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1 Introduction

The study on the boundary behavior of harmonic functions and su-
perharmonic functions has a long history. In 1906, Fatou [8] showed
that every bounded harmonic function in the unit disc $D$ has a finite
nontangential limit almost everywhere on the boundary $\partial D$ . The ex-
tension of this result to higher dimensions was due to Bray and Evans
[6] in 1927. Also, it was proved by Littlewood [17] in 1927 that nontan-
gential approach regions in the Fatou theorem are best possible in the
following sense: there exists a bounded harmonic function on $D$ which
admits no limits along a tangential curve a.e. on $\partial D$ . A simple proof
by the construction of a Blaschke product was given by Zygmund [25]
in 1949. Also, Aikawa $[1, 2]$ Presented a stronger version of the Little-
wood theorem in 1990. In their study of maximal functions, Nagel and
Stein [19] was established that there exist tangential sequences along
which every bounded harmonic function on $D$ converges a.e. on $\partial D$ .
These results were generalized in several directions by many authors.
For example, see [11, 12, 15, 22] for invariant harmonic functions in
the unit ball of $\mathbb{C}^{n}$ , and see [4, 10, 13, 16] for positive solutions of the
Helmholtz equation in $\mathbb{R}^{n}$ , and so on.

The decomposition theorem by Riesz states that every nonnegative
superharmonic function can be represented as the sum of a nonneg-
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ative harmonic function and a Green potential. In 1928, Littlewood
showed that every Green potential on $D$ has radial limit zero $a.e$ . on
$\partial D$ . Privalov [21] extened this result to higher dimensions. However,
Green potentials do not necessarily have nontangential limits. Thus
we need to impose some conditions on the densities of Green Potentials
if we want to show the existence of nontangential limits. In 1967, Ar-
sove and Huber [3] proved that if a nonnegative measurable function
$f$ on the unit ball $B$ satisfies the weighted integrability condition

$\int_{B}(1-|x|)^{2p-1}f(x)^{p}dx<\infty$ (1.1)

for $p=1$ and some $p>n/2$ , then the Green potential of the density
$f$ has nontangential limit zero a.e. on $\partial B$ . In 1979, Wu [23] gave a
sufficient condition similar to (1.1) for the density functions to guar-
antee the existence of tangential limits of Green potentials. Other
generalizations are found in $[7, 18]$ .

Let $\Delta$ denote the Laplace operator on $\mathbb{R}^{n}$ . Given a suitable nonneg-
ative function $f$ on $B$ , solutions of the Poisson $equation-\Delta u=f$ in $B$

may be decomposed into a harmonic function and the Green potential
of the density $f,$ and hence the above classical results are aPplIcable.
We are now interested in the boundary behavior of positive solutions
of nonlinear elliptic equations. For example, the Lane-Emden equa-
tion given $by-\Delta u=u^{P}$ is one of important equations appearing in
astrophysics. It goes without saying that the classical results are not
applicable to positive solutions of such equations. This is one of mo-
tivations to study the boundary behavior of superharmonic functions
satisfying nonlinear inequalities as mentioned in our title. It is well
known that if $u$ is superharmonic on a bounded domain $\Omega$ in $\mathbb{R}^{n}$ then
there exists a unique Radon measure $\mu_{u}$ on $\Omega$ such that

$\int_{\Omega}\phi d\mu_{u}=-\int_{\Omega}u\Delta\phi dx$ for all $\phi\in C_{0}^{\infty}(\Omega)$ .
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If $\mu_{u}$ is absolutely continuous with respect to Lebesgue measure, then
its density function is written $as-\Delta u$ (the usage $of-\Delta u$ means im-
plicitly that $\mu_{u}$ is absolutely continuous with respect to Lebesgue mea-
sure). In this note, we study positive superharmonic functions $u$ on $\Omega$

satisfying
$0\leq-\Delta u\leq u^{P}$ a.e. on $\Omega$ , (1.2)

where $p>0$ is a constant. Clearly, all positive solutions of the Lane-
Emden equation satisfy (1.2). Observe that if $u$ is a positive harmonic
function on a smooth domain $\Omega$ then

$\frac{1}{A}\delta_{\Omega}(x)\leq u(x)\leq A\delta_{\Omega}(x)^{1-n}$ for $x\in\Omega$ ,

where $A>1$ is a constant depending only on $u,$ $n$ and $\Omega$ , and $\delta_{\Omega}(x)$

denotes the distance from $x$ to $\partial\Omega$ . Actually, the lower estimate is
extendable to all positive superharmonic functions. However, the up-
per estimate does not necessarily hold for superharmonic functions.
The main purpose of this note is to estabIish the boundary growth
estimate for positive superharmonic functions satisfying (1.2).

