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3 Dufflng type equations

We shall consider the application of Theorem 1 to Duffing type equa-
tions:

$\dot{x}=y,\dot{y}=-\epsilon\lambda y-(1+\epsilon\cos 2t)x-ax^{2}-x^{3}$ $( \cdot=\frac{d}{dt})$ (1)

where $\epsilon,\lambda$ and $a$ are positive constants. The Poincare mapping $T$ for
(1) is defined by $(x_{2},y_{2})=T(x_{1},y_{1})$ :

$x_{2}=x(\pi,x_{1},y_{1})$ , $y_{2}=y(\pi,x_{1},y_{1})$ ,

where the pair of $x(t, x_{1},y_{1})$ and $y(t,x_{1}, y_{1})$ is a solution of through
$(x_{1}, y_{1})$ for $t=0$ .
Theorem 2
Assume that $a>\sqrt{2}$ and $0< \lambda<\frac{1}{4}$ If $\epsilon$ is $s$ufliciently $smW$, then $T$

has an invarian$t$, compact, nonarcwzsely connected set $\Omega$ . Moreover $\Omega$

is globally stable, that is, for any point $PofR^{2},$ $I^{m}(P)$ approacbes $\Omega$ as
$n$ tends to inBnity.

Proof First of all we shall show that conditions (i), (ii) and (iv)
are statisfied. The appearance of positive damping term implies (i).
We may prove that the null solution of (1) is inversely unstable, by
the same argument as in [5, Lemma 2]. The existence of nontrivial $\pi-$

periodic solutions follows from the perturbation theory for $\epsilon$ . In fact,
when $\epsilon=0,$ (1) is reduced to

$\dot{x}=y$ , $\dot{y}=-x-ax^{2}-x^{3}$ ,

which has the constant solution $x_{1}= \frac{-a-\sqrt{a-2}}{2}$ . Since the characteristic
multiplier for $x_{1}$ is different from one, it follows that (1) has a $\pi$-periodic
solution $x(t)$ for small $\epsilon$ , which is close to $x_{1}$ . Now we shall prove (iii).
The solutions of (1) is uniform-ultimately bounded [4], that is, there
exists a disk $D_{0}$ such that for any disk $D$ there is a positive number
$N$ such that $Z^{m}(D)\subset D_{0}$ for $n\geq N$ , where $N$ may depend on $D$ .
Therefore there is a positive number $m$ such that $T^{m}(D_{0})\subset D_{0}$ . By
the $k_{1}mous$ fixed point theorem of L.E.J.Brower, there exists a point $P_{0}$

such that $T^{n}(P_{0})=P_{0}$ . We shall take a large disk $D_{1}\supset D_{0}$ such that

$D_{1} \supset\bigcup_{k=0}^{m-1}\{T^{k}P_{0}\}$ , which implies that $T(D_{1})\cap D_{1}\neq\emptyset$ , and hence that

$\dot{\Gamma}(D_{1})\cap\dot{T}^{+1}(D_{1})\neq\emptyset$ for $i\geq 1$ . Furthermore we may assume that
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$T^{m}(D_{1})\subset D_{1}$ for the previous $m$ , and hence setting $E=m_{\cup^{-1}\dot{T}(D_{1})}$

$i=0$

we can see that $T(E)\subset E$ . Letting $J_{i}$ be the boundary of $\dot{T}(D_{1})$ for
$0\leq i\leq m-1$ , we shall apply [6, Theorem9.1] in order that the infinite
component $R^{2}-E$ has for boundary a Jordan curve $J$ contained in
$m-1$

$\bigcup_{:=0}J_{i}$
. Letting $K$ be the interior of $J$ , we can see that $T(K)\subset K$,

because $K\supset E\supset T(E)\supset T(J)$ . Thus, Theorem 1 guarantees that
$\cap\infty T^{n}(K)$ , say $\Omega$ , is nonarcwisely connected. Now, let $P$ be any point

$n=0$

$P\in R^{2}$ . Since $T^{n}(P)$ remains in $D_{0}$ for large $n$ and since $Do\subset D_{1}\subset$

$E\subset K$ , it follows that $Z^{m}(P)$ remains in $K$ for large $n$ , which implies
that $T^{n}(P)$ approaches $\Omega$ as $n$ tends to infinity. The proof is completed.

Finally we shall treat the Duffing equation, which describes the dy-
namics of electric current of some electric circuits,

$\dot{x}=y$ , $\dot{y}=-ky-x^{3}+B_{0}+B$ cos $t$ , (2)

where $k,B_{0}$ and $B$ are positive constants. It is difficult to prove the
existence of inversely unstable periodic solutions for this system ; the
experimental results of [1] suggests that the existence of inversely un-
stable periodic solutions implies the nonarcwise connectedness of the
attractor.
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Figure 1
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Figure 2
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