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1 Introduction
Public-key cryptography is the most used cryp

tographic paradigm. In contrast to secret-key schemes,
where the key used to encrypt messages must be
kept hidden from the adversary and communicated
$8ecretly$ to anyone wishing to send a secret mes-
sage, in public-key cryptography the encryption
key can be announced publicly and given to any
party who wishes it, because knowledge of this key
is not sufficient to perform the reverse operation,
decryption, efficiently. But the person who gener-
ated the public key, also generated a secret key, the
decryption key, which he keeps private and uses to
decrypt any message sent to him, which was en-
crypted with the public key he published.

The most famous public-key cryptosystem is RSA,
which $relie8$ on the difficulty of factoring large num-
bers to make the attack inefficient for anyone who
does not have knowledge of the secret key. Any
classical public-key cryptosystem must similarly
rely on the computational difficulty of some prob-
lem. But with the advent of quantum computers,
a lot of these difficult problems have been proved
to be efficiently solvable [17]. And new paradigms
have to be found.

Where quantum computation makes existing pro-
tocols insecure, it also provides new protocols. BB84
[4] marked the breakthrough of quantum cryptog-
raphy, a quantum key-distribution protocol which
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is unconditionally secure, when classical key-distribution
protocols are only computationally secure and vul-
nerable to quantum adversaries. Instead of relying
on the difficulty of some computational problem,
as classical key distribution does, QKD uses fun-
damental principles of quantum $mechanic\epsilon_{!}$ such
as the indigtinguishability of non-orthogonal quan-
tum states and the fact that eavesdropping pro
duces noise (we refer to the textbook by Nielsen
and Chuang [12] for an introduction to quantum
information), to ensure that the eavesdropper has
no information on the quantum communication
between Alice and Bob. Other $protocol8$ with se-
curity relying on the fundamental principles of quan-
tum mechanics were developed, such as quantum
oblivious transfer [7], quantum string commitment
[5] or quantum digital signatures [8], often leading
to unconditional security. But little has been done
in this area for quantum asymmetric-key cryptoeys
tems.

The development of quantum key distribution
allows the usage of secret-key cryptosystems which
are secure against a computationally unbounded
quantum adversary. But public-key cryptosystems
have advantages which we want to $pre8erve$ . To
make them secure against quantum attacks, a pos-
sible solution is to develop schemes which rely on
problems thought to be hard even on quantum
computers, e.g., NP-hard problems, either clnsi-
cal $protoco1_{8}$ as in [14], or quantum protocols as
in [11]. But such schemes are still only compu-
tationally secure, and thus vulnerable to further
development of (quantum) computation. The al-
ternative solution is to design $protoco1_{8}$ which are
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secure by virtue of quantum mechanical principles,
and thus produce a scheme which is secure against
a computationally unbounded adversary. In this
paper we propose such quantum asymmetric-key
cryptosystems.

Model The first quantum encryption scheme us-
ing the same model as ours was proposed by Kawachi
et al. in [10]. In this model, which is illustrated
in Figure 1and will be described in more detail in
Section 2, Alice distributes aquantum state, $\rho_{\nu}$ ,
which serves as an encryption key $a$.nd corresponds
to adecryption key, to anyone who wants to send
her asecret $mes\epsilon age$ . She also publishes some en-
coding operations $\{U_{\iota}\}_{\iota\in S}$ , which Bob applies to
Alice’s state when he wants to send her the mes-
$8ages$ . He thus creates the state $\rho_{\nu,\iota}=U_{*}\rho_{\nu}Uf$ ,
and sends it back to Alice. She then measures it to
detect which operator $U_{l}$ was applied, $i.e.$ .decrypt
$Bob’ s$ message $s$ .

Public-key cryptosystems are vulnerable to man-
in-the-middle attacks, in which an adversary inter-
cepts or modifles the public key sent by Alice to
Bob, and replaces it by her own. So some authen-
tication protocol $i_{8}neces\epsilon ary$ , to ensure that the
key Bob receives really is the one Alice sent. As
authentication is out of the $8cope$ of this work, the
model we consider requires an authentic quantum
channel as cryptographic primitive for the distri-
bution of the encryption-key states (which can be
$reali_{\mathbb{Z}}ed$ with unconditional security, see, e.g., [1]
and Section 2.2 for further discussion). The adver-
sary can not tamper with the encryption-key states
before they are received by Bob, but she can $inarrow$

tercept the cipher he sends back to Alice and all
other encryption-key states, and has unbounded
computational power. (See Figure 2.)

