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A Lattice-Based Cryptosystem and Proof of Knowledge on Its Secret Key

Il EX A FER - He E04
Keita Xagawa Akinori Kawachi Keisuke Tanaka

Abstract— We propose a lattice-based cryptosystem by modifying the Regev’05 cryptosystem
(STOC 2005), and design a proof of secret-key knowledge. Lattice-based public-key identification
schemes have already been proposed. However, it is not known that their public keys can be used for
the public keys of encryption schemes. Our modification admits the proof of knowledge on its secret
key, although we need a stronger assumption than that required by the original cryptosystem.
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1 Introduction

Lattice-Based Cryptosystems. Since Ajtai’s semi-
nal results on the average-case/worst-case comection
of lattice problems [ 1], the lattice-based cryptosystems
have been studied. Ajtai and Dwork proposed a public-
key cryptosystem [4] based on the worst-case hardness
of unique shortest vector problem (uSVP). After their
results, Regev proposed a cryptosystem [21] based on
the worst-case hardness of uSVP. In 2005, Regev in-
troduced a cryptosystem R05 [22] based on the approx-
imation version of SVP and Ajtai introduced another
cryptosystemn [3]. In the Regev’05 cryptosystem and
the Ajtai0S cryptosystem, the size of the public key is
O(7) in the bare model and O(») or in the common
reference string model. Their cryptosystems are more
suitable for practical use than the Ajtai-Dwork crypto-
system.

However, there were no applications of lattice-based
cryptosystems, except Micciancio and Vadhan [18] and
Goldwasser and Kharchenko [11]. The former is a
zero-knowledge proof for a gap version of closest vec-
tor problem (GapCVP,), which we refer as the MV
protocol. The latter is a proof of plaintext knowledge
for the Ajtai-Dwork cryptosystem. Thus, we consider
another application for lattice-based cryptosystems, a
proof of knowledge on its secret key.

Summary. We propose a modified Regev’0S crypto-
system and introduce a proof of knowledge on its se-
cret key in the common reference string (CRS) model.
We consider the relation between the private key and
the public key as that between the message and the
codeword with the error in coding theory. To con-

* Dept. of Mathematical and Computing Sciences, Tokyo In-
stitute of Technology. W8-55, 2-12-1 Qokayama, Meguro-
ku, Tokyo 152-8552, Japan. {xagawa$, kawachi,
keisuke}@is.titech.ac.jp. Supported in part by NTT
Information Sharing Platform Laboratories and Grant-in-Aid
for Scientific Research, Ministry of Education, Culture, Sports,
Science, and Technology, 16092206.

struct a proof of knowledge, we modify generation of
the error. This modification admits a prover to prove
the knowledge of the error and the message based on
Stern [24]. Thus, we obtain a proof of knowledge on a
secret key of our cryptosystem.

Related Results. There alrcady exist public-key
identification schemes based on lattice and coding
problems. In 1989, Shamir showed an identification
scheme based on permuted kemel problem {23]. Stern
proposed public-key identification based on syndrome
decoding problem in 1996 [24]. Micciancio and Vad-
han introduced a zero-knowledge proof with efficient
prover for GapCVP, and discussed public-key iden-
tification schemes [18]. Recently, Hayashi and Tada
showed public-key identification schemes based on bi-
nary non-negative exact length vector problem (or in-
teger subset sum problem) [14]. Unfortunately, it is
unknown whether their public keys can be used as a
public key of cryptosystems or not. We stress that in
our identification schemes, information for identifica-
tion is indeed a public key of cryptosystems.

Why can we not apply the MV protocol to R0S?
Before description of our idea, we briefly review the
key generation of ROS and explain why the same ap-
proach with the Micciancio-Vadhan protocol [1£] fails
for our goal. (We abbreviate it to “the MV protocol”).

In ROS, the secret key is s € Zj and the public key
is A = [ay,...,8,] € Z7™ and b = 'As + ¢, where
e € Z7 and cach coordinate of e is close to 0. From a
coding-theoretical view, we can regard ‘A as a genera-
tor matrix, s as a message, and e as an error. Remark
that the length of e is short. Hence, one would think we
can apply the MV protocol to proofs of knowledge for
a secret key s. However, we cannot apply it in a naive
way. We explain more details.

