0000000000
0 15540 2007 0 48-55 48

KEBMAMBICRET AL FILT) XLDOWENK
Private Approximation of the Set Cover Problem
(Extended Abstract)

M Es
Masatoshi Yashiro

M E,
Keisuke Tanaka

R ITRKRE G - HEREERK
Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

Abstract— Private approximation, introduced by Feigenbaum, Ishai, Malkin, Nissim,
Strauss, and Wright, allows us to find ap{)roxima.te solutions with disclosing as little infor-
mation as possible. In STOC 2006, Beimel, Carmi, Nissim, and Weinreb studied the private
approximation for both the vertex cover and the max exact 3SAT problems. In this paper,
we consider the set cover problem where the costs of all sets are polynomially bounded. We
show that there exists neither a deterministic nor a randomized private approximation. We

also consider the case that the

frequencies of all elements are equal. We show that in this

case there exist no deterministic private approximation.
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1 Introduction

Private approximation is an algorithm which is
more efficient than exact computation and that
maintain the privacy of the data, that is, the out-
put of private approximation does not leak any
information of the input.

Feigenbaum, Ishai, Malkin, Nissim, Strauss, and
Wright [?] introduced the notion of the private ap-
proximation of functions. Roughly speaking, an
approximation function § is called private approx-
imation with respect to the target function g, if
d(z) reveals no more information about z than
g(z) does. More formally, there exists a prob-
abilistic polynomial time simulator M such that
the distribution of the simulation output M(g(z))
is indistinguishable from §(z). They proposed a
function (two-party protocol) which is the private
approximation with respect to that for comput-
ing the hamming distance between two binary vec-
tors. They also proposed the private approxima-
tions of several natural # P-hard problems. Af-
ter [?], several private approximations were pro-
posed (2, ?, 7). ,

Approximation algorithm is currently one of the
main research fields in computer science. The
design of algorithms for approximating NP-hard
problems has attracted substantial attention in
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private approximation, set cover problem.

the last few decades, as did the research on prov-
ing hardness of approximation. Halevi, Krauth-
bamer, Kushilevitz, and Nissim [?] discussed the
private approximation of NP-hard problems. They
proved that there exists no private approximation
for computing the size of minimum vertex cover
within approximation ratio n!—¢. Their proof used
the sliding-window reduction that translates a SAT
instance ¢ to an instance G of the vertex cover
problem. If ¢ is satisfiable then G has the vertex
cover of size 2, otherwise any vertex cover for G is
of size at least 2+ 1. The definition of the private
approximation in [7] is almost the same as that by
Feigenbaum, Ishai, Malkin, Nissim, Strauss, and
Wright [?].

Beimel, Nissim, Carmi, and Weinreb [?] studied
the private approximation of both the vertex cover
and the max exact 3SAT problems, and Beimel,
Hallak, and Nissim [?] studied the private approx-
imation of both the vertex cover and the cluster-
ing problem. In order to consider search problems,
Beimel et al, [?] proposed a definition of the private
approximation which is different from that in [?].
In their definition, an algorithm A is a private ap-
proximation with respect to a privacy structure R,
which is an equivalent relation, if the outputs of ex-
ecuting A on two R-equivalent inputs are compu-
tational indistinguishable. Under their definition,
they showed that there exists neither a determinis-
tic nor a randomized private approximation of the
search problem for a minimum vertex cover within



approximation ratio n!=¢

In this paper, we consider the private approxi-
mation of the set cover problem. The vertex cover
problem which studied by [?, ?] is essentially the
special case of the set cover problem where the fre-
quency of all elements are equal to 2. Therefore,
by the result of Beimel et al. [?], we can see there
exists no private approximation of the set cover
problem where the frequency of all elements are
equal to 2. However, in the other case, that is, the
frequencies of some elements are not equal to 2, it
is not clear whether there exists private approxi-
mation of the set cover problem.

In this paper we consider the private approxi-
mation of the set cover problem. In the previous
paper [?, 7], only the vertex cover problem whose
costs of all not fixed that vertices are fixed. In par-
ticular, we consider the set cover problem where
the costs of all sets are polynomially bounded. We
show that there exists neither a deterministic nor
a randomized private approximation. We also con-
sider the case that the frequencies of all elements
are equal. We show that in this case there exist
no deterministic private approximation.

