Orthogonal Drawings for Plane Graphs with Specified Face Areas

Akifumi Kawaguchi and Hiroshi Nagamochi

Department of Applied Mathematics and Physics,
Graduate School of Informatics, Kyoto University, Japan

Abstract. We consider orthogonal drawings of a plane graph G with specified face areas. For a natural number k, a k-gonal drawing of G is an orthogonal drawing such that the outer cycle is drawn as a rectangle and each inner face is drawn as a polygon with at most k corners whose area is equal to the specified value. We show that several classes of plane graphs have a k-gonal drawing with bounded k; a slicing graph has a 10-gonal drawing, a rectangular graph has an 18-gonal drawing and a 3-connected plane graph whose maximum degree is 3 has a 34-gonal drawing. In this paper, we show 10-gonal drawings of slicing graphs and the outline of algorithm to find the drawing.

1 Introduction

Graph drawing has important applications in many areas in computer science such as VLSI design, information visualization and so on. Various graphic standards are used and studied for drawing graphs [3].

Orthogonal drawings, in which every edge is drawn as a sequence of alternate vertical and horizontal segments, have applications in circuit design, geometry and construction. Many aspects have been studied on orthogonal drawings. Studies of an orthogonal drawing with specified face areas have begun recently. For a natural number k, a k-gonal drawing of a graph is an orthogonal drawing such that the outer cycle of the graph is drawn as a rectangle and that each inner face is drawn as a polygon with k corners. Rahman, Miura and Nishizeki [4] proposed an 8-gonal drawing for a special class of plane graphs called a good slicing graph. Recently, de Berg, Mumford and Speckmann [1] proved that a general slicing graph admits a 12-gonal drawing. They also showed that a rectangular graph admits a 20-gonal drawing and a 3-connected plane graph whose maximum degree is 3 admits a 60-gonal drawing.

We show that a general slicing graph has a 10-gonal drawing, a rectangular graph has an 18-gonal drawing and a 3-connected plane graph whose maximum degree is 3 has a 34-gonal drawing. Our approach for a general slicing graph is different from that by de Berg et al. [1]. We also show that every 3-connected plane graph G whose maximum degree is 4 has an orthogonal drawing such that each inner facial cycle c is drawn as a polygon with at most $10p_c + 34$ corners if no vertex whose degree is 4 is on the outer cycle of G, where p_c is the number of vertices of degree 4 in the cycle c.

2 Preliminary

A plane graph is denoted by $G = (V, E, F, c_0)$, where V, E, F and c_0 denote a set of vertices, a set of edges, a set of inner faces and the outer face, respectively. Let
Let G be a plane graph that has exactly four 2-degree vertices a, b, c and d in its outer cycle. We call these four vertices a, b, c and d corner vertices. The four corners a, b, c and d divide the outer cycle of G into four paths sharing end vertices; the top path, the bottom path, the left path and the right path. We call each of these four paths an unit path. A path π in G which does not pass through any other outer vertex is called a vertical (horizontal) path of G if one end of π is on the top (left) path and the other is on the bottom (right) path. Such a path π divides the interior of G into two areas, each of which is enclosed by a cycle and induces a subgraph of G (the subgraph consisting of edges and vertices in the area and the cycle). We say that π slices G into these two subgraphs of G.

A slicing graph G is a plane graph that is defined recursively as follows; a cycle G of length 4 with a single inner face is a slicing graph, and G has a vertical or horizontal path π such that each of the two subgraphs generated from G by slicing G with π is a slicing graph. Note that $\Delta(G) \leq 4$ for every slicing graph G. A vertical or horizontal path in slicing graph G is called a slicing path if two subgraphs generated by slicing G with π are slicing graphs.

A slicing tree T is a binary tree which represents a recursive definition of a slicing graph G. We call a non-leaf node of T an internal node. Each node u in T corresponds to a subgraph G_u of G. Let u be an internal node in T, and v and w be the left and right child of u, respectively. Then we denote by π_u the slicing path that slices G_u into G_v and G_w; If π_u is vertical (horizontal), then G_v is the upper
A subgraph of G_u, and G_w is the lower (right) subgraph of G_u. The node u is called a V-node if π_u is vertical, and u is called an H-node if π_u is horizontal. For a leaf u' of T, the corresponded subgraph $G_{u'}$ has one inner face c_i. Figure 2 illustrates an example of a slicing tree and a slicing graph corresponded to each node of T.

A rectangular graph is a plane graph whose outer face and each inner face can be drawn as a rectangle. Note that $\Delta(G) \leq 4$ for every rectangular graph G. A 3-connected plane graph is a plane graph that remains connected even after removal of any two vertices together with edges incident to them.