Security Alice can perform ameasurement to
decrypt the $me88age$ sent to her by Bob, because
she $know8$ how she constructed her encryption key
$\rho_{\nu},$ she knows the decryption key $\nu,$ $8O$ she knows
how to measure it. But to the adversary the en-
cryption key looks like amixture of all possible
$\rho_{\nu}$ , and as a $mea8urement$ destroys the state and
quantum mechanics doae not allow cloning [12],
the adversary is very dependent on the number
of copies of the encryption key released by Alice,
to measure it precisely, extract the decryption key
and thus flnd away to measure $Bob’ s$ cipher state,
$\rho_{\nu,\iota}$ . So by keeping the number of copies of the en-
cryption key $relea8ed$ bellow acertain $thre8hold$ ,
the secrecy is guaranteed even against acomputa-
tionally unbounded $adver8ary$. Aproof of security
$ba8ed$ on that idea for the scheme by Kawachi et
al. [10], and $it_{8}$ extension in [11], $wa8$ proved by
Hayashi, Kawachi and $Kobaya8hi$ in [9].

The previous paragraph briefly sketches how the
adversary could try to extract the decryption key
from multiple copies of the encryption $key$ to break
the cryptosystem. This is one strategy amongst
many, and the security criteria, which is discussed
in detail in Section 3, has to encompass any pos-
sible attack allowed by the model. But what is
more, we want the encryption scheme to still be
secure –or at least as secure as an ideal function-
ality – if the adversary $get_{8}$ some partial informa-
tion about the message or which may be leaked if
this protocol is combined with others, e.g., if Al-
ice publishes part of the message she received, or
encrypts it a second time to send it to someone
else, the rest of the message should still be secure.
This notion is captured by what is called universal
composability, which was first proposed by Canetti
[6] and adapted to the quantum setting by May-
ers et al. $[3, 2]$ and in parallel by Unruh [18]. So
in Section 3 we $U8e$ such a universally composable
security notion for this encryption scheme.

Main Results Our main result is a new encryp-
tion scheme based on [11], which improves the pre-
vious best bound on the number of encryption-key
states which can be released [9], by a factor expo-
nential in the length of the message which Bob can
send. We also derived a new universal security cri-
teria for the quantum asymmetric-key cryptosys-
tem considered, based on the universal compos-
ability framework in $[3, 2]$ , and proved the scheme
secure according to this condition.

More precisely, Hayashi et al. found in [9], that

Alioe can safely produce $k=o( \frac{n10\alpha n}{m\log m})$ encryp-

tion $key_{8}$ for the quantum asymmetric-key cryp-
tosystem proposed in [11], where $m$ is the num-
ber of messages Bob can send, i.e,, log $m$ is the
length of the secret message in bits, and $n$. is a
security parameter, polynomial in the size of the
encryption-key state. Their security criteria was
the indistinguishability of any two cipher states,
which is weaker than the universal security crite-
ria we use, but their work can be adapted to meet
the same criteria $a8$ ours and still keep the same
bound on $k$ . Our scheme allows Alice to produce
$k \leq\frac{n}{3}r_{ogm}^{\iota_{0arrow^{n}-O}}(\frac{n}{\log m})$ copies of the encryption-
key state, thus improving the bound by a factor
$m/3$ , which is exponential in the length of the mes-
sage. $Thi8$ allows Alice to produce that many more
encryption keys and receive that many more mes-
sages.
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2Model Key generation: Alice chooses an element $\nu\in\Gamma$

uniformly at random. and creates copies of
2.1 Scheme the encryption key $\rho_{\nu}$ , which she sends to

The following two definitions describe the states any party who asks for one on an authentic
and operations required by the encryption scheme quantum channel. She also publishes the set
(illustrated in Figure 1), which were sketch\’e in of encoding operations $\{U_{l}\}_{s\epsilon s}$ .
the introduction. Definition 1describes the vari-