We first review the intujtion which is used in the
MYV protocol. (See [18] for more details.) Let (B,y, ?)



be an instance of GapCVP,.! Let B,(c,7) be an m-
dimensional hyperball whose center is ¢ and radius is ».
In their protocol, the prover chooses a random bit ¢ and
a random vector r from B,,(0, y¢/2). The prover com-
putes m = cy + r mod B and sends m to the verifier.
The verifier sends a challenge bit § to the prover. Note
that if (B, y, 7) is a YES instance then the ratio between
the volume of (8,(0, ¥¢/2) mod B)N (B (y, y¢/2) mod
B) and that of B(0,7¢/2) is at least 1/poly(n). If
m € (B,(0,yt/2) mod B) N (B,(y,yt/2) mod B) the
prover can flip a bit c. The prover sends the proof
that m is chosen from B,(cy,y#/2). Note that if
(B,y,?) is a NO instance then (B,,(0, v#/2) mod B) N
(Bm(y, yt/2) mod B) = 0. Therefore the prover can not
flip a bit ¢ aftér a reception of the challenge bit.

Next, we consider applying their protocol to the
Regev’05 cryptosystem, ie., a proof of knowledge
that, on input (A,b), the prover knows s such that
b =‘As+e, where e € B,,(0, /). Note that a linear code
is Z,-module in Z7 and a lattice is Z-module in R”.
Therefore, instead of reducing modulo B, we multiply
a parity-check matrix H of ‘A to the vector in Z'. Sup-
pose that B,,(0,yt/2) and B,,(b, yt/2) do not mtersect
Unfortunately, we cannot ensure that HB,,(0, yt/2) and

HB,,(b,v¢/2) do not intersect because the dimension
ofHZ"'lsm n < m. On such NO instance (A, b),
the provcr can cheat the verifier on which hyperball
he chose m from. Hence the soundness of the proto-
col fails. Thus, we cannot apply their protocol to the
Regev’05 cryptosystem in a straightforward way.

Main Idea. As seen in the above paragraphs, we can-
not apply the protocol 18] to the Regev’05 cryptosys-
tem straightforwardly. Let us reconsider multiplying a
parity-check matrix H. Let s eZ" be a private key and
let (A, b) be a public key, where b="'As+e. Multiply-
ing a parity-check matrix H to the equation b = ‘As+e,
we obtain that Hb = He. The prover should prove the
knowledge of e that satisfies the equation and each co-
ordinate of e is in certain range. The difficulty to con-
struct the protocol is to combine protocols that prove
sufficiency of the equation and lying in the range.
Then, we modify a public key as follows: The secret
keyiss € Z” ands’ € {0, 1™, whose Hamming weight
is my. The pubhc keyis A € ZP™ and E € Z"™ and
b = ‘As + Es’. In this case, by multiplying a parity-
check matrix H, we have that Hb = HEs’. Translating
a matrix HE as a parity-check matrix, we have an in-
stance (HE, Hb, m,) and a witness s’ of Syndrome De-

I (B,y, () is a YES instance if there exists w € Z" such that
IBw-yll <7 Itisa NO instance if for any vector w € 2",
|Bw - yll 2 7. Although they consider only full-rank lattices
in [t8]. we consider not only full-rank lattices. That is, an in-
stance of GapCVP,, consists of B, which is a basis of a lattice
whose rank is n, y ¢ R™, ¥ 2 1.

2 We abuse the notation B(-, ).
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coding Problem (SDP).® Since Stern proposed a proof
of knowledge for SDP in 1996 [24], we adopt it to
prove knowledge of secret key s’.

The proof of knowledge for SDP needs a
statistically-hiding and computationally-binding com-
mitment scheme. Fortunately, if A is chosen randomly
then the function f, : {0, I}" — Z; :m— Amis
a collision-resistant function based on the approxima-
tion version of SVP [2, 10, 7, 15, 17]. Thus we em-
ploy that function to develop a statistically-hiding and
computationally-binding string commitment scheme.
Our construction of a string commitment is more
straightforward than Damgérd, Pedersen, and Pfiz-
mann [%, 9] and Halevi and Micali [13), which used
the universal hash functions.

We also show the security of the modified ROS,
mROS. Unfortunately, we need a stronger assump-
tion than the original one. The stronger assumption
is the worst-case hardness of certain learning problem,
which is based on well-known problem Leaming With
Error (LWE).

Organijzation. The rest of this chapter is organized
as follows. We briefly note basic notions and notations
in Section 2. We describe the Regev’05 cryptosystem
and our modified cryptosystem in Section 3. Next, we
give our main results, a proof of knowledge on a secret
key, in Section 4. Finally, we conclude in Section 5.

2 Preliminaries

Let wy(x) denote Hamming weight of x, i.e., the
number of nonzero elements in x. For an element x €
Z, we define |x], as the integer x if x € {0, 1,...,19/2}}
and as the integer ¢ — x otherwise. In other words, |x|,
represents the distance of x from0in Z,.

