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1 Introduction

Time evolutions from an initial time to the future are usually discussed under certain
conditions at the initial time. When we consider time evolutions from remote past, then
we do not have an a priori way to impose conditions at the remote past. We know that a
stationary stochastic process always admits remote past, but one may ask: “Does there
exist any other process which admits remote past?”

In the recent paper [4] the authors have studied time evolutions whose transitions are
governed by a given noise driven automorphism on compact abelian groups and showed
how restrictive is the requirement for them to admit remote past.

The purpose of the present article is to explain our motivation to study time evolutions
which admit remote past.

In the theory of stochastic differential equations, Tsirelson ([5]) has introduced a
mysterious example which possesses a non-strong solution. For this, he considered the
stochastic difference equation of the form

(1.1) $\eta_{k}=\xi_{k}+\eta_{k-1}$

in discrete negative time. If a solution is non-strong, then it involves an extra randomness
in addition to the past noise, which must come from the remote past. Yor [6] and Akahori-
Uenishi-Yano [1] have studied the equation for general noise processes on compact groups
to obtain necessary and sufficient conditions for exsistence of strong solutions and for
uniqueness in law.

In the work [4] we studied the equation (1.1) on a compact abelian group $G$ in the case
where the noise process is stationary. Then we have succeeded in obtaining a complete
description of solutions. It is shown that any possible solution is a mixture of a stationary
process and a deterministic translation.

Now we may expect that, if a solution admits remote past, then a kind of stability
comes from the remote past. The motivation of the work [4] is to confirm this expectation.
We have studied the equation of the form

(1.2) $\eta_{k}=\xi_{k}+\varphi(\eta_{k-1})$

for a stationary noise process $\xi_{k}$ and for an automorphism $\varphi$ on $G$. We introduced stable
sets in the direction of each character of $G$ and showed that the stable set always has the
probability one.
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2 Non-strong solutions

2.1 Tsirelson’s example
Consider, for instance, a stochastic differential equation on $\mathbb{R}$ of the following form:

(2.1) $dX_{t}=a(X_{t})dB_{t}+b(X_{t})dt,$ $t\geq 0$ , $X_{0}=x$ .

If the coefficients are uniformly Lipschitz continuous and uniformly bounded, then we can
construct a solution of (2.1) by successive approximation. Such a solution $X$ is adapted
to the noise process $B$ : For any $t\geq 0$ there exists a functional $F_{t}$ on $C([0, t],\mathbb{R})$ such that

(2.2) $X_{t}=F_{t}(B_{s} : s\in[0, t])$ a.s.

A solution which enjoys the property (2.2) is called a strong solution.
Tsirelson ([5]) has considered a stochastic differential equation of the form

(2.3) $dX_{t}=dB_{t}+A_{t}(X_{*} : s\in[0, t])dt,$ $t\geq 0$ , $X_{0}=x$ .

The drift coefficient $A_{t}(X_{\epsilon} : s\in[0, t])$ is a functional adapted to the process $X$ defined as

(2.4)
$A_{t}(X_{s} : s \in[0,t])=\sum_{k\leq 0}\eta_{k-1}1_{[t_{k-1},t_{k})}(t)$

with

(2.5) $\eta_{k}=$ the fractional part of $\frac{X_{t_{k}}-X_{t_{k-1}}}{t_{k}-t_{k-1}}$ , $k\leq 0$

for a sequence $(t_{k} : k\leq 0)$ such that $t_{k}\backslash 0$ as $karrow-\infty$ .
Theorem 2.1 (Tsirelson [5]). Any solution of the stochastic differential equation (2.3)
is non-strong.

Tsirelson’s idea for the proof of Theorem 2.1 is to reduce the problem to a stochastic
equation in discrete time. For any solution of the equation (2.3), we set

(2.6) $\xi_{k}=$ the hactional part of $\frac{B_{t_{k}}-B_{t_{k-1}}}{t_{k}-t_{k-1}}$ $k\leq 0$ .