Due to lack of space, the proofs are omitted from
this paper. See the full version [?].

2 The Set Cover Problem

In this section, we describe the set cover problem
and the frequency.

Definition 2.1 (Set Cover Problem). Let U be a
set of m elements, S = {S),...,S,} a collection
of subsets of U, and ¢: & — Q% a cost function.
We say the set C € {1,...,n} of indices is called
a cover of U if the collection of S; (i € C) covers
all elements in U, that is, U,eCS = U. Given

(U,S,c), the set cover problem is to find a mini-
mum cost cover of U.

Usually, the size of the instance (U, S, c) of the
set cover problem is considered as the number of
the elements in U. In this paper, we consider the
size of the instance of the set cover problem as
the number of sets in S. Therefore, the number
of the elements in each set in S is restricted to
polynomial of the number of the sets in S.

In this paper, we consider “polynomial-cost set
cover problem” where the cost of each set is poly-
nomial in the problem size. Let “Set Cover” be a
polynomial-cost set cover problem.

Definition 2.2 (Frequency). We define the fre-
quency of an element to be the number of sets the
element is in. A useful parameter is the frequency
of the most frequent element. Let us denote this
by f.
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We call the problem where all elements in U
have the equivalent frequency as “set cover prob-
lem with fixed frequency’ .

3 The Approximation and the Pri-
vate Algorithm

First, we describe the definition of the approx-
imation. The following definition of the approxi-
mation can be applied to minimization problems.
The definition for maximization problems is simi-
lar.

Definition 3.1 (Approximation of the Search
Problem). Let g be a function, A an algorithm for
a search problem, and ¢ a cost function. We say
that A is an a-approrimation of g if it runs in
polynomial time and for all input z,

Y oy se Y ).

yEA(z) veEg(z)

Next, we describe the definition of the private
algorithm, following [?]. We describe the privacy
structure which is necessary to define the private
algorithm.

Definition 3.2 (Privacy Structure). A privacy
structure R C {0,1}* x {0,1}* is an equivalence
relation on instances. For (z,y) € R, we use the
notation r =g y.

We only discuss on the privacy structures of the
form R = UnenRy,, where R, is an equivalence
relation among the instances of size n, such as S
with n sets.

We now define the private algorithm. We say
that an algorithm A is private with respect to a
privacy structure R if the results of executing A
on two R-equivalent inputs are computationally
indistinguishable.

Definition 3.3 (Private Algorithm). Let R be a
privacy structure. A probabilistic polynomial-time
algorithm A is private with respect to R if for every
polynomial-time algorithm D and for every pos-
itive polynomial p(-), there erists some ng € N
such that for every z,y € {0,1}*, z =g y, and
| = ly| 2 no,

[Pr[D(A(2),2,y) = 1] - Pr[D(A(y),2,9) = 1]1|

< FEDN

That is, when z =g y, any algorithm D cannot
distinguish if the input of A is = or y.

Next, in order to define the private appraxima-
tion of the search problem, we define the privacy
structure, following [?]. We can regard the deci-
sion and the search problems as follows by using
the bivariate relation.



(U1, Siy e1) (Uzy Spy e2)

Uy ={e1, 02, ea, 04}

81 = {S1: Sz, S, Sa}

Uz = {1, €3, 4, €4}
52= {Sx, 52, S:s, 54]

81 = {e1, e} e(S1) =4 Sy = {ey, ez, eu} ep(S1) =4
8z = {09, es} e1(Sa) =2 S = {e2, a4} r2(S2) = 3
Sy = {4, 1} e (Sy) =1 Sy = {e4} e2(S3) =2
Sy= {ey, e} ey (Sg) =2 Sy = {ey, e} e2(Sq1) =1

Figure 1: (U1,81,61) SRuusc (Uz,S2,¢2). Note
that |S;| = |Sz|. Both solutions of (U;,81,¢1) and
(Uz, 83, ¢3) are equivalent ({1, 3} and {2, 3, 4}).