Gaussian and other distributions. The normal
distribution with mean O and variance o? is the
distribution on R given by the density function
(1/ V2ro) exp(—(x/)?/2). For any distribution ¢, we
consider the distribution ¢(™ obtained as follows: (1)
take n samplcs X1,...,X, from ¢ independently and (2)
output ‘(x, ..., x,). For a n-dimensional vector x and
any s > 0, let P7(x) = exp(~nlix/s|?) be a Gaussxan
function scaled by a factor of s. Also, v\ o) = p " s
is an n-dimensional probability density function. For
a € R* the distribution ‘¥, is the distribution on [0, 1)
obtained by sampling from a normal variable with
mean 0 and variance a?/(2x) and reducing the result
modulo 1: ¥, (r) 1= Tiex(l/a)exp(-n((r - k)/a)?).
For an arbitrary probability distribution with density
function ¢ : T — R* and some integer ¢ > 0, we
define its discretization ¢ : Z, — R* as the discrete

3 Syndrome Decoding Problem: Given input (H, y,m), where H €
Zr gy ek m 2 0, find x € Z2 such that Hx = y and
Hamming weight of x is exactly m.




probability distribution obtained by sampling from ¢,
multiplying by ¢, and rounding to the closest integer
modulo g. More formally, 5(1’) = (l.:’/f)q H(x)dx.

For integers m; 2 m; 2 0, we define Set,,, := {§’ €
{0,1¥™ | wu(s") = my}. For any s € Z7, we define
A, obtained as follows: (1) Choose a random vector
a € Z7. (2) Choose arandom clement e € Z, according
to ¥,. (3) Outputs (a,(a,s) + ). For any s € ZF and
any 8’ € Set,,, we define 4, as the distribution on
Z)xZ;" XZ, obtained as follows: (1) Choose a random
vector a € Z7. (2) Choose a random vector e € Zy'

according to ‘-ff,",'& (3) Set b := (a,s) + (e,s’) and
output (a, e, b). We also define U’ as the distribution
on Z} X Z;" X Z, obtained as follows: (1) Choose a

random vector a € Z7. (2) Choose a random vector e €
Z;" according to w™) (3) Choose a random elements

a/m

u € Z, and output (a, e, u).
We consider the following learning problems.

Definition 2.1 (Leaming With Errors, LWE, g ).
Given samples from 4,, find s.

Definition 2.2 (Lcaming With Known Errors,
LWKE, §,). Given parameters, m and m,, and
samples from 4, ., find s.

We note that if there exists an adversary A that
solves LWE, g, with non-negligible probability then
there exists an adversary A’ that solves LWKE, g,
with non-negligible probability. If A needs &k =
poly(n) samples, then A’ takes k samples (a;,e;, b))
from A,,. A inputs {(a;, b;)}x1,..4 to A and obtains
an output s. A’ outputs s. Using the reproducibility
of Gaussian distributions, we show that the sum of m,
samples according to We/m, is, in fact, distributed ac-
cording to ¥, and hence {(a;, b;)};=1,...» which A’ com-
putes is indeed samples from 4,.

Given two probability density functions ¢;, ¢, on
R”, we define the statistical distance between them as
A1 ¢2) = } [ 161(0) — ¢2(x)idx. A similar defi-
nition holds for discrete random variables. We some-
times abuse such notation, and use the same notation
for two arbitrary functions. Note that the acceptance
probability of any algorithm on inputs from X differs
from its acceptance probability on inputs from Y by at
most A(X, Y).

We say that an algorithm D with oracle access is
a distinguisher between two distributions if its ac-
ceptance probability when the oracle outputs samples
of the first distribution and when the oracle outputs
samples of the second distribution differ by a non-
negligible amount.

Lattices. An n-dimensional lattice in R" is the set
L(by,...,b,) = (T7, aib; | @; € Z} of all integral com-
binations of » linearly independent vectors by, ..., b,.
The sequence of vectors by, ..., by, is called a basis of
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the lattice L. For more details on lattices, see the text-
book by Micciancio and Goldwasser [16].

We give well-known lattice problems, Shortest Vec-
tor Problem (SVP) and Shortest Independent Vector
Problem (SIVP) and their approximation version.

Definition 2.3 (Shortest Vector Problem, SVP). Given
a basis B of a lattice L, find a non-zero vector v € L
such that for any non-zero vector x € L, |jv|| < [ix||.

Definition 2.4 (SVP,). Given a basis B of a lattice L,
find a non-zero vector v € L such that for any non-zero
vector x € L, ||v|| £ ¥ |ix]l.

Detinition 2.5 (Shortest Independent Vector Problem,
SIVP). Given a basis B of a lattice L, find a sequence
of n linearly independent vectors v;,...,v, € L such
that for any sequence of » linearly independent vectors
X15...5 Xy € L, max; "Vi" < max; |ix;ll.

Definition 2.6 (SIVP,). Given a basis B of a lattice
L, find a sequence of » linearly independent vectors
vi,..., ¥, € L such that for any sequence of » lin-
early independent vectors x;,...,X, € L, max;|iv|| <
y max; [|x;{l.