Then, under the identification of $[0,1$ ) with the abelian group $\mathbb{R}/\mathbb{Z}\cong \mathbb{T}^{1}$ , the stochastic
equation

(27) $\eta_{k}=\xi_{k}+\eta_{k-1}$ , $k\leq 0$

holds where each $\xi_{k}$ of the noise process $\xi=$ $(\xi_{k} : k\leq 0)$ is independent of the past
$(\eta_{j}, \xi_{j} : j\leq k-1)$ . If the equation (2.3) possessed a strong solution, then the corresponding
solution of the equation (2.7) should also be strong. Hence for the proof of Theorem 2.1
it suffices to show that the equation (2.7) does not have any strong solution.
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2.2 Non-strong solutions for stochastic equations in discrete
time

Let $G$ be a compact abelian group and consider the stochastic equation in discrete time:

(2.8) $\eta_{k}=\xi_{k}+\eta_{k-1}$ , $k\leq 0$

Let $\mu=$ $(\mu_{k} : k\leq 0)$ be a sequence of probability measures $\mu_{k}$ on $G$ .
Definition 2.2. A solutIon of the equation (2.8) with noise law $\mu$ is a probability measure
$P$ on $G^{-N}$ such that if $\eta=(\eta_{k} : k\leq 0)$ is the coordinate process then the process $\xi$ defined
by $\xi_{k}=\eta_{k}-\eta_{k-1}$ satisfies the following:

(i) Each $\xi_{k}$ is independent of the past $(\eta_{j}, \xi_{j} : j\leq k-1)$ ;
(ii) The law of each $\xi_{k}$ is $\mu_{k}$ .

Let $\mathcal{F}_{k}^{\eta}$ (resp. $\mathcal{F}_{k}^{\xi}$ ) denote the $\sigma- field$ generated by $(\eta_{j} : j\leq k)$ (resp. ($\xi_{j}$ : $j\leq k$)). It
is obvious by definition that $\mathcal{F}_{k}^{\xi}\subset \mathcal{F}_{k}^{\eta}$ for any $k$ .
Deflnition 2.3. A solutIon $P$ is called strong if $\mathcal{F}_{k}^{\eta}\subset \mathcal{F}_{k}^{\zeta}$ for any $k$ P-a.s., that is, for
any $k$ there exists a sequence of functions $F_{k}$ on $G^{-N}$ such that

(2.9) $\eta_{k}=F_{k}(\xi_{j} : j\leq k)$ , $k\leq 0$ P-as.

For a solution $P$ of the equation (2.8) with noise law $\mu$ , let $\lambda_{k}$ for $k\leq 0$ denote the law
of $\eta_{k}$ under $P$. Then the family of marginal laws $\lambda=$ $(\lambda_{k} : k\leq 0)$ satisfies the convolution
equation

(2.10) $\lambda_{k}=\mu_{k}*\lambda_{k-1}$ .
Conversely, it is easy to see (cf. [1]) by Kolmogorov extension theorem that, for a solution
$\lambda$ of the convolution equation (2.10), there exists a unique solution $P$ of the stochastic
equation (2.8) under which the law of each $\eta_{k}$ coincides with $\lambda_{k}$ .

Let $\nu_{G}$ stand for the normalized Haar measure of $G$ . Note that for any probability
measure $\mu$ on $G$ it holds that $\nu_{G}=\mu*\nu_{G}$ . Therefore, for any given noise law $\mu=(\mu_{k}$ :
$k\leq 0)$ , the equation (2.8) always possesses a solution $P_{\mu}^{*}$ whose marginal laws satisfy
$\lambda_{k}=\nu_{G},$ $k\leq 0$ .

Lemma 2.4 ([6], [1]). Suppose that $G\neq\{0\}$ . Then the solution $P_{\mu}^{*}$ is non-strvng. $In$

particular, the equation (2.8) with any given noise law $\mu$ possesses a non-strong solution.