Encryption: To encode the $mes8ages$ , Bob ap-
ous quantum states, operations and measurements

plies the unitary $U_{*}$ to the encryption key,
which the cryptosystem needs, and which need to

and obtains $\rho_{\nu,s}=U_{s}\rho_{\nu}U_{l}^{1}$ , which he sends
be defined when an implementation of the model

back to Alice.is given. Definition 2degcribes how the protocol
is executed and how the elements fit together. Decryption: Alice measures $\rho_{\nu,\ell}$ with the POVM

$\mathbb{R}=\{E_{*}^{\nu}\}_{\epsilon\in S},$ corresponding to her choice

$\ovalbox{\tt\small REJECT}_{\overline{\rho_{s\nu}--U,p_{\nu}U’}}^{\underline{\rho_{\nu}}}Alice.-\cdot$$Bob$ $requir\text{\’{e}}.Firstofa11itisnecessaryforAlicetobeF_{orsuchaschemetobeusefulthreething\epsilon are}^{\circ fdecryptionkey\nu.Sheobtainstheraeult}\epsilon’whichisherguessofBob’ smes\S age$

.

able to distinguish between the $pos\epsilon ible$ ciphers
$\rho_{\nu}^{\gamma:d\infty..k\iota y}:enck\epsilon y$ $U_{i^{:\cdot nc.oporator}}s:mell\iota po$ se$nt$ by Bob, $\rho_{\nu,\prime},$ for all $me8sages\epsilon\in S$ and a

given decryption key $\nu_{i}$ which we will refer to as
the coroectness of the protocol. More precisely, we
want the probability of Alice decoding the $m\varpi$

Figure 1: Encryption scheme sage correctly, $tr(E_{l}^{\nu}\rho_{\nu,t})$ , to be close to 1for ev-
ery $\nu\in\Gamma$ and $s\in S.$ But it must be hard for

Deflnition 1. The asymmetric-key $crypt_{08}y_{8}tem$ Eve to $distingui\epsilon h$ between them when she ha\S no
model considered $consist_{8}$ of atuple of three $e1-$ or only partial information on the decryption key
ements, $\mathcal{M}_{A\mathcal{K}C}=(\{\rho_{\nu}\}_{\nu\epsilon r}, \{L^{\gamma},\}_{\iota\in S}, \{L\}_{\nu\epsilon r})$ , $\nu,$ on $Bob’ sme8sage\epsilon,$ or any other kind of in-
where formation she might obtain. This latter condition

is the security of the protocol, which we will di8-. $\{\rho_{\nu}\}_{\nu\epsilon r}$ is a $s\epsilon t$ of quantum states lying in $CUS8$ in the next section. And thirdly, we want the
aHilbert space $\mathcal{H}_{i}$ of dimension $d$ , which protocol to be efficient: i.e., the encoding and $darrow$

we will call $enc$ryption keys, indexed by el- coding operations have to be implementable by a
ements $\nu\in\Gamma$ , which we will call decryption polynomial-time quantum algorithm.
keys.

2.2 Channels and $Adver\iota ary$

$\bullet$ $\{U_{*}\}_{\iota\in S}$ is aset of unitary operators of di-
An adversary, Eve, could perform a $man- in- th\triangleright$

mension $d$ , which we will call encoding $0_{\Psi^{r-}}$

middle attack, and replace the encryption-key state
ators, index\’e by elements $s\in S$ , which we

sent by Alice to Bob by her own state. If Alice
will $c$all secnt messages.

and Bob do not run $8ome$ authentication protocol,. $\{\mathbb{R}\}_{\nu\epsilon r}$ is aset of POVMe, which we will to ensure that the key Bob receives really is the
call decding $mea\epsilon uoements$ , where $L=\{E_{*}^{\nu}\},\epsilon s$ one Alice sent, then any cipher state sent back to
are the POVM elements, indexed by the de- Alice by Bob, which is encrypted using the unau-
cryption keys and $8ecretmes8age8$ re8pec- thenticated encryption key he received, could be
tively. readable by the adversary.