Codes. Let F, denote a field with ¢ elements, where
q is a prime power. A g-ary linear code C is a lin-
ear subspace of Fy. If C has dimension & then C is
called an [, k], code. A generator matrix G for a lin-
ear code C is a n by k matrix for which the columns
are a basis of C. Note that C := {Gm | m € F’,;}.
We say that G is in standard form if G = (}). For
an [n,k], code C, we define the dual code C* by
Ct:={yeF}| foranyx € C,(x,y) = 0}. f G = (}
is a generator matrix in standard form of the code C,
then H = (,':_") is a generator matrix of the code C+.
This follows from the fact that H has the right size and
rank and that ‘HG = 0, which implies every codeword
Gm has inner product 0 with every column of H. In
other words, x € C if and only if ‘Hx = 0. Thus, we
call H a parity-check matrix. We note that, given any
generator matrix G of the code C, we can efficiently
compute C’s generator matrix G’ in standard form and
C’s parity-check matrix H.

If C is a linear code with a parity-check matrix H
then for every x € F, we call ‘Hx the syndrome of x.

It is well known that the question of finding the near-
est codeword to a vector (Nearest Codeword Problem,
NCP) is NP-hard even in approximation version [S]. It
is also difficult to find a word of a given weight from
its syndrome [6].

Definition 2.7 (Symdrome Decoding Problem, SDP).
Given a parity-check matrix H € Z*", a binary
nonzero vector y € Z7, and a positive integer w, find a
binary vector x € Z; with no more than w 1’s such that
‘Hx = y.



Zero Knowledge and Proof of Knowledge. In this
section, we recall definitions and notations of zero
knowledge and proof of knowledge.

Definition 2.8 (Auxiliary-Input Zero Knowledge).
An interactive proof system (P, V) for a language
L is (perfect/statistical/computational) auxiliary-input
zero knowledge if for every probabilistic polynomial-
time machine V" and polynomial p(-), there ex-
ists a probabilistic polynomial-time machine S such
that the ensembles {(Z, V*(2))(x)} and {S(x,z)} are
(perfectly/statistically/computationally) indistinguish-
able on the set {(x,2) : x € L, |2} = p(jx])).

Forarelation R € {0, 1}* x{0, 1}* and x € {0, 1)*, we
define a set of witness R(x) := {y | (x,)) € R}.

Definition 2.9 (Proof of Knowlegde). Let n € (0, 1).

An interactive protocol (P, ¥) with a prover P and a
verifier V is a proof of knowledge system with knowl-
edge error K for a relation R if the following holds:

Completeness: For every common input x for which
there exists y such that (x,y) € R the verifier V
always accepts interacting with the prover P.

Validity with error 5: There exists a polynomial-
time interacting oracle Turing machine X and a
constant ¢ > O such that for every x € {0, 1}*
such that R(x) # @ and for every prover P
the following holds: K (x) € R(x) U {.L} and
Pr{K” (x) € R(x)] 2 (p — ¥)°, where p > « is the
probability that ¥ accepts while interacting with
P* on common input x.

2.1 String Commitments

We explain the notation for commitment schemes
in the common reference string (CRS) model. As-
sume that there exists a trusted third party (TTP). Let
Com()( *) be an indexed function which maps a pair
of a message string and a random string to a commit-
ment string. First, TTP on input 1" outputs a random
string a, which is the CRS and the index of the com-
mitment function. To commit to a string s, the sender
chooses a random string », computes ¢ = Com,(s; 7),
and sends c to the receiver. To reveal commitment c,
the sender sends s and r to the receiver. The receiver
accepts if ¢ = Com,(s; r) or rejects otherwise.

Definition 2.10. We say a string commitment scheme
Comy,(;;-) is statistically hiding and computationally
binding if it has the following properties:

Statistical Hiding: For any two strings s and &', the
statistical distance between (a, Com,(s; 7)) and
(a,Com,(s’; ")) is negligible, wherc a,r,r’ are
random and independent.

Computational Binding: For any probabilistic
polynomial-time machine A, if a is randomly
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chosen by TTP, then the probability that, given
an input a, A outputs (s, ) and (s, 7’) such that
Com,(s; r) = Com,(s; r') is negligible.

2.2 Subset-Sum Hash Functions and a String
Commitment Scheme

As explained in Scction 1 we need a string commit-
ment scheme to construct a proof of knowledge of a se-
cret key. We first argue the family of subset-sum hash
functions and the string commitment scheme.

Let n be a security parameter (or a dimension of un-
derlying lattice problems). For a prime ¢ = g(n) =
nY) and an integer m = m(n) > nlog q(n), we define
a family of hash functions, H,., = {fi : {0, 1}™™ —
Z,, | A € Z77™), where fu(x) = Ax mod g(n).