We denote the set of solutions of the equation (2.8) with noise law $\mu$ by $\mathcal{P}_{\mu}$ . Then the
set $\mathcal{P}_{\mu}$ is a non-empty closed convex subset of the compact convex space which consists
of probability measures on $G^{-N}$ equipped with the topology of weak convergence. We
denote the extremal points of $\mathcal{P}_{\mu}$ by $ex(\mathcal{P}_{\mu})$ .

Set $1 \mathcal{F}_{-\infty}^{\eta}=\bigcap_{k}\mathcal{F}_{k}^{\eta}$ , which may be understood as the information of the remote past. It
is well-known that $P\in ex(\mathcal{P}_{\mu})$ if and only if $\mathcal{F}_{-\infty}^{\eta}$ is P-trivial. In particular, since $\mathcal{F}_{\infty}^{\xi}$ is
always P-trivial by Kolmogorov’s O-llaw, a strong solution is always an extremal point
of $\mathcal{P}_{\mu}$ .
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2.3 A criterion for existence of a strong solution
In this subsection we state a version in our settings of a criterion for existence of a strong
solution obtalned by Yor [6] in the case $G=\mathbb{T}^{1}$ and generalized by $Akahori-Uenishi$-Yano
[1].

We keep the settings of Section 2.2. Let $\Gamma$ denote the character group of $G$ . For any
noise law $\mu=$ $(\mu_{k} : k\leq 0)$ , we define

(2.11) $\Gamma_{\mu}=\{\chi\in\Gamma$ :
$\prod_{j\leq k}|\mu_{j}(\chi)|>0$

for some $k\}$ .

Set

(2.12) $G_{\mu}=$ {$g\in G:\chi(g)=1$ for any $\chi\in\Gamma_{\mu}$ }.
It is obvious by definition that $G_{\mu}$ is a closed normal subgroup of $G$.
Remark 2.5. $\Gamma_{\mu}$ is a subgroup of the character group $\Gamma$ (See [4, Proposition 3.5]). Hence
the relation between the subgroup $\Gamma_{\mu}$ and the quotient group $G/G_{\mu}$ is in Pontryagin
duality.

Theorem 2.6 ([6, Theorem 4], [1, Theorem 1.4]). The equation (2.8) with a given
noise law $\mu$ possesses a strong solution if and only if $G_{\mu}=\{0\}$ .
Example 2.7. Let $G=\mathbb{T}^{1}\cong[0,1$ ) and let $\xi_{k}$ be defined as in (2.6). Then, for $\chi_{n}(g)=$

$e^{2\pi ing}$ with $n\in \mathbb{Z}$ , we have

(2.13) $\mu_{k}(\chi_{n})=\int_{-\infty}^{\infty}e^{2\pi inx/\sqrt{t_{k}-t_{k-1}}}e^{-x^{2}/2_{\frac{dx}{\sqrt{2\pi}}}}=\exp\{-\frac{(2\pi n)^{2}}{2(t_{k}-t_{k-1})}\}$ .

Since $\sum_{k}1/(t_{k}-t_{k-1})=\infty$ , we see that $\chi_{n}\in\Gamma_{\mu}$ if and only if $n=0$ . This means that
$\Gamma_{\mu}=\{1\}$ and henoe that $G_{\mu}=G$ . By Theorem 2.6, we conclude that the equation (2.8)
with the noise law given by (2.6) does not possess a strong solution.

2.4 A criterion for uniqueness in law
We also state a criterion for uniqueness of solutions. The following result has been ob-
tained by Yor [6] In the case $G=\mathbb{T}^{1}$ and generalized by $Akahori-Uenishi-Yano[1]$ .
Theorem 2.8 ([6, Theorem 3], [1, Theorem 1.4]). The solution of the equation (2.8)
with a given noise law $\mu$ is unique if and only if $G_{\mu}=G$ .