Definition 3.4. A bivariate relation Q is poly-
nomially bounded if there ezists a constant c such
that jw| < |z|° for every (z,w) € Q. The decision
problem for Q is, given an input 3, to decide if
there ezists an element w such that (z,w) € Q or
not. The search problem for Q is, given an input
z, to find an element w such that (z,w) € Q if
such w exists.

We now define the privacy structure of the
search problem. We require that if two input val-
ues have the same set of answers of the search
problem, the approximation algorithm should not
be able to distinguish between them.

Definition 3.5 (Privacy Structure of the Search
Problem). The privacy structure Rg related to the
relation Q is defined as follows: z =ro y iff

e || =lyl,

o (#w) € Q iff (y.w) € Q for every w.
That is, = =gy y if they have the same set of
solutions.

Finally, we give two relations of the problems
considered in this paper.

Definition 3.6. Let minSC be the minimum
set cover relation for Set Cover, that is,
{U,S8,¢),C) € minSC if C is the minimum cost
cover for (U,S,c). In this case, the privacy
structure Ruymsc contains all pairs ({(Uy,S1,c1),
(Us, S2, ¢3)) where every minimum cost cover Ce
S for (U1,81,¢1) is that for (Us,Sz,¢2) and vice
verse. Similarly, let (U, S, ¢} be the minimum cost
cover relation for Set Cover with fixed-frequency.

In Figure 72, we give an example for the relation
minSC.

4 Private Approximation of Set
Cover

In this section, we show that there exists no de-
terministic private approximation algorithm of Set
Cover.
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4.1 Definitions

In this section, we describe some definitions.
First, we describe the definition of the private
approximation of Set Cover.

Definition 4.1 (Private Approximation of the Set
Cover Problem). Anr algorithm A is a private a-
approzimation algorithm for minSC if:
e Ais a a-approximation algorithm for minSC,
and

e A is private with respect to Ruinsc-

In order to analyze the private approximation
of the vertex cover problem, Beimel et el. (7] em-
ployed “critical vertices” and “relevant vertices”.
We also employ the notion of “critical” and “rele-
vant” for Set Cover.

Definition 4.2 (Critical Set and Relevant Set).
Let U be a set of m elements, S = {51, 82,...,5n}
a collection of sets and c a cost function of S. We
say that S; is critical for (U,S,c) if every mini-
mum set cover of (U,S,c) contains S;. We say
that S; is relevant for (U,S,c) if there exists at
least one minimum set cover of {U,S,c) that con-
tains S;.

Next, we present the problem related to Defini-
tion ?77. ‘

Definition 4.3 (The Relevant Set / Non-Critical
Set Problem).
Input: a Set U, a collection S = {S1,53,..., 5.}
of sets, and a cost function c.
Output: “S; is relevant for (U,S,c)” or “S; is
non-critical for (U,S,c)”.

We next define two special set cover problems.
When we construct the algorithm for the Relevant
/ Non-Critical Set problem in Section ??, they are
helpful.

Definition 4.4 ((U?,82,c%) and
(Ueuyr Sieu)s Ctiw)))» Let U be a set that contains
m elements €y,...,€m, S = {S1,...,Sn} a collec-
tion of subsets of U, c a cost function S — Q*, I
a collection of empty sets. For (U,S,c) and for
any S, € I and S; € S, we define (U?,82,c2) and
(Uttu)s Sit,u)» Cityu)) a8 follows.

The collection S? of sets is defined as S? =
{S]_, e ,ng}UI where S,‘.H. = {ek+m l ex € S,-}.
The set U? is defined as U? = {ey,...,€am}
The function ¢® is defined as 2(Si) = ¢(S;) (for
1<i<n) A(S)=c(Sim) (forl+1< i< 2n),
and c3(S;) =1 (for S; € I).