Originally, Ajtai [!] showed H,,  is a family of one-
way functions under the assumption that SVP with
some polynomial approximation factor is hard in the
worst case for suitably chosen g(n) and m(n). It
is known that H,,, is indeed a family of collision-
resistant hash functions for suitably chosen ¢ and m
by Goldreich, Goldwasser, and Halevi [10], Cai and
Nerurkar [7] and Micciancio {15]. Recently, Miccian-
cio and Regev showed H,, is a family of collision-
resistant hash functions under the assumption SVP
is hard in the worst case [17].

We construct a  statistically-hiding and
computationally-binding string commitment scheme
based on the above hash functions. It is well known
that if there exists a collision-resistant hash function
then there exists a statistically hiding and computa-
tionally binding string commitment scheme [8, 9, 13].
Their construction used universal hash functions
for the statistically hiding property. However, our
construction do not use it, because if m is sufficiently
large and a plaintext s is randomized, As is distributed
statistically close to the uniform distribution. To prove
the statistically-hiding property, we use Claim 2.12
below in [22].

We describe how to achieve a string commitment
scheme in the CRS model. We first split the domain
{0, 1}™ into two domain {0, 1)™/2 x {0, 1}™/2. The first
domain is used for randomization. The second domain
is for message. We define Com,(s;7) := Ax, where

= '(l’o, ...,r,,,/z,s,,...,s,,,/z), r = ry..."m/32, and
§=81...85m2.

Lemma 2.11. For a prime q = q(n) = n°") and an
integer m = m(n) > 10nloggq, if H,n is collision re-
sistant and a trusted third party gives a random matrix
A € Z™, then Com, is a statistically hiding and com-
Dputationally binding string commitment scheme in the
CRS model.

Proof. The computationally-binding property imme-
diately follows from the collision-resistant property.



Next, we consider the statistically-hiding property. Us-
ing Claim 2.12 below, we have that with probabil-
ity exponentially close to 1 the statistical distance be-
tween the distribution of (A, Com,(0™/?;r)) and that
of (A, u) is negligible in »n, where » and u are ran-
dom variables according to the uniform distribution on
{0,1}™2 and Z}, respectively. Hence, for any two mes-
sages my,m; € {0,1)"/2, the statistical distance be-
tween the distribution of (A, Com,(m;; 1)) and that
of (A, Com, (m;; 1)) is negligible in n with probabil-
ity exponentially close to 1, where r; and 7, are ran-
dom variables according to the uniform distribution on
{0, 1y/2, This completes the proof. o

Claim 2.12 (Claim 5.3, [22]). Let G be a finite Abelian
group and let | = clog|G|. For c 2 5, when choosing
1 elements g, ...,g; uniformly from G the probability
that the statistical distance between the uniform distri-
bution on G and the distribution given by the sums of
random subsets of g1, ...,81 Is more than 2/ |G} is at
most 1/ |Gl.

3 The Regev’05 Cryptosystem and Mod-
ified Regev’0S Cryptosystem

3.1 The Regev’0S Cryptosystem

Regev proposed a lattice-based cryptosystem in
2005 [22]. We briefly review the Regev’05 cryptosys-
tem, ROS.

Cryptosystem 3.1 (ROS5, [22]). Let n be a security
parameter (or a dimension of the underlying lattice
problem). Let g be a prime and a be a parameter to
define the variance of Gaussian distribution such that
agq > 2 y/n. Let m be an integer at least 5(n + 1) logg.

Private Key: Choose s € Z] randomly.

Public Key: Choose a1,...,8, € Z; randomly.
Choose ey, ..., en according to the distribution
¥.. Compute b; = (a;,8) + ¢; mod g. The public
key is {(a;, b))i=1,..,m-

Encryption: A plaintext is o € {0,1}. Choose
S <gp {1,...,m) randomly. The ciphertext is
Zies 8, 7 19/2] + Zies bi)-

Decryption: Let (a,b) € Zj X Z, be a received ci-
phertext. 1f |b - (a, s)l, < ¢/4 then decrypt to 0.
Otherwise decrypt to 1.

The size of a public key and a private key are
O(mnlog q) = O( log? q) and O(n log g) = O(nlog )
respectively. If a;,...,a,, is the CRS, this is the idea
from Ajtai [3], the size of a public key is O(mlogq) =
O(nlog? g). We summarize the security and decryption
errors of ROS.

Theorem 3.2 (Thereom 3.1, Lemma 4.4, and
Lemma 5.4, [22]). Let @« = a(n) be a real number
on (0,1) and q = q(n) a prime such that aq > 2+/n.
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For m > 5(n + 1)loggq, if there exists a polynomial
time algorithm that distinguishes between encryptions
of 0 and 1 then there exists a distinguisher that distin-
guishes between A, and U (Z4%Z,) for a non-negligible
Jfraction of all possible s.