The theorem is an immediate consequence of the following theorem. The group $G$

acts on the product group $G^{-N}$ as $(g\eta)_{k}=g\eta_{k}$ for $k\leq 0$ where $\eta=(\eta_{k} : k\leq 0)$ . Then
the point action of $G$ on $G^{-N}$ induces an action on the space of continuous functions on
$G^{-N}$ as $(gf)(h)=f(gh)$ for $g,$ $h\in G$ , and therefore induces an action on the space of
probability measures on $G^{-N}$ as $(gP)(f)=P(gf)$ .
Theorem 2.9 ([1, Theorems 1.3 and 1.5]). The set of extremal solutions $ex(\mathcal{P}_{\mu})$ is
isomorphic to the quotient space $G/G_{\mu}$ . That is,

(i) For $P^{1},$ $P^{2}\in ex(\mathcal{P}_{\mu})$ , there enists an element $g\in G$ such that $gP^{1}=P^{2}$ ;
(ii) For $P\in ex(\mathcal{P}_{\mu}),$ $gP=P$ if and only if $g\in G_{\mu}$ .
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3 The stochastic equation with stationary noise

We keep the notations in Section 2.2. Hence the theorems in Sections 2.3 and 2.4 also
hold.

In this section we assume that the noise process is identity: $\mu_{k}=\mu$ for any $k\leq 0$

for an arbitrary probability measure $\mu$ on $G$ . In this case the definition (2.11) of the $\Gamma_{\mu}$

implies

(3.1) $\Gamma_{\mu}=\{\chi\in\Gamma:|\mu(\chi)|=1\}$ .
RecaJl

(3.2) $G_{\mu}=$ {$g\in G:\chi(g)=1$ for any $\chi\in\Gamma_{\mu}$ }.

Consider the stochastic equation

(3.3) $\eta_{k}=\xi_{k}+\eta_{k-1}$ , $k\leq 0$

and recall that this is equivalent to the convolution equation

(3.4) $\lambda_{k}=\mu*\lambda_{k-1}$ , $k\leq 0$ .

Theorem 3.1 ([4, Theorem 1.1]). There exists an element $\alpha(\mu)\in G/G_{\mu}$ such that any
solution $(\lambda_{k} : k\leq 0)$ of the equation (3.4) satisfies the following:

(i) Each $\lambda_{k}$ is $G_{\mu}$ -invariant;

(ii) The projections $\wedge\lambda_{k}$ of $\lambda_{k}$ on $G/G_{\mu}$ evolve by the Weyl transformation:
(3.5) $\wedge\wedge\lambda_{k}=\alpha(\mu)\lambda_{k-1}$ , $k\leq 0$ .

We can restate the theorem $\ln$ terms of the process of the stochastic equation (3.3).

Corollary 3.2. Let $P$ be a solution of the equation (3.3). Let $a\in\alpha(\mu)$ be fixed. Then
there enists a random variable $\gamma\in G$ and a prvcess $\zeta=(\zeta_{k} : k\leq 0)$ such that the following
hold:

(i) $\eta_{k}=\gamma+ka+\zeta_{k}$ for $k\leq 0$;
(ii) $\zeta$ is a stationary process with independent increments whose $stationa\eta$ law is the

normalized Haar measure on $G_{\mu}$ such that $\zeta_{k}-\zeta_{k-1,-}=\xi_{k}-a$ .
(iii) $\gamma$ is independent of $(\zeta_{k} : k\leq 0)$ .

Example 3.3. Let $G=\mathbb{T}^{1}\cong[0,1$) and let $\mu=p\delta_{x_{1}}+(1-p)\delta_{x_{2}}$ with $0<p<1$ and
$x_{1},$ $x_{2}\in[0,1$ )

$,$
$0\leq x_{1}<x_{2}<1$ . For $\chi_{n}(g)=e^{2\pi ing}$ with $n\in \mathbb{Z}$ , we see that $\chi_{n}\in\Gamma_{\mu}$ if

and only if $n(x_{2}-x_{1})\in \mathbb{Z}$ .
(i) If $x_{2}-x_{1}$ is rational, then we can take two positive integers $r,p$ such that $r$ and