In what follows, we suppose that $n\geq 3$ and that $\Omega$ is a bounded
$C^{1,1}$-domain in $\mathbb{R}^{n}$ . The open ball of center $x$ and radius $r$ is denoted
by $B(x, r)$ . The symbol $A$ stands for an absolute positive constant
whose value is unimportant and may change from line to line. For two
positive functions $f$ and $g$ , we write $f\approx g$ if there exists a constant
$A>1$ such that $f/A\leq g\leq Af$ . The constant $A$ will be called the
constant of comparison.

2 Boundary growth estimate

Theorem 1. If $0<p\leq(n+1)/(n-1)$ , then every positive superhar-
monic function $u$ on $\Omega$ satisfying (1.2) enjoys

$u(x)\leq A\delta_{\Omega}(x)^{1-n}$ for $x\in\Omega$ , (2.1)
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where $A$ is a constant depending only on $u,$ $p,$ $n$ and $\Omega$ .

Proof. We give a sketch of the proof. Since $u$ is a positive superhar-
monic function on $\Omega$ satisfying (1.2), it follows from the Riesz decom-
position theorem that

$u(x)=h(x)+ \int_{\Omega}G(x, y)(-\Delta u(y))dy$, (2.2)

where $h\geq 0$ is the greatest harmonic minorant of $u$ on $\Omega$ and $G(x, y)$

is the Green function for $\Omega$ . It is known that

$G(x, y) \approx\min\{1,$ $\frac{\delta_{\Omega}(x)\delta_{\Omega}(y)}{|x-y|^{2}}\}|x-y|^{2-n}$ , (2.3)

where the constant of comparison depends only on $n$ and $\Omega$ . See
$[5, 24]$ . Also, easy computation gives the following estimate for the
Martin kernel $K(\cdot,\xi)$ of $\Omega$ with pole at $\xi\in\partial\Omega$ :

$K(x, \xi)\approx\frac{\delta_{\Omega}(x)}{|x-\xi|^{n}}$ ,

where the constant of comparison depends only on $n$ and $\Omega$ . This and
the Martin representation theorem shows that

$h(x)\leq A\delta_{\Omega}(x)^{1-n}$ for $x\in\Omega$ ,

where $A$ depends only on $h,$ $n$ and $\Omega$ . Therefore, it is easy to see from
(2.2) that for each $j\in N$ , there is a constant $c_{j}>0$ depending only
on $j,$ $u,$ $n$ and $\Omega$ such that

$u(x) \leq c_{j}\delta_{\Omega}(z)^{1-n}+\int_{B(z,\delta_{\Omega}(z)/2^{j})}\frac{-\Delta u(y)}{|x-y|^{n-2}}dy$ (2.4)

for $z\in\Omega$ and $x\in B(z, \delta_{\Omega}(z)/2^{j+1})$ . Also, (2.2) and (2.3) give that for
$z\in\Omega$ ,

$\delta_{\Omega}(z)\int_{B(z,\delta_{\Omega}(z)/2)}(-\Delta u(y))dy\leq A$ , (2.5)

where $A$ depends only on $u,$ $n$ and $\Omega$ .
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For simplicity, we write $B(r)=B(O, r)$ . Let $z\in\Omega$ and $i\in$ N.
Put $r=\delta_{\Omega}(z)$ and $\psi_{z}(\zeta)=r^{n+1}(-\Delta u(z+r\zeta))$ . Making the change of
variables $x=z+r\eta$ and $y=z+r\zeta$ , we obtain from (2.4) and (2.5)
that

$\int_{B(1/2)}\psi_{z}(\zeta)d\zeta\leq A$ , (2.6)

