A convergence property for quasisuperminimizers on metric measure spaces

Takayori ONO (小野太幹)

Fukuyama University (福山大学)

§1. Preliminaries

We assume that $X = (X, d, \mu)$ be a complete metric space with a metric d and a positive Borel regular measure μ which is finite on a bounded set.

Let u be a real valued function on X. A nonnegative Borel measurable function g on X is said to be an upper gradient of u if for every rectifiable path γ joining x and y in X,

(1.1)
$$|u(x) - u(y)| \leq \int_{\gamma} g \, ds.$$

The *p*-modulus of a family Γ of paths in X is defined by

$$\inf_{\rho}\int_{X}\rho^{p} d\mu,$$

where the infimum is taken over all nonnegative Borel measurable functions ρ such that for all rectifiable paths γ in Γ

$$\int_{\gamma} \rho \ ds \ge 1.$$

We say that a property holds for *p*-almost every path if the family of paths on which the property does not hold is of zero the *p*-modulus. If (1.1) holds for *p*-almost every path γ , then we say that *g* is a *p*-weak upper gradient of *u*.

Let $1 and <math>L^p(X)$ be the space of functions f on X such that $|f|^p$ is integrable with respect to the measure μ . A function u belongs the space $\widetilde{N}^{1,p}(X)$ if $u \in L^p(X)$ and u has a p-weak upper gradient g such that $g \in L^p(X)$. For a function $u \in \widetilde{N}^{1,p}(X)$, we define

$$||u||_{\tilde{N}^{1,p}(X)} = ||u||_{L^{p}(X)} + \inf_{g} ||g||_{L^{p}(X)},$$

where the infimum is taken over all *p*-weak upper gradients of *u*. For functions $u, v \in \widetilde{N}^{1,p}(X)$, we define the relation $u \sim v$ if and only if $||u-v||_{\widetilde{N}^{1,p}(X)} = 0$. We define the Newtonian space $N^{1,p}(X) = \widetilde{N}^{1,p}(X) / \sim$ equipped with the norm $|| \cdot ||_{N^{1,p}(X)}$.

Following properties of the Newtonian spaces are known (see [S1]):

- (i) $N^{1,p}(X)$ is a Banach space.
- (ii) Lipschitz functions are dense in $N^{1,p}(X)$.

(iii) Every $u \in N^{1,p}(X)$ has a unique minimal *p*-weak upper gradient $g_u \in L^p(X)$ in the sense that for every *p*-weak upper gradient *g* of $u, g_u \leq g \mu$ -a.e in X.

For a set E in X, the *p*-capacity of E is defined by

$$C_p(E) = \inf_{u} ||u||_{N^{1,p}(X)},$$

where the infimum is taken over all $u \in N^{1,p}(X)$ such that u = 1 on E, and the Newtonian space with zero boundary values is defined by

$$N_0^{1,p}(E) = \{ u \in N^{1,p}(X) \mid C_p(\{ x \in X \setminus E \mid u(x) \neq 0 \}) = 0 \}.$$

Let Ω be an open subset in X. If $u \in N^{1,p}(E)$ for every measurable set $E \Subset \Omega$, we write $u \in N^{1,p}_{loc}(\Omega)$. For more various properties of Newtonian spaces, see [S1].

In addition, we assume following two conditions:

(I) The measure μ is doubling, that is, there exists a constant C > 0 such that

$$0 < \mu(2B) \le C\,\mu(B)$$

whenever $B = B(x_0, r) = \{x \in X | d(x, x_0) < r\}$ is a ball in X and $\lambda B = B(x_0, \lambda r)$ for $\lambda \in \mathbf{R}$.

(II) X supports a weak (1, p)-Poincaré inequality, that is, there exist constants C > 0 and $\lambda \ge 1$ such that for all balls $B \subset X$, all measurable functions f on X and all upper gradients g of f,

$$\frac{1}{\mu(B)} \int_{B} |f - f_{B}| \, d\mu \leq C(\text{dima B}) \left(\frac{1}{\mu(\lambda B)} \int_{\lambda B} g^{p} \, d\mu\right)^{1/p}$$

where $f_B = \frac{1}{\mu(B)} \int_B f \, d\mu$.

In **[B]** there are various examples of spaces equipped with a doubling measure and supporting Poincaré inequality.

$\S2.$ Quasisuperminimizers

Let a constant $Q \ge 1$. A function $u \in N^{1,p}_{loc}(\Omega)$ is said to be a (Q, p)quasiminimizer in Ω if for all open $\Omega' \Subset \Omega$ and all $\varphi \in N^{1,p}_0(\Omega')$ we have

(2.1)
$$\int_{\Omega'} g_u^p \, d\mu \le Q \int_{\Omega'} g_{u+\varphi}^p \, d\mu.$$

A function $u \in N_{loc}^{1,p}(\Omega)$ is said to be a (Q,p)-quasisuperminimizer in Ω if (2.1) holds for all nonnegative $\varphi \in N_0^{1,p}(\Omega')$. A function u is said to be a (Q,p)-quasisubminimizer if -u is a (Q,p)-quasisuperminimizer. A function u is a (Q,p)-quasiminimizer if and only if u is a (Q,p)-quasisuperminimizer and a (Q,p)-quasisubminimizer.