$p$ are mutually coprime and $x_{2}-x_{1}=r/p$. Then $\Gamma_{\mu}=\{\chi_{n} : n\in p\mathbb{Z}\}$ and hence
$G_{\mu}=\mathbb{Z}_{p}$ $:=\{m/p:m=0,1, \ldots,p-1\}$ and $\alpha(\mu)=x_{1}+\mathbb{Z}_{p}(=x_{2}+\mathbb{Z}_{p})$ . In this case the
solutions of the equation (3.3) is not unique and any solution is non-strong.
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(ii) If $x_{2}-x_{1}$ is irrational, then $\Gamma_{\mu}=\{1\}$ and $G_{\mu}=G$ , and hence the solution of the
equation (3.3) is unique (and non-strong).

Example 3.4. Consider the backward heat equation

(3.6) $\frac{\partial p}{\partial t}=-\frac{1}{2}\frac{\partial^{2}p}{\partial x^{2}}$ $t>0,$ $x\in \mathbb{R}$

with periodic boundary condition:

(3.7) $p(t, x+1)=p(t, x)$ , $t>0,$ $x\in \mathbb{R}$ .

Then what initial conditions are allowed for a classical solution to exist on the whole time
$(0, \infty)$? The answer is that the only posslble initial condition is that $p(O, x)$ is a constant
function. To prove this, we \"assume that there exists a function $p(t, x)\in C^{1,2}((0, \infty)x\mathbb{R})$

such that (3.6) and (3.7) hold. Since the value of the integral $\int_{0}^{1}p(t, x)dx$ is constant for
any $t>0$ , we may assume that it is constant one. Let $\lambda_{k}(dx)=p(-k, x)dx$ for $k\leq 0$ .
Then the backward heat equation (3.6) with the periodic boundary condition (3.7) yields
the convolution equation (3.4) for $G=[0,1$ ) $\cong \mathbb{T}^{1}$ where

(3.8) $\mu(dx)=\sum_{n\in Z}e^{-(x+n)^{2}/2_{\frac{dx}{\sqrt{2\pi’}}}}$ on $[0,1$ ).

Since $\mu(\chi_{n})=\exp(-(2\pi n)^{2}/2)$ , we see that $\Gamma_{\mu}=\{0\}$ and $G_{\mu}=G$ . Hence we conclude
that the convolution equation has the only solution such that $\lambda_{0}(dx)$ is the Lebesgue
measure on $[0,1$ ).

Remark 3.5. In Furstenberg’s theory (cf., e.g., [3]) he has studied stationary processes on
a G-space $M$ . In the case where $M=G$, a $\mu$-process in Furstenberg’s sense is a solution
of the stochastic equation (3.3) which is a stationary process with stationary measure
$\mu$ . Then it is easy to see that his definition that a $\mu$-process is prvper coincides with
our definition that it is strong. In our settings, there exists a solution of the stochastic
equation (3.3) which is a proper $\mu$-process in Furstenberg’s sense if and only if $G_{\mu}=\{0\}$

and $a(\mu)=0$ ; This means that $\mu$ is the point mass at $0$ .
Remark 3.6. Brossard and Leuridan [2] has studied the existence and uniqueness prob-
lem of solutions and recurrence or transience problem in Markov chains in discrete negative
time. They assumed that the transition probability has a density with respect to a mea-
sure. However, the transition probability corresponding to the time evolution by the Weyl
transformation never possesses a density.

4 The stochastic equation as the iteration by a noise driven
automorphism

Let $G$ be a compact abelian group and consider the stochastic equation

(4.1) $\eta_{k}=\xi_{k}+\varphi(\eta_{k-1})$ , $k\leq 0$
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where the noise $\xi$ is stationary with stationary measure $\mu$ and $\varphi$ is an automorphism on
$G$ .

If we set $\eta_{k}^{\varphi}=\varphi^{-k}\eta_{k}$ and $\xi_{k}^{\varphi}=\varphi^{-k}\xi_{k}$ , then we obtain

(42) $\eta_{k}^{\varphi}=\xi_{k}^{\varphi}+\eta_{k-1}^{\varphi}$ , $k\leq 0$ .

