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1 Introduction

Strange attractors of some dynamical systems seem to be nonarcwisely

connected ([1], [2]). The purpose of this paper is to prove this fact. We
shall consider the 2-dimensional diffeomorphism T :

T((B, y) = (.’E’, y’) 3 7= ‘P(z, y) a‘y, = "p(xa y) ’

where z,2',y,y' € R and ¢(z,y) and y(z,y) are once continuously dif-
ferentiable with respect to £ and y. In the following, DT'(P) denotes
the Jacobi’s matrix of T' for P = (x,y) and |DT(P)| the Jacobian.

Our main theorem is the following.

Theorem 1
Assume that conditions (i) ~ (iv) hold :

(i) |DT(P)| < 1 for P € R?,

(ii) there exists a compact, simply connected set K such that T(K) C

K,
(iii) there exists at least two distinct fixed points in K,

(iv) for one of the fixed points in K, say P, the eigenvalues of DT'(P,),
say A1 and )3, satisfies that

A< -1< A <0.
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Under these conditions, the set ﬂ T"(K), say Q, is T-invariant and
n=0

nonarcwisely connected.

Remark 1 It is obvious that  is T-invariant, compact, connected
and a null set and moreover that Q is attractive to K, that is, for any
P of K, T"(P) approaches 2 as n tends to infinity.

Remark 2 P, is said to be inversely unstable if (iv) holds.

2 Proof of Theorem 1

To the contrary, suppose that {2 is arcwisely connected. Since P, P e

(2, there exists a simple, continuous arc v joining P, and P, in Q, that

is, v C Q. Since P; is inversely unstable, there exists a Cl-curve
containing P;, which is the unstable manifold around P, (see [3, Theorem
5.1)). For convenience we shall take a small neighbourhood of Py, say U,
and show that yNU is identical to a part of 8. In fact, if yNU is distinct
from any part of 8, T(yNU) must be located on another side of U with
respect to (3, because A\; < 0 and A2 < 0 (see Figure 1). Therefore v and
T'(v) are distinct from each other. Since both v and T'(7) join P, and
P,, we can choose a simple closed curve C as parts of v and T'(y) , whose
interior is set to be D. Clearly the area of D, denoted by |D|, is positive.
Since C C YU T(y) C Q, it follows that C C T"K for integers n, and
hence D C T"K, because T"K is simply connected. Thus |D| < |T"K]|.
On the other hand, it follows from condition (i) that |T™K| tends to zero
as n tends to infinity, and hence |D| = 0. This contradiction shows that
yNU is identical to a part of 3. Thus, yNU is located on one side of 3
with respect to P;. '

Now we can see that T(yN U) is located on another side of 8 with
respect to P;, because A\; < —1 (see Figure 2). Therefore v and T'(y)
are distinct from each other, and hence we can choose a part of 7y and
T(v) as a simple closed curve. Thus by the same argument as above
there arises a contradition. The proof is completed.
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3 Duffing type equations

We shall consider the application of Theorem 1 to Duffing type equa-
tions :

=y, §=—ely—(1+ecos2t)z — az® — z® (-=g§ (1)

where £, A and a are positive constants. The Poincare mapping T for
(1) is defined by ($2ay2) = T(:c1,y1) :

T2 = .’17(7(,(1:1, yl) y Y2 = y("r’xl’ yl) ’

where the pair of z(t,z;,%) and y(¢, a:l,' y1) is a solution of through
(z1,21) for t = 0.

Theorem 2

Assume that ¢ > +/2 and 0 < X < 1. If¢ is sufficiently small, then T
has an invariant, compact, nonarcwisely connected set . Moreover Q
is globally stable, that is, for any point P of R?, T™(P) approaches Q as
n tends to infinity.

Proof First of all we shall show that conditions (i), (ii) and (iv)
are statisfied. The appearance of positive damping term implies (i).
We may prove that the null solution of (1) is inversely unstable, by
the same argument as in {5, Lemma 2]. The existence of nontrivial -
periodic solutions follows from the perturbatlon theory for €. In fact,
when € = 0, (1) is reduced to

t=y, §=-z—az’—-2°,
which has the constant solution z; = =2=¥%2"=2 Since the characteristic
multiplier for z; is different from one, it follows that (1) has a w-periodic
solution z(t) for small ¢, which is close to ;. Now we shall prove (iii).
The solutions of (1) is uniform-ultimately bounded [4], that is, there
exists a disk Dy such that for any disk D there is a positive number
N such that T"(D) C Dg for n > N, where N may depend on D.
Therefore there is a positive number m such that T™(Dg) C Do . By
the famous fixed point theorem of L.E.J.Brower, there exists a point P,
such thatlT’"(Po) Py. We shall take a large disk D; O Dy such that

D, 5 | {T* Py}, which implies that T(D;) N D; # 0, and hence that
k=0
T*(D1) N T**Y(D;) # 0 for i > 1. Furthermore we may assume that
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m—1
T™(D;) C D1 for the previous m, and hence setting £ = U T’(Dl),

1=0
we can see that T(E) C E. Letting J; be the boundary of T%(D,) for

0 < i <m —1, we shall apply [6, Theorem9.1] in order that the infinite

component R? — E has for boundary a Jordan curve J contained in
m—1

J Ji. Letting K be the interior of J, we can see that T(K) C K,
i=0

because K > E D T(E) D T(J). Thus, Theorem 1 guarantees that
ﬂ T"(K), say §Q, is nonarcwisely connected. Now, let P be any point

P € R2. Since T"(P) remains in Dy for large n and since Dy C D; C
E C K, it follows that T™(P) remains in K for large n, which implies
that T™(P) approaches {2 as n tends to infinity. The proof is completed.

Finally we shall treat the Duffing equation, which describes the dy-
namics of electric current of some electric circuits,

&=y, y=-—ky—z2+ By+ Bcost, (2)

where k, By and B are positive constants. It is difficult to prove the
existence of inversely unstable periodic solutions for this system ; the
experimental results of [1] suggests that the existence of inversely un-
stable periodic solutions implies the nonarcwise connectedness of the
attractor.

T(v)

L}
]
]
.

L]

Figure 1

132



T(v)

751

Figure 2

References

(1] Y.Ueda, Random phenomena resulting from nonlinearity in the
system described by Duffing’s equation, Int.J.Non-linear Mechan-
ics, Vol.20, No.5/6, pp.481-491, 1985.

[2] M.Henon, A two-dimensional mapping with a stra.nge attractor,
Commun.math.phys.50, 69-77, 1976.

[3] P.Hartman, Ordinary Differential Equations, John Wiley and Sons,
Inc, p.239, 1973.

[4] F.Nakajima, Nonlinear Mathieu equations I, Gakuto International
series, Mathematical sciences and applications, Nonlinear waves,
Vol.10, pp.353-359, 1997.

[5] F.Nakajima, Bifurcation of nonsymmetric solutions for some Duff-
ing equations, Bull.Austral.Math.Soc., Vol.60, pp.119-128, 1999.

[6] S.Lefchetz, Differential Equations : Geometric Theory, Second edi-
tion, Interscience Publications, New York, pp.370-372.

133