Next, assume there exists a distinguisher that distin-
guishes A, from U(Z) X Z,) for a non-negligible frac-
tion of all possible s. Then, there exists an efficient
algorithm that solves LWE, g, .

Finally, assume there exists an efficient (possibly
quantum) algorithm that solves LWE, §,. Then there
exists an efficient quantum algorithm for solving the
worst-case of SVP gy, and SIVP o, 1a.

Lemma 3.3 (Lemma 5.1, [22] (Correctness)). The

decryption error probability is at most 2-81/(ma%)
2700)

Remark 3.4. The reduction in Theorem 3.2 is quan-
tum. Therefore, the security of RO5S depends on the
worst-case hardness of LWE, ¢, in the classical sense.

3.2 Modified Regev’05 Cryptosystem

We modify the Regev’05 cryptosystem to obtain a
new cryptosystem mROS.

Cryptosystem 3.5 (mR05). Let # be a security param-
eter (or a dimension of the underlying lattice problem).
Let g be a prime and o be a parameter to define the
variance of Gaussian distribution such that ag > 2 v/.
Let t, be a threshold such that Pr, g, o [lel, 2 1] is
negligible in n (i.e., ta = w(@glogn/m;).) Let m be an
integer at least 10(» + 1) log g. Let m; and m> be inte-
gers such that »,, m; = poly(n) and (::) is exponential
in n. Let Sety, m = {8 € {0, 1™ [ wy(s') = m}.
We need 4mmyt, < g to ensure the correctness of the
cryptosystem. :

Private Key: Choose s € Z} randomly. Choose s’ €
Set,,, , randomly.

Public Key: Choose ay,...,a, € Z randomly and
e;,...,&,, according to the distribution ‘fﬁ",” .
Let A = [a),...,8,] and E = [ey,...,&m,].
Check for any i/, e;’s coordinates are at most Zo
in the sense of |,. Compute e := Es’. Let
b := ‘As + e € Z. The public key is (A, E,b).
The secret key is 8, 8'.

Encryption: A plaintext is ¢ € (0,1}, Choose
S &r {1,...,m} randomly. The ciphertext is
Cies 8, T Lg/2] + Ties by).

Decryption: Let (a,b) € Z X Z, be a received ci-
phertext. If |b — (a, s)|, < ¢/4 then decrypt to 0.
Otherwise decrypt to 1.

For example, we set ¢ = ®(n*), m = 10(n + 1) logg,
a=1/m, to = n/logn,m, =m, and m, = ym. Note
that, with such parameters, we have that 4mm, ¢, < q.



The size of a public key and a private key are
O(mnlog g +mnlogq) = O(n* log? ) and O(nlog g+
my logg) = O(nlog® n) respectively. If A and E are
the CRSs the size of a public key is O(mlogg) =
O(nlog® g). Note that, from a coding-theoretical view,
‘A is a generator matrix and we can compute a parity
check matrix H such that, for any s € 27, H'As=0¢
zrr,

quzst, we see the correctness of mROS.

Lemma 3.6 (Correctuess). There exist no decryption
errors in mROS.

Proof. Suppose that (a, b) is a valid ciphertexts of O,
ie. (a,b) = (T}, ria;, X2, rib;) for some r € {0, 1)™.
We have

b~ (a,s)l, =

; rib; - (; rif;, $)

i=1

9
m

2

i=1

s
q

< mlejl, < mmyt,,
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where ¢; is i-th coordinate of e = Es’. Since we set
4mmyt, < q, we obtain Ib-~{a,s)l, < g/4. Next
we consider the case (a,b) is a valid ciphertexts of
L, ie, (a,b) = (T, riay, 19/2] + X2, r:b;) for some
r € {0, 1}™. Similarly to the case of 0, we have

b (a, s)l, 2 19/2] ~ mmyts 2 q/4
and we can decrypt correctly. o

Combining Lemma 3.8, 3.9, and 3.10 below, we ob-
tain the following theorem on security of mR0S.

Theorem 3.7 (Security). For m = 10(n + 1)logg, if
there exists a polynomial-time algorithm D that distin-
guishes between encryptions of 0 and 1 with its public
key, then there exists a polynomial-time algorithm A
that solves LWKE, &, in the worst case.

Lemma 3.8. For m 2 5(n + 1)logg, if there exists
a polynomial time algorithm D that distinguishes be-
tween encryptions of 0 and 1 with its public key, then
there exists a distinguisher D' that distinguishes be-
tween A,y and U’ for a non-negligible fraction of all
possibles and s’

'We omit the proof, because the proof is quite similar
to the security proof in [22].