In this paper, we show the following result, where a "combined decagon" is defined in the next section.

Theorem 1. Every slicing graph with specified face areas has a 10-gonal drawing such that each inner face is drawn as a combined decagon. Such a drawing can be found in $O(n)$ time if its slicing tree and four corner vertices on the outer rectangle are given.

For a rectangular graph and a 3-connected plane graph, we obtained the following results by converting those graphs into slicing graphs and applying Theorem 1 (proofs are omitted due to space limitation).

Theorem 2. Every rectangular graph with specified face areas has an 18-gonal drawing. Such a drawing can be found in $O(n \log n)$ time if its outer rectangle and its four corner vertices are given.

Theorem 3. Every 3-connected plane graph (G, A) with $\Delta(G) = 3$ has a 34-gonal drawing. Such a drawing can be found in $O(n \log n)$ time.

Corollary 1. For every 3-connected plane graph (G, A) with $\Delta(G) = 4$ such that there are no 4-degree vertices on the outer cycle of G, there is an orthogonal
drawing such that (i) each face has at most $10p_c + 34$ corners, where p_c is the number of 4-degree vertices in its facial cycle of $c \in F$, and (ii) the number of straight-lines in the entire drawing is at most $28n$. □

3 Drawings of Slicing Graphs

By definition, every inner face of a slicing graph can be drawn as a rectangle if we ignore the area constraint. To equalize the area of inner faces to the specified value, we need to draw some edges with sequences of several straight-line segments.

We define a step-line as an alternate sequence of three vertical and horizontal straight-line segments. A step-line has two corners, which we call bends. A vertical step-line (VSL) is a sequence of vertical, horizontal and vertical straight-line segments. A horizontal step-line (HSL) is a sequence of horizontal, vertical and horizontal straight-line segments.

Based on step-lines, we introduce a polygon called a “combined decagon,” which plays a key role to find a 10-gonal drawing of a slicing graph.

3.1 Combined Decagon

We introduce how to draw a cycle with four corner vertices as a k-gon with $4 \leq k \leq 10$. We consider a plane graph G of cycle $G = \{(a, b, c, d), (a, b), (b, c), (c, d), (d, a)\}$. Note that path ab is the top path, dc is the bottom path, ad is the left path and bc is the right path of G. We call path dab the top-left path of G.

We consider a k-gon ($4 \leq k \leq 10$) in which each path is drawn as a line segment, a VSL, an HSL or a pair of these. We use several types of combinations of lines for each of the top-left path, the right path and the bottom path; Five types for the top-left path (Fig. 3), three types for the right path (Fig. 4), and three types for the bottom path (Fig. 5).

We draw cycle (a, b, c, d) by choosing a drawing pattern A_i ($i = 1, 2, 3, 4, 5$) for the top-left path, B_j ($j = 1, 2, 3$) for the right path and C_k ($k = 1, 2, 3$) for the bottom path. Note that the resulting polygon has at most 10 corners. A combined decagon P is defined as a polygon such that each unit path of P is drawn as a straight-line or a step-line and at least one of its top and left paths is drawn as a straight-line. Figure 6 illustrates examples of a combined decagon. We may let A_i denote the set of combined decagons such that the top-left path is drawn as a pattern in A_i. Similarly for B_j and C_k.

Let P be a combined decagon. A line segment in the top-left path is called connectable if it is incident to corner b or d. Similarly a line segment in the right (bottom) path is called connectable if it is incident to corner c. Other line segments are called unconnectable. In Figs. 3, 4 and 5, connectable segments are depicted by thick lines.

We denote the connectable segment in the top path, the left path, the right path and the bottom path of P by $\alpha_t(P), \alpha_d(P), \alpha_r(P)$ and $\alpha_b(P)$, respectively. An unconnectable line segment in the top-left path is called a control segment if it is incident to corner a. Similarly an unconnectable line segment in the right (bottom) path is called a control segment if it is incident to corner b (d). In Figs. 3, 4 and 5, control segments are depicted by dashed lines. We denote the control segment in the top path, the left path, the right path and the bottom path of P by $\beta_t(P), \beta_d(P), \beta_r(P)$ and $\beta_b(P)$, respectively. Let $\beta_{\text{max}}(P)$ be a control segment whose length is maximum in P. A control segment e is called convex if both of the two interior angles of P at the both ends of e are 90 degree.
Fig. 3. Five types of drawing pattern for the top-left path dab

Fig. 4. Three types of drawing pattern for the right path bc

Fig. 5. Three types of drawing pattern for path dc

Fig. 6. Illustration of combined decagons P_1 and P_2

The width $w(P)$ of P is the distance from the leftmost vertical segment to the rightmost one, and the height $h(P)$ of P is the distance from the top horizontal segment to the bottom one. We denote by xy the line segment with end points x
and y. We denote the length of segment xy by $|xy|$, the area of a polygon P by $A(P)$, and the sum of the areas specified for all inner faces of a plane graph G by $A(G)$. For a node u of a slicing tree T, we call the following condition the size condition of combined decagon P_u: $A(P_u) = A(G_u)$.