The collection Si,) of sets is defined as Ss,v) =
{S1,...,Sn} UI where S; = Sy U{e*, e}, Su =
S, U {e*}, and Sutn = Suin U {€**} for some



.86

U={e).e0,05, 0}

S = {98 5.5}

5, = {e;. 05} o(8)) =4

Sr={er.es} o(S) =1

Sie=leved  o(Sy) =2

So={e. ey} e(S)=2
Y=z

{73.8%.c%)
U2 = {e,. 02,05 0. €5, 0. 67,04}
8% = {81, 8. S5 5. 8. So. Sr. Sa} LT

Wina)- Siparc0.2))

I'= {8 S} I = {85 S}

8§, = {e;. €2} AS) =1 Sy = {e;, e} 2 (S,) =4
Srmieres}  A(S)=) S ={ez. 050"} cma(Sp) =1
Sy=iese}  A(Sy)=2 Sa = {ea, e} cn2(5) =2
Symlenes}  A(S)m2 Si={es.e5} fi92)(Se) =2
Sp={eseq)  A(Sp)=4 8y = {es. e} C(a,2)(85) =4
So={eaer}  A(Se)=1 Som{ec.er.e}  epa(Se)=1
Srm{er.eal  A(Se)=2 Sr = {ey,en} coa(Sr)=2
Sam{es.er}  A(Sy) =3 Sp = o5, 00} o(a.2)(%a) =2
S =8 2(8) =1 S = {e*. e} ca2)(Sp) = 1
Sio =0 2(Sio) =L Sin=80 r(s2)(S0) =1 .

Figure 2: The constructions of (U?,82%,¢c%) and
(U(t,u)»s(t,u)y c(t,u)) (1' =9,)= 2) using (U, S, C)
and I with size 2.

e*,e* ¢ U2. The set Uy, is defined as Uiy =
U2U{e*,e™}, and let c(s) = 2.

We give concrete examples §2 and S;,4) in Fig-
ure 77,

4.2 Proofs

In this section, we show that there exists no pri-
vate approximation algorithm of Set Cover with
respect to Ryusc if P # NP,

Theorem 4.5. Let ¢ > 0 be a constant and f a fre-
quency. If P # NP, then there is no deterministic
private f¢-approzimation algorithm of the search
problem of minSC .

This proof is similar to that in [?]. The outline
of the proof is as follows :
1. We construct a Relevant or Non-Critical for
Set Cover algorithm from the private approx-
imation algorithm 4 with respect to Ry,iusc.

2. We construct a greedy algorithm that effi-
ciently solves the NP-hard problem from the
Relevant or Non-Critical for Set Cover algo-
rithm,

3. If P # NP, this is a contradiction. Thus
there is no private approximation algo-
rithm A for Set Cover with respect to
RminSC- ‘

In Algorithm ??, we describe a greedy algorithm
of Set Cover given an access to the algorithm
which decides relevant or non-critical ( we call
this algorithm Relevant or Non-Critical for Set
Cover). We will show that the algorithm Relevant
or Non-Critical for Set Cover can be constructed

Upay = {e1,€2. 3. 64,85, 06,07, 5. €°  €**}

Sipay = {S1. 92, 8. 84, 85. 6. Sr. Sap LT elements.
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by using oracle access to private approximation
algorithms of Set Cover later on.

Algorithm. 1 (Greedy Minimum Set Cover)

Input: a collection of sets S = {Sy,...,8,} ,
a cost function ¢ : § — Q*, and aset U of m

1. Set C, = 0.

2. U =0 return C,.

3. Pick a set S; € S and execute the algo-
rithm Relevant or Non-Critical for Set Cover
on (U,S,c) and S;.

4. If the answer is "Relevant”,

(a) Delete all the elements included in S;

from both U and sets Sj in S.

(b) & — S\ {S:}.

(¢) Cy — Cy U {i}.

(d) Go to STEP2.

5. If the answer is "Non-Critical”,
(a) S —S\ {5}
(b) Go to STEP2.

The following claim shows the correctness of the
greedy algorithm.

Claim 4.6. If the algorithm Relevant or Non-
Critical for Set Cover is polynomial and correct then
the algorithm Greedy Minimum Set Cover is poly-
nomial and correct.

We next construct the Relevant or Non-Critical
for Set Cover algorithm from a private approxima-
tion algorithm for minSC. We adopt the idea of
[?}.

Claim 4.7. Let § = {51,52,...,5,} be a col
lection of sets, ¢ a cost function S — Qt, e*
an element such that e* ¢ U. We choose i,j €
{1,...,n} arbitrary i # j, and define S* =
{81,..., 5, } where Sf = S;U{ex}, 57 = S;U{ex},
and S; = Sy for k # 1,j. We also define U* =
Uu{e*} and c*(S}) = c(S?).