This is exactly the stochastic equation (2.8) with noise law given by $\mu_{k}^{\varphi}=\varphi^{-k}\mu$ . Now we
denote the subgroup $\Gamma_{\mu^{\varphi}}$ for $\mu^{\varphi}=$ $(\mu_{k}^{\varphi} : k\leq 0)$ as is defined in (2.11) simply by $\Gamma_{\mu}$ . We
say that $P$ is a solution of the equation (4.1) with law $\mu$ if the law of $(\eta_{k}^{\varphi} : k\leq 0)$ under
$P$ is a solution of the equation (4.2) with law $\mu^{\varphi}$ .

Proposition 4.1 ([4, Proposition 4.3]). The following statements hold:
(i) $\Gamma_{\mu}$ is $\varphi$-invariant.
(ii) $G_{\mu}$ is $\varphi$-invariant.
(iii) Let $P$ be a solution of the equation (4.1). Then the law of $\eta_{k}$ under $P$ is $G_{\mu^{-}}$

invariant.

The above proposition is an immediate consequenoe of the following characterization
of the subgroup $\Gamma_{\mu}$ .
Lemma 4.2 ([4, Lemma 3.4]). A character $\chi$ belongs to $\Gamma_{\mu}$ if and only if

(4.3) $\sum_{n=0}^{\infty}\int_{G}\int_{G}\mu(dx)\mu(dy)|\chi(\varphi^{n}x)-\chi(\varphi^{n}y)|^{2}<\infty$.

For $\chi\in\Gamma$ , we define

(4.4) $W_{2}^{l}(\chi, \varphi)=\{(x, y)\in G\cross G$ : $\sum_{n=0}^{\infty}|\chi(\varphi^{n}x)-\chi(\varphi^{n}y)|^{2}<\infty\}$

.and, for $x\in G$ ,

$(\cdot 4.5)$ $W_{2}^{\epsilon}(x;\chi, \varphi)=\{y\in G:(x, y)\in W_{2}^{\epsilon}(\chi, \varphi)\}$

(46) $=$ $y \in G:\sum_{n=0}^{\infty}|\chi(\varphi^{n}x)-\chi(\varphi^{n}y)|^{2}<\infty$ .

We call the set $W_{2}^{l}(x;\chi, \varphi)$ the $\ell^{2}$ -stable set of $x$ in th$e$ direction $\chi$ with respect to $\varphi$ . It
is obvious that the set $W_{2}^{\epsilon}(x;\chi, \varphi)$ is contained in the stable set

(4.7) $W^{\iota}(x; \chi, \varphi)=\{y\in G:\lim_{narrow\infty}\frac{\chi(\varphi^{n}x)}{\chi(\varphi^{n}y)}=1I$ .

Proposition 4.3 ([4, Proposition 4.3]). Assume that $G$ has a countable base. If
$\chi\in\Gamma_{\mu}$ , then $(\mu\otimes\mu)(W_{2}^{\epsilon}(\chi, \varphi))=1$ .
Theorem 4.4 ([4, Theorem 1.3]). Assume that $G$ has a $co$untable base. There exists
an element $\alpha(\mu)\in G/G_{\mu}$ such that $\mu(\bigcap_{\chi\in r_{\mu}^{W^{S}(a,\chi,\varphi))}}=1$ for any $a\in\alpha(\mu)$ .
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Remark 4.5. If $\varphi$ is the identity, then it is the case in Section 3. In this case, we have

(48) $W_{2}^{s}(x;\chi, \varphi)=W^{s}(x;\chi, \varphi)=\{y\in G:\chi(x)=\chi(y)\}$

and

(4.9)
$\bigcap_{\chi\in\Gamma_{\mu}}W_{2}^{\epsilon}(x;\chi, \varphi)=\bigcap_{\chi\in\Gamma_{\mu}}W^{s}(x;\chi, \varphi)=x+G_{\mu}$

.
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