A (Q, p)-quasiminimizer (respectively, (Q, p)-quasisuperminimizer) has a continuous (respectively, lower semicontinuous) representative (see [KM1; Theorem 5.1], [KM2; Lemma 5.3] and [KS; Proposition 3.3 and Theorem 5.2]). If u is a (1, p)-quasiminimizer (respectively, (1, p)-quasisuperminimizer), we say that u is a minimizer (respectively, superminimizer). A continuous minimizer is said to be p-harmonic. Potential theory for p-harmonic functions on metric measure spaces has been studied in [C], [S2], [KM1], [BBS1] and [BBS2] etc.

If u is a (Q, p)-quasisuperminimizer and $\lambda \ge 0$, τ are constants, then $\lambda u + \tau$ is a (Q, p)-quasisuperminimizer.

$\S3$. A convergence property for quasisuperminimizers

In [KM2; Theorem 6.1] the following convergence result for quasisuperminimizers was established:

Proposition. Let Ω be an open set in X and let $\{u_n\}$ be a nondecreasing sequence of (Q, p)-quaisuperminimizers in Ω and $u = \lim_{n \to \infty} u_n$. If either u is locally bounded above or $u \in N^{1,p}_{loc}(\Omega)$, then u is a (Q, p)-quaisuperminimizer in Ω .

We can relax the condition in the above proposition as follows.

Theorem. Let Ω be an open set in X and let $\{u_n\}$ be a nondecreasing sequence of (Q, p)-quaisuperminimizers in Ω . If there is a function $f \in$

 $N_{\text{loc}}^{1,p}(\Omega)$ such that $u_n \leq f \ \mu$ -a.e. for all n, then $u = \lim_{n \to \infty} u_n$ is a (Q, p)quaisuperminimizer in Ω .

Let Ω be an open subset of X. A function $u : \Omega \to \mathbb{R} \cup \{\infty\}$ is said to be (Q, p)-quaisuperharmonic in Ω in the sense of [KM2] if

(i) u is lower semicontinuous,

(ii) $u \not\equiv \infty$ in Ω , and

(ii) there exist an exhaustion $\{\Omega_n\}$ of Ω and a nondecreasing sequence $\{u_n\}$ of (Q, p)-quaisuperminimizers in Ω_n such that $u = \lim_{n \to \infty} u_n^*$, where $u_n^*(x) =$ ess $\liminf_{y \to x} u_n(y)$.

If u is a (Q, p)-quaisuperminimizers, then u has a (Q, p)-quaisuperharmonic representative (see [KM2; Proposition 7.2]).

From the above theorem the next corollary follows immediately.

Corollary. Let Ω be an open set in X and let u be a (Q, p)-quaisuperharmonic function in the sense of [KM2] in Ω . If there is a function $f \in N^{1,p}_{loc}(\Omega)$ such that $u \leq f \mu$ -a.e., then u is a (Q, p)-quaisuperminimizers in Ω .

References

- [**B**] A. Björn, Characterization of *p*-superharmonic functions on metric spaces, Stud. Math., **169** (2005), 45-62.
- [BBS1] A. Björn, J. Björn and N. Shanmugalingam, The Dirichlet problem for p-harmonic functions on metric measure spaces, J. Reine Angew. Math. (Crelle) 556 (2003), 173–203.
- [BBS2] A. Björn, J. Björn and N. Shanmugalingam, The Perron method for p-harmonic functions in metric spaces, J. Differential Equations 195 (2003), 398-429.
- [C] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428-517. elliptic systems, Birkhäuser Verlag, Zürich, 1993.
- [KM1] J. Kinnunen and O. Martio, Nonlinear potential theory on metric spaces, Illinois Math. J. 46 (2002), 857-883.
- [KM2] J. Kinnunen and O. Martio, Potential theory of quasiminimizers, Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490.

- [KS] J. Kinnunen and N. Shanmugalingam, Regularity of quasi-minimizers on metric spaces, Manuscr. Math., 105 (2001), 401-423.
- [MO] F-Y. Maeda and T. Ono, Resolutivity of ideal boundary for nonlinear Dirichlet problems, J. Math. Soc. Japan 52 (2000), 561-581.
- [O] T. Ono, A convergence property for quasisuperminimizers, in preparation
- [S1] N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam. 16 (2000), 243-279.
- [S2] N. Shanmugalingam, Harmonic functions on metric spaces, Illinois J. Math. 45 (2001), 1021-1050.