Then, If S; is critical for (U,S,c), then
(U,S,c) =R iusc (U, 8", c*).

We can prove the two claims with respect
to (UZ,SQ,(?) and (U(t,u),S(t,u),C(t’u)) defined in

Definition ??7. We use these claims for the proof
of the correctness of Algorithm ?7.

Claim 4.8. If S, is critical for (U,S,c), then
(Uz, Sz’ cz) ERminsc (U(t,u)a S(t.u)’ c(t,u))-

Claim 4.9. If S, is not relevant for (U, S, ¢}, then
St is critical for (U(t,u)a S(t,u)’ C(t,u)).

Next, by using a private f-approximation algo-
rithm we describe the Relevant or Non-Critical for



Set Cover algorithm in Algorithm ?7?.

Algorithm. 2 (Relevant or Non-Critical for Set

Cover)

Input: ((U,S,c), Su)
1. Let I be a set of 2df®+ 1 empty sets. (where
d=3",c(S))
2. Construct the collection of sets S? from S
and I.
3. Execute A on (U?,S?, ¢?) and get the output
W2 of A.
Choose any set S, € I\ W2.
Construct the collection of sets S ,) from
S, I, St, and Su.
6. Execute A on ), and get the output
W(t' of A
7. If W2 # Wy, .y, return “Non-Critical”. Else
return “Relevant”.

[ == J

o

We can show the following claim.

Claim 4.10. Let A be a deterministic private ap-
prozimation algorithm for minSC, U a set of m
elements, S = {S1,...,5n} a collection of subsets
of U, and c a cost function, and denote A((U, S, c})
be a cover of (U, 8, c) that corresponding to indices
outputted by .A. Then for any set S; € S\ W, the
set S; is not critical for (U, S, c).

We must prove Algorithm ?7? is correct and run-
ning time is polynomial. We can prove the correct-
ness by proving the following two claims. In the
proofs of the following claims, we use Claim ?7.

Claim 4.11. If W2 # W ., then S, is not crit-
ical for (U, S, c).

Claim 4.12. If W2 =W, ,,, then S, is relevant.

Finally, we show that there is a set chosen in
STEP 4 of Algorithm ?7.

Claim 4.13. Lete > 0. Thereis a set S; € I such
that S; € I\VV2

Therefore we proved Theorem 77,

Remark 4.14. Since d is polynomial in the size
of problem, the sizes of S? and S(s,u) are polyno-
mial in the size of problem. Therefore we prove
Theorem ??. When d is exponentially large, the
sizes of S and S ) are are ezponentially large.
Therefore in this case, we do not get an impossi-
bility result by applying our strategy.
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5 Randomized Private Approxima-
tion of the Set Cover Problem

In this section, we show that there exists no ran-
domized private approximation algorithm of Set
Cover. The outline of the proof is similar to that
in [?]. We execute the approximation algorithm &
times to decide whether the set is Relevant or Non-
Critical. We prove several claims than correspond
to those in Section ?7.

We use the  Algorithm 77, and
we use Algorithm ?? as  Relevant
or Non-Critical for Set Cover in ?7.

Algorithm. 8 (Randomized Relevant or Non-
Critical for Set Cover)

Input: ((U,S,c), Su).

1. If S contains less than n; sets (where n; =
max{ng, n1}), then find if Sy is relevant for
(U, S, ¢) or non-critical for (U, S, c) using ex-
haustive search.

2. Let I be a set 4df* + 2 sets.
2 ¢(St))

3. Construct the family of sets (U2, S2, ¢?) from
(U,S,c) and I as in Definition 77.

4. Execute k times the algorithm A on
(U?,82,c2).

5. Choose a set S; € I such that S; appears at
most k/2 times in A((U?,82,¢?)) in the k
executions.

6. Construct the family of sets
(U(t,u) ’ s(t,u) ’ c(t,u)) from (Uv S, c>1 Ia
S;, and S, as in Definition ?77?.

Execute k times Algorithm A on S y)-
Ifte A((U(g'u),S(t,u),C(t,u))) in at least
0.75k of the k executions, then return “Non-
Critical” Else return “Relevant”.

(where d =

% 3

We can show the following claims.