Lemma 3.9 (Average-case to Worst-case). Assume
there exists a distinguisher D that distinguishes A,y
Jrom U’ for a non-negligible fraction of all possible s
and s’. Then there exists an algorithm T that for all s
and s’ accepts with probability exponentially close to 1
on inputs from A,y and rejects with probability expo-
nentially close to | on inputs from U’.
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Proof. As similar to Regev’s proof [22], we prove the
lemma based on the following transformation. For any
t € Z7 and any permutation 7 € S, consider the func-
tion fir : Zy X Z' X2, — Zi X Z' X Z, defined
by
fix(a,e,b) = (a,n(e), b+ (a,t)).

This function transforms the distribution 4,, into
Agiemwy. Moreover, it transforms the distribution U”
into itself.

Next we consider a random statistical test. Assume
that for ™ fraction of all possible (s,s’), the accep-
tance probability of # on inputs from A4,, and on in-
puts from U’ differ by at least n~2. We construct the
distinguisher 2 as follows. Let R denote the unknown
input distribution. (0) Repeat the following n“!*! times.
(1) Choose a vector t € Z] and a permutation 7 € Sy,
uniformly at random. (2) Estimate pp, the acceptance
probability of D on fi«(R), by calling D T = n***!
times. Let xz be the number of 1 in the outputs of D.
(3) Estimate py,, the acceptance probability of D on
U’, by calling D T times. Let xy, be the number of 1 in
the outputs of D. (4) If lxy; — xgl /T 2 n~2 /2 then stop
and accept. Otherwise continue. (5) If the procedure
ends without accepting, stop and reject.

When R is U’, the probability that |py — xy /T| 2
n~?/8 is exponentially small by the Hoeffding bound.
Since fi.(U’) = U”, the probability that |py — xp/T| 2
n° (8 is exponentially small. Therefore, the accep-
tance probability of ¥ is exponentially close to 0.

When R is A,, for some s,5’. In each of the itera-
tions, we are considering the distribution fix(4s,) =
Asixy) for some uniformly chosen t and 7. Hence,
with probability exponentially close to 1, in one of
the n'*! iterations, (8 + t,7(s’)) is such that the ac-
ceptance probability of D on inputs from A,.1xy) and
on inputs from U’ differ by at least »*. In this
case, from the Hoeffding bound, the probability that
lpv = xu/T) 2 n/8 and |pgr — xg/T| 2 n~ /8 is ex-
ponentiaily small. Hence, 9 accepts with probability
exponentially close to 1. a

Lemma 3.10 (Decision to Search). Letn 2 1 be some
integer and q 2 2 be a prime. Assume there exists an
algorithm D that for all s,s’ accepts with probability
exponentially close to 1 on inputs from A,y and rejects
with probability exponentially close to 1 on inputs from
U'. Then, there exists an algorithm IV that, given sam-
ples from A,y for some s, outputs s with probability
exponentially close to 1.

Proof. We only show how 2 find the first coordinate
of s 5y € Z,. Forany k € Z,, consider the following
transformation. Given a tuple (a, e, b) we output the
tuple (a +‘(,0,...,0), ¢, b + k) where [ € Z, is cho-
sen uniformly at random. This random transformation
takes U into itself. Moreover, if k = s, then this trans-
formation also takes 4, into itself. Finally, if & # s,



then it transforms A4, to U’. Therefore, using D, we
can test whether k = s; or not. Since there are only
q < poly(n) possibilities for s, we can try all of them.

o

Remark 3.11. The hardness of the worst case of
LWKE, g, implies the hardness of the worst case of
LWE, g, Note that it is unknown if the converse state-
ment holds. We also note that, from Theorem 3.2, there
exists a quantum reduction from LWE, g, to SVP4,/4)
and SIVP 5, /a)-

4 Main Protocol

Recall that we can consider ‘A as a generator matrix
from a coding-theoretical view and a parity-check ma-
trix H is easily computed. Informally, if Alice wants
to prove that she has a secret key corresponding to a
public key b, it is sufficient that she proves that she has
an error key s’ such that HEs’ = Hb.

Definition 4.1 (Relation Ryros).- Let (A,E,b) be a
public key of mROS, H a parity-check matrix of A, s
a vector in Z7, and s’ a vector in Z;". We say that
input (A,H,E,b) and witness (s,s’) are in Rpgos if
s’ € Set,,, m,, As + Es’ = b, and HEs’ = Hb.

Next, we describe the protocol for a proof of knowl-
edge for a secret key, which is mainly based on a proof
of knowledge for SDP by Stern [24].