3.2 Outline of Algorithm

This subsection outlines our algorithm for slicing graphs with specified areas. The algorithm is a divide-and-conquer based on slicing trees. We are given a slicing graph G with specified areas, its slicing tree T, and rectangle P_r with corner vertices for the outer cycle of G. At this point, the positions of all vertices have not been determined yet. A vertex whose position is determined during the algorithm is called fixed. We first draw the outer cycle of G as the specified rectangle P_r, fixing the corner vertices. We then visit all internal nodes in T in preorder and slice P_r recursively to obtain an entire drawing of G. For a node u of T, suppose that the outer cycle of G_u is to be drawn as a combined decagon P_u which satisfies the size condition.

Let u be a V-node. Then G_u has the vertical slicing path π_u, and let z_t and z_b be end vertices of π_u on the top and bottom path of G_u, respectively. First, we try to slice P_u into two combined decagons which satisfy the size condition by choosing a (unique) vertical straight-line segment L as its slicing path π_u (see Fig. 7). If L can be drawn correctly, i.e., the end points z_t and z_b of L are on $\alpha_t(P_u)$ and $\alpha_b(P_u)$, respectively, then we slice P_u by L to obtain two combined decagons. Otherwise, we split P_u by choosing a step-line as its slicing path π_u (see Fig. 7). We can show that the existence of such a suitable step-line π_u is ensured if P_u satisfies the size condition and "boundary condition," which will be described later (the detail of the proof is omitted due to space limitation).

The slicing procedure for H-nodes u is analogous with that for V-nodes. An entire drawing of the given slicing graph G will be constructed by applying the above procedure recursively. We call the algorithm described above Algorithm *Decagonal-Draw*.

![Fig. 7. Vertical slicing of P_u](image-url)
To ensure that a combined decagon can be chosen as the polygon for the outer facial cycle of each subgraph \(G_u \), the positions of end vertices \(z_i \) and \(z_b \) of \(\pi_u \) will be decided so that certain conditions are satisfied. We now describe these conditions.

For each node \(u \) of \(T \), let \(f^u_+ \) be the number of inner faces of \(G_u \) that are adjacent to the top path of \(G_u \), and \(f^u_- \) be the number of inner faces of \(G_u \) that are adjacent to the left path of \(G_u \).

Let \(a_{\text{min}} \) be the minimum area of all areas for inner faces of \(G \). Let \(W \) and \(H \) be the width and the height of the rectangle specified for the outer facial cycle of a given slicing graph \(G \). We define

\[
\lambda = \frac{a_{\text{min}}}{3f \cdot \max(W, H)}.
\]

We define some conditions on combined decagon \(P_u \).

A control segment \(e \) of \(P_u \) is called \((\lambda, f)\)-admissible if one of the followings holds:

- \(e \) is a convex and vertical segment, and \(f^u_+ \lambda \leq |e| < f \lambda \),
- \(e \) is a convex and horizontal segment, and \(f^u_- \lambda \leq |e| < f \lambda \),
- \(e \) is a non-convex and vertical segment, and \(|e| < (f - f^u_+) \lambda \),
- \(e \) is a non-convex and horizontal segment, and \(|e| < (f - f^u_-) \lambda \).

A combined decagon \(P_u \) is called \((\lambda, f)\)-admissible if it satisfies the followings.