Claim 5.1. There is a set S; € I such that index
t appears at most k/2 times in A((U?,82,c%)) out
of the k ezecutions.

Claim 5.2. There erists a constant n, such that
if

o (U?,52,c?) contains at least ny sets,

e Prte A((U?,8%¢%))] < 0.55, and

e Pr [t € A((U,u)s Sit,u)s c(t,.,)))] > 0.6,
then S, is not critical for (U, S, c)
Claim 5.8. If Pr{{t,u} N A(U,S,c)) = 0] < 0.8
then S, is relevant for (U,S,c).

Claim 5.4. Let k > Q(log(df¢)). Algorithm Ran-
domized Relevant or Non-Critical for Set Cover re-
turns the correct answer with probability 1—2-0()



From the above claims, we can prove the follow-
ing main theorem.

Theorem 5.5. Let ¢ > 0 be a constant. If
RP # NP, then there is no randomized private
Sfe-approzimation algorithm for Set Cover.

proof. By Claim ?? and Claim 7?, if there is
a randomized private fe-approximation algorithm
for Set Cover, then there is a randomized algo-
rithm for the exact search problems for minSC.
This algorithm is transformed to the algorithm
for decision problem of Set Cover (given (U,S,c)
and z € Q*, decide whether there is a cover of cost
at most z). Since this problem is NP-complete, it
contradicts RP # NP. o

6 Private Approximation of the Set
Cover Problem with the Fixed
Frequency

When the frequency of all elements U are 2, the
set cover problem is essentially the same as the
vertex cover problem. Therefore, in this section,

we consider the situation that the frequencies of
all e € U are equal.

We show that there exists no randomized pri-
vate approximation algorithm of Set Cover with
the fixed frequency. The strategy of the proof is
similar to that in the previous section, however,
the construction of the greedy algorithm depends
on whether the cost is fixed or not.

First, we describe the greedy algorithm for the
case that the cost is not fixed. In this case, it is
easy to construct the greedy algorithm.,

Algorithm. 4 (Greedy Minimum Set Cover with
fixed frequency (cost is not fixed))

Input: a collection of sets § = {S$y,...,8.} ,
a cost function ¢ : S — Qt, and aset U of m
elements.

1. Set C, = 0.

2. f U = @ return C,.

3. Pick an element e; € U and make a list of
all sets that include e;. We define this list as
L={Ly,...L,}.

Set ¢ «—cand j=1.
Execute Algorithm Relevant or Non-Critical
- for Set Cover with fixed frequency on (U, S, c)
and S, (where Sy = L;).
6. If the answer is “Relevant”
(a) Delete all the elements included in Sy
from both U and sets S; in S.
(b) S —S\{S;}.
(¢) ce—". )
d) C,—C,u{j}

A o
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(e) Go to STEP 2.
7. If the answer is “Non-Critical”
(a) c(S;) —c(Sy) + 1.
(b) 7 « 7+ 1 and go to STEP 5.

'S o

We can show that this algorithm is polynomial
and correct.

Claim 6.1. If the algorithm Relevant or Non-
Critical for Set Cover with fixed frequency is poly-
nomial and correct and the cost of each set is not
fized then the algorithm Greedy Minimum Set Cover
with fixed frequency is polynomial and correct.

In Algorithm 7?7, if the cost is fixed, we can not
execute STEP 6-a. Therefore we transform from
Algorithm ?? to Algorithm ?7.

Algorithm. 5 (Greedy Minimum Set Cover with
fixed frequency (cost is fixed))

Input: a collection of sets & = {S1,...,5,} ,
a cost function ¢ : S — Q*, and a set U of m
elements.

1. Set C, = @.

2. U = 0 return C,.

3. Pick an element ¢; € U and make a list of
all sets that include e;. We define this list as
L= {IL,,...,L;}.

Set S — S,and j=1.
Ij<i,
(a) Execute Algorithm Relevant or Non-
Critical for Set Cover with fixed frequency
on (U,S,c) and Sy (where Sy = L;).
(b) If the answer is “Relevant”
i. Delete all the elements included in
SJ.: from both U and all sets S; in
S.
i. S8 \{8;}.
iii. C, —C,U{j'}.
iv. Go to STEP 2.
(c) If the answer is “Non-Critical”
i If|S;=1
A. j—j+1 and go to STEP 5.
ii. Else
A. Divide S; into |Si| (= k) sets
SigseeesSiy.
B. S*——(S\Si)UShU...USi,‘.
C. j+ j+1 and go to STEP 5.

o

6. If j =1,
(a) Cy +— Q‘,, U h where S), = L,.
(b) S« 8 \{Sn}.
(¢) Go to STEP 2.
We can show that this algorithm is polynomial
and correctness.