Protocol 4.2 (Protocol PSK). Let P and V be a prover
and a verifier respectively. The CRS is A, E. The com-
mon input is b. The auxiliary inputs to the prover are
s and 8’ such that b = ‘As + Es’. Let Com(5;') =
Coma(;+)-

Step P1 Choose a random permutation n for
{1,...,m} and a random vector y € Z;". Com-
pute ¢; = Com(r, HEy; 1), c2 = Com(n(y); r2)
and ¢; = Com(n(y +§');73). Send c1,c2,cato V.

Step V1 V sends a random challenge bit 6 € {1,2,3}
to P.

Step P2 1f6 = 1, Popens c) and c; (i.e., sends 71, y, 7y,
and r; to V). If § = 2, P opens c; and ¢3 (e,
sends 7,y + 8',r and 3 to V). If 6 = 3, P opens
c; and c3 (i.e., sends n(s’), #(y), 72, and r3 to V).

Step V2 If 6 = 1, received %, §, 7, and 7, check
the commitments c; and ¢, were correct (i.e.,
¢; = Com(#, HEy; #,) and c; = Com(®(§); F2)).
If & = 2, received #, X, 7y, and 73, check that the
commitments ¢; and ¢; were correct (ie., ¢; =
Com(#, HEX — Hb; 7)) and c3 = Com(#(X); 73)).
If 6 = 3, received X, &2, 72, and 73, check that
the commitments c, and c; were correct (i.e.,
c; = Com(X;;#) and c3 = Com(X; + X3; 7))
and that wy(%;) = mp.
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Theorem 4.3. Interactive protocol (P, V) is a proof
of knowledge system with knowledge error 2(3 for
Ryros. Moreover, the protocol (P, V) is a statistical
zero-knowledge argument for Ryros in CRS model un-
der the assumption that the worst case of LWKE, g,
and SVPy,, is hard.

Proaf of completeness. We omit the proof since it is
evident. o

We use Lemma 4.4 below in [24] in the proof of knowl-
edge error.

Lemma 4.4 (Theorem 1 and Lemma 1, [24]). Assume
that some probabilistic polynomial-time adversary P*
is accepted with probability at least (2/3) + €, € > 0,
afier playing the identification protocol r times. Then
there exists a polynomial-time probabilistic machine K
such that outputs the witness s’ from the common input
or else finds collisions for the hash function with prob-
ability larger than €* /10.

The idea of Lemma 4.4 is follows: Assume that P*
can output response to all ¥’s challenges correctly. Let
P’s response to V’s challenge 1 be #,, §, 7,1, and #y 5.
Let P’s response to Vs challenge 2 be #;, £, 7;,, and
F23. Finally, let P’s response to V’s challenge 3 be
£, &, 732 and 7‘3‘3. Since all response are correct, we
obtain that '

¢y = Com(#y, HEY; 7, 1)
c2 = Com(® (§); #1,2)
c3 = Com(#(X); #23)

If there exists a distinct pair in the inputs of commit-
ment, we find a collision. Then, we assume there ex-
ists no distinct pair in P*’s responses. Since P* is ac-
cepted, wy(%2) = m». From ¢;’s equation, #; = #5.
Combining #; = #; and c¢3’s equations, we obtain
% = #;'(%;) + #;(X2). From c,’s equation, we have
that § = #;'(%;). Therefore, combining the above ar-
gument and ¢, ’s equation, we obtain Hb = HE(X-y) =
HE#;'(%;) and a witness #;'(%). Thus, we obtain a
collision or a witness using P*.

= Com(r?z, HEX - Hb; f'u)
= Com(%y; 73.2)
= Com(&; + X2;%3)

Proof of knowledge error with 2/3. Assume that
some probabilistic polynomial-time adversary P* in
Lemma 4.4, Using Lemma 4.4, we obtain X in the
above. In Stem’s proof, he consider binary linear
codes. Although we play the protocol in g-ary linear
codes, we can apply Stern’s proof to g-ary codes.
Note that, under the assumption that the worst case
of SVPyy, is hard, finding collision is hard [17].
Therefore if assume that SVPy,, is hard in the warst
case, we obtain a knowledge extractor K. o

Proof of zero knowledge. Since Com is statistically
hiding, the simulator’s output the transcript when the



simulator did not output L can be statistically close to
the real transcript. We omit the detail of the simulator
due to lack of space. o

5 Concluding Remarks

In this chapter, we have proposed a modified
Regev’05 cryptosystem (mROS) and introduced a proof
of knowledge on its secret key.

At the end, we list up a few open problems: (1)
A proof of knowledge on a secret key of the original
Regev’05 cryptosystem (R0S); mROS needs stronger
assumption than one which RO5 needs. (2) Relation
between LWE and LWKE; we have failed to show a re-
duction from LWE to LWKE. (3) Zero knowledge on
coding problems; As seen in Section 1, the MV proto-
col can not apply to coding problems. Thus, weneed a
direct protocol for coding problems.
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