$r^{n-1}u(z+r \eta)\leq c_{j}+\int_{B(2^{-j})}\frac{\psi_{z}(\zeta)}{|\eta-\zeta|^{n-2}}d\zeta$ for $\eta\in B(2^{-(j+1)})$ . (2.7)

Suppose that $0<p\leq(n+1)/(n-1)$ and let

$\frac{n+1}{n-1}<q<\frac{n}{n-2}$ , $l=[ \frac{\log(q/(q-1))}{\log(q/p)}]+1$ , $\infty=\max\{c_{j}\}1\leq j\leq\ell+1$

Define
$\Psi_{z,j}(\eta)=c_{0}+\int_{B(2^{-j})}\frac{\psi_{z}(\zeta)}{|\eta-\zeta|^{n-2}}d\zeta$ .

It follows from (2.7) and the H\"older inequality that

$\delta_{\Omega}(z)^{n-1}u(z)=r^{n-1}u(z)\leq\Psi_{z,\ell+1}(0)\leq c_{0}+A||\psi_{z}\Vert_{L^{q/(q-1)}(B(2^{-(\ell+1)))}}$ .
To prove (2.1), it suffices to show that

$\Vert\psi_{z}\Vert_{L^{q/(q-1)}(B(2^{-(\ell+1)}))}\leq A$ , (2.8)
where $A$ is independent of $z$ . Let $s=q/p$. Then $s>1$ . We claim that
for each $\kappa\geq 1$ , there is a constant $A$ depending only on $\kappa,$ $c_{0},$ $p,$ $q,$ $n$

and $\Omega$ such that

$\int_{B(2^{-(j+1)})}\psi_{z}(\zeta)^{\kappa s}d\zeta\leq A+A(\int_{B(2^{-j})}\psi_{z}(\zeta)^{\kappa}d\zeta)^{q}$ . (2.9)

Indeed, by the Jensen inequality,

$( \int_{B(2^{-j})}\frac{\psi_{z}(\zeta)}{|\eta-\zeta|^{n-2}}d\zeta)^{\kappa}$

一

$2^{\kappa-1} \int_{B(2^{-j})}\frac{\psi_{z}(\zeta)^{\kappa}}{|\eta-\zeta|^{n-2}}d\zeta$ for $\eta\in B(1)$ .
Therefore, by the Minkowski inequality,

$\int_{B(2^{-j})}\Psi_{z,j}(\eta)^{\kappa q}d\eta\leq A+A\int_{B(2^{-j})}(\int_{B(2^{-j})}\frac{\psi_{z}(\zeta)^{\kappa}}{|\eta-\zeta|^{n-2}}d\zeta)^{q}d\eta$

$\leq A+A(\int_{B(2^{-j})}\psi_{z}(\zeta)^{\kappa}d\zeta)^{q}$ .
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By the way, it follows from (1.2) and $p\leq(n+1)/(n-1)$ that

$\psi_{z}(\eta)=r^{n+1}(-\Delta u(z+r\eta))\leq r^{n+1}u(z+r\eta)^{p}\leq A\Psi_{z,j}(\eta)^{p}$

for a.e. $\eta\in B(2^{-(j+1)})$ . Hence (2.9) holds.
Let us apply (2.9) $\ell$ times. Since $s^{\ell}\geq q/(q-1)$ , it follows from the

H\"older inequality that

$\Vert\psi_{z}\Vert_{L^{q/(q-1)}(B(2^{-(\ell+1)}))}\leq A(\int_{B(2^{-(\ell+1)})}\psi_{z}(\zeta)^{s^{\ell}}d\zeta)^{1/s^{\ell}}$

$\leq A+A(\int_{B(2^{-\ell})}\psi_{z}(\zeta)^{s^{\ell-1}}d\zeta)^{q/s^{\ell}}$

$\leq\cdots$

$\leq A+A(\int_{B(1/2)}\psi_{z}(\zeta)d\zeta)^{q^{\ell}/s^{\ell}}$ .
In view of (2.6) we obtain (2.8). This completes the Proof of Theorem
1. 口

3 Nontangential limits of Green $potent\ddagger als$

As an application of Theorem 1, we can obtain the following result.
Theorem 2. Let $0<p\leq(n+1)/(n-1)$ and let $u$ be as in Theooem
1. If, in addition, the greatest $ha$rmonic minorant of $u$ on $\Omega$ is the
zero function, then $u$ has nontangential limit zero almost everywhere
on $\partial\Omega$ .