Claim 6.2. If Algorithm Relevant or Non-Critical
for Set Cover with fixed frequency is polynomial and
correct and the cost of each set is fizred, then Al-
gorithm Greedy Minimum Set Cover with fixed fre-
quency 1is polynomial and correct.

Next we consider the algorithm Relevant or Non-
Critical for Set Cover with fixed frequency. This
is the Algorithm 7?7 where (Uisu)» Sit,u)r €(tu))
is replaced with (U, u | 2(s-2)) Stt, u | 2(£~2))
Ct, u | 3(f-2))). We now define (Ug, u | 2(s-2))
Ste, u | 24-2)) e, u | 2f-D))-

Definition 6.3 (U, u | 2(7-2))» Sz, u | 252
i, u | 25-2)))) (U2,8%.c*) and I are the same
as those defined by Definition 7?. We choose the
2(f — 2) elements from I, and which we denote
Sk“.. 'Ska(f—n)' The collection S(t, u | 2(f-2)) of
sets is deﬁned as S(t, u | 2(f-2)) = {S1, PR 'Y
where S¢ = {e*,e**}, Su = Sy, U {€*}, Su4n =
Su.+n. U {8“}, Sk.- = {e.} (l i< f- 1):
and S, = {e**} (f < i < 2(f — 2)) such
that 6‘,6“ ¢ U? . The set U(t, u | 2(£-2)) de-
fined as U, o | o(s-2)) = U? U {e*,e**}, and
Gty uw | 2/-2) =€

We can easily see (U?8%¢? and
(U, w2520 Ste, wiag-2)0 €ty u | 2¢5-2))
are Set Cover with fixed frequency if (U,S,¢) is
Set Cover with fixed frequency.

Finally, we can prove Claims ??, ??, 7?7, and ??
in a similar way as those for the proof of Claims 27,
7?7, 77, and ?7?, respectively.

The following two claims are used in the proofs
of Claim ?? and Claim ?7.

Claim 6.4. If S, is critical for (U,S8,c),
then (U"Sv C) SR minsCrixea (U(i- u | 2(f-2))
S(t, u | 2(5-2))1 Ct, u | 2f-2))

Claim 6.5. If S, is not relevant for (U, S, c), then
S; is critical for (U, u | a(s-2))r St w | 3(f-2))s
Cit, u | 205-3))

The following two claims guaranteed the correct-
ness of Algorithm ?7?.

Claim 6.6. If w? # W(t,u | kpyekacreay)? then Su
is not critical for (U,S,c).

Claim 6.7. IfW2 = W(t,u | kpykggroay)? then S,
is relevant.

We can prove the following theorem from the
above claims and Claim ?7.

Theorem 6.8. Let ¢ > 0 be a constant end f
a frequency. If P # NP, then there is no deter-
ministic private f¢-approzimation algorithm of the
search problem for minSCfixed.
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7 Concluding Remarks

In this paper, we have considered the set cover
problem where the costs of all sets are polynomi-
ally bounded. We have shown that there exists
neither a deterministic nor a randomized private
approximation. We have also considered the case
that the frequencies of all elements are equal. We
have shown that in this case there exist no deter-
ministic private approximation.

In this paper, we have proved only when the
size of the problem is defined as the number of the
sets. It might be interesting to consider the prob-
lem where the size of the problem is defined as the
number of elements. It might be also interesting
to consider whether NP-hard problems other than
the set cover problem have the private approxima-
tion algorithms or not.

Halevi et al. [?] discussed the leakage of informa-
tion about the approximation algorithms for the
minimum set cover problem. Beimel et al. [?] also
discussed that for the vertex cover and the exact
3SAT problems. It might be interesting to consider
the leakage of information about the approxima-
tion algorithms for the minimum set cover prob-
lem.
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