\((a1) \) \(|\alpha_t(P_u)| \geq f^u_+ \lambda \),
\((a2) \) \(|\alpha_t(P_u)| \geq f^u_- \lambda \),
\((a3) \) Every control segment of \(P_u \) is \((\lambda, f)\)-admissible,
\((a4) \) If \(P_u \in A_1 \), then \(|\alpha_t(P_u)| \geq (f + f^u_+) \lambda \) or \(|\alpha_t(P_u)| \geq (f + f^u_-) \lambda \),
\((a5) \) If \(P_u \in A_2 \cup A_4 \), then \(|\alpha_t(P_u)| + |\beta_t(P_u)| \geq (f + f^u_-) \lambda \),
\((a6) \) If \(P_u \in A_3 \cup A_5 \), then \(|\alpha_t(P_u)| + |\beta_t(P_u)| \geq (f + f^u_+) \lambda \),
\((a7) \) If \(P_u \in A_2 \cap B_3 \), then \(|\beta_t(P_u)| - |\beta_t(P_u)| \geq f^u_+ \lambda \),
\((a8) \) If \(P_u \in A_3 \cap C_3 \), then \(|\beta_t(P_u)| - |\beta_t(P_u)| \geq f^u_- \lambda \),
\((a9) \) If \(P_u \in A_4 \cap B_2 \), then \(|\beta_t(P_u)| - |\beta_t(P_u)| \geq f^u_+ \lambda \),
\((a10) \) If \(P_u \in A_5 \cap C_2 \), then \(|\beta_t(P_u)| - |\beta_t(P_u)| \geq f^u_- \lambda \).

By \((\lambda, f)\)-admissibility of \(P_u \), \(P_u \) is a simple polygon, and the distance of any pair of vertical line segments or any pair of horizontal line segments of \(P_u \) is at least \(\lambda \).

For a combined decagon \(P_u \), let \(a \) be the top-left corner vertex of \(P_u \), \(b' \) be a fixed vertex which is the nearest to \(a \) on the top path of \(P_u \), and \(d' \) be a fixed vertex which is the nearest to \(a \) on the left path of \(P_u \). We call the following conditions the boundary condition of \(P_u \).

\((b1) \) If there exists fixed vertices on the top path of \(P_u \), then these vertices are on \(\alpha_t(P_u) \). The distance of any pair of fixed vertices on \(\alpha_t(P_u) \) is at least \(f^u_+ \lambda \), and the distance from both ends of \(\alpha_t(P_u) \) to any fixed vertex is at least \(f^u_+ \lambda \).
\((b2) \) If there exists fixed vertices on the left path of \(P_u \), then these vertices are on \(\alpha_t(P_u) \). The distance of any pair of fixed vertices on \(\alpha_t(P_u) \) is at least \(f^u_- \lambda \), and the distance from both ends of \(\alpha_t(P_u) \) to any fixed vertex is at least \(f^u_- \lambda \).
\((b3) \) If \(P_u \in A_1 \), then the distance from \(b' \) to the left path of \(P_u \) is greater than \((f + f^u_+ \lambda) \) or the distance from \(d' \) to the top path of \(P_u \) is greater than \((f + f^u_- \lambda) \).
\((b4) \) If \(P_u \in A_2 \cup A_4 \), then the distance from \(d' \) to the top path of \(P_u \) is greater than \((f + f^u_+ \lambda) \).
\((b5) \) If \(P_u \in A_3 \cup A_5 \), then the distance from \(b' \) to the left path of \(P_u \) is greater than \((f + f^u_- \lambda) \).
Let D be the set of all (λ, f)-admissible decagons that satisfy the boundary and size conditions.

The following lemma guarantees the correctness of the algorithm, whose proof can be found in the full version of the paper.

Lemma 1. For a decagon $P_u \in D$, let P_v and P_w be combined decagons generated by slicing P_u in Decagonal-Draw. Then P_v and P_w belong to D.

By this lemma, we can prove the existence of 10-gonal drawings in Theorem 1.

Lemma 2. Algorithm Decagonal-Draw finds a 10-gonal drawing of a slicing graph G with specified face areas correctly.

Proof. Let P_r be a rectangle given as the boundary of G. Clearly P_r has no control segments and satisfies the size condition. Hence, P_r satisfies (λ, f)-admissibility. Since P_r satisfies the boundary condition, we have $P_r \in D$. By Lemma 1, every face of G is drawn as a decagon in D recursively. Hence, algorithm Decagonal-Draw finds a 10-gonal drawing of a slicing graph G with specified face areas.

It is not difficult to observe the time complexity of the algorithm.

Lemma 3. Algorithm Decagonal-Draw can be implemented to run in $O(n)$ time and space.

Lemmas 2 and 3 prove Theorem 1.

4 Conclusion

In this paper, we showed that every slicing graph has a 10-gonal drawing, and we also gave a linear time algorithm to find such a drawing. Furthermore, we obtained the results that every rectangular graph has an 18-gonal drawing, and every 3-connected plane graph whose maximum degree is three has a 34-gonal drawing by converting those graphs into slicing graphs.

It is left as a future work to derive lower bounds on the number k such that every slicing graph admits a k-gonal drawing.

References