Proof. We start by recalling the Harnack inequality for nonnegative
weak solutions $v\in W^{1,2}(D)$ of the stationary Schr\"odinger equation
$\Delta v+\rho v=0$ in $D$ . If $\rho$ is a measurable function on $D$ such that $|\rho|$ is
bounded by a constant $\nu^{2}$ , then there exists a constant $A$ depending
only on $n$ such that

$\sup_{B(x,r)}v\leq A^{\sqrt{n}+\nu r}\inf_{B(x,r)}v$ ,
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whenever $B(x, 4r)\subset D$ . See [9].
Let $B(x, 8r)\subset\Omega$ and let us apply this Harnack inequality to $D=$

$B(x, 4r)$ and $\rho=-\Delta u/u$ . $Since-\Delta u\in L_{loc}^{\infty}(\Omega)$ by (1.2) and Theorem
1, it follows that $u\in C^{1}(\Omega)\subset W^{1,2}(D)$ and that $u$ is a weak solution
of $\Delta u+\rho u=0$ in $D$ . Also, if $1\leq p\leq(n+1)/(n-1)$ , then Theorem
1 yields that for $y\in D$ ,

$0\leq\rho(y)\leq u(y)^{p-1}\leq A\delta_{\Omega}(y)^{(p-1)(1-n)}\leq Ar^{(p-1)(1-n)}\leq Ar^{-2}$ .

If $0<p<1$ , then we use the decay estimate $u(y)\geq A\delta_{\Omega}(y)$ in $\Omega$ to
obtain $0\leq\rho(y)\leq Ar^{-2}$ for $y\in D$ . In any cases, we observe that
there exists a constant $A$ depending only on $u,$ $p,$ $n$ and $\Omega$ such that

$\sup_{B(x,r)}u\leq A\inf_{B(x,r)}u$,

whenever $B(x, 8r)\subset\Omega$ .
Finally, we apply this Harnack inequality to show the existence of

nontangential limits. By our assumption, $u$ is the Green Potential of
the $density-\Delta u$ . Therefore it follows from [20] that $u$ has minimal
fine limit zero at $\xi\in\partial\Omega\backslash E$ , where the surface measure of $E$ is zero.
Let $\{x_{j}\}$ be arbitrary sequence converging to $\xi$ within a nontangential
cone at $\xi$ . Since the bubble set $\bigcup_{j}B(x_{j}, \delta_{\Omega}(x_{j})/8)$ is not minimally
thin at $\xi$ , we find a sequence $y_{j}\in B(x_{j}, \delta_{\Omega}(x_{j})/8)$ converging to $\xi$ such
that $u(y_{j})arrow 0$ as $jarrow\infty$ . Hence $0\leq u(x_{j})\leq Au(y_{j})arrow 0$. This
completes the proof of Theorem 2. $\square$

4 Remarks

In this final section, we give some remarks on Theorem 1.
$\bullet$ If $p>(n+1)/(n-1)$ , then we can construct a $C^{2}$-function $u$ on

$\Omega$ satisfying (1.2) such that (2.1) fails to hold. Hence the upper
bound $p\leq(n+1)/(n-1)$ is sharp in Theorem 1.
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$\bullet$ If $0<p<(n+1)/(n-1)$ , then

$-\Delta u=u^{p}$ in $\Omega$

has a positive solution $u\in C^{2}(\Omega)$ satisfying

$u(x) \approx\frac{\delta_{\Omega}(x)}{|x-\xi|^{n}}$ for $x\in\Omega$ .

Hence the growth rate $1-n$ is sharp in Theorem 1.

The proofs of these remarks can be found in [14] where we actu-
ally studied positive superharmonic functions satisfying more general
inequality $0\leq-\Delta u(x)\leq c\delta_{\Omega}(x)^{-\alpha}u(x)^{p}$ and positive solutions of
$-\Delta u(x)=c\delta_{\Omega}(x)^{-\alpha}u(x)^{p}$.
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