In $thi_{8}$ work we study the feasibility of encrypt-
Although we have specified aset of POVMs as $ing$ messages into quantum states of which the ad-

decoding measurements in this definition, practi- versary has copioe. We do not consider the $prot\triangleright$

cally we will give aprotocol, or aset of unitary cols which allow $the8e8tat\infty$ to be distributed. We
operations followed by ameasurement, which are therefore require an authentic quantum channel $a8$

equivalent to aPOVM. cryptographic primitive. Such achannel could be
$re$alized with anon-interactive protocol if ade-

Deflnition 2. The protocol consists of three steps,
cryption key is shared by the two parties, $a8pr\triangleright$

which use the states and operations given in Def-
inition 1, namely key generation, encryption and posed in [1], in which case this \S cheme can be seen

as turning a $\epsilon ecret$ key into apublic one. Alterna-
decryption. tively, an interactive protocol involving entangle-

ment distillation or quantum error correction $(\epsilon ee$
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[12] for an overvi$ew$ of these techniques) can be
used.

Figure 2: The adversary’s attack

In this model we therefore have an authentic
quantum channel for the distribution of the encryption-
key stat$e$ , and a totally insecure quantum channel
for sending the cipher state. Thus the adversary
cannot tamper with the encryption key, but he can
make a copy of $it^{1}$ and can intercept the cipher
state and all of the other encryption keys pub-
lished, as illustrated in Figure 2. The adversary
is also computationally unbounded, and can per-
form any operation and measurement allowed by
quantum mechanics on the states she intercepted.

3 Security
The security of the general scheme proeented in

the previous section relies on the indistinguishabil-
ity of non-orthogonal quantum states. For a given
decryption key $\nu\in\Gamma$ , the encodings of the pos-
sible messages $s\in S$ must be near-orthogonal, so
that Alice can distinguish between them with high
probability. But when $\nu$ is not known, the possi-
ble ciphers over all possible decryption keys must
be highly non-orthogonal, so that Eve cannot dis-
tinguish between them without knowing in which
basis to measure Bob’s message.

Each encryption key Alice publishes is informa-
tion leaked to the adversary. With sufficient copies
of it, Eve can measure it $preci_{8}ely$ and thus dis-
cover how to measure Bob’s message in order to
extract the secret message. So it is necessary to
find a bound on the number of encryption keys
Alice can release, so that Eve only gets negligible
information on Bob’s message.

Yet as such, this security notion is not strong
enough. Eve may obtain information from other
sources or in subequent protocols, which com-
bined with what is leaked by this protocol reveal

1 Cloning of a quantum state is generally impossible. But
as we use an authentic quantum channel as a black box,

by assuming the adversary gets a copy of the state we
upper bound the information he might obtain.

too much of Bob’s message, although individually
neither this protocol nor the subsequent leaks give
any non-negligible amount of information to $E\backslash ^{r}e$ .
This stronger security notion is captured by what
is called $univ\epsilon rsally$ composable security.

Universal composability was first introduced by
Canetti in [6] for classical cryptography. The idea
is to ensure that acryptographic protocol is still
secure when combined in acomplex system with
other protocols, and that the developer of $8uch$ a
system only needs to consider the ideal function-
alities the protocols are trying to implement, and
not the details of the implementations, when com-
bining them together. The framework proposed in
[6] wae extended to the quantum setting by Ben-
Or and Mayers in [3] and adapt\’e to quantum key
distribution in [2]. In these works, aprotocol $i8$

consider\’e secure if the environment, which com-
$prise8$ all adversaries and the inputs and outputs of
the protocol, can only $di_{8}tinguish$ with negligible
probability between the real protocol and the ideal
functionality the protocol is trying to implement.
The ideal functionality can thus be substituted for
the real protocol in the analysis of any other cryp-.
tographic protocol which uses it as asubroutine,
as the two cannot be distinguished.

Aslightly different approach to quantum univer-
sal security by Renner lead to the same definition
for the security of secret keys $a\epsilon|2$] and was ap-
pli\’e to quantum privacy ampliAcation $|16$] and
quantum key distribution [15]. Here the $q_{Ue8}tion$

$a8kedi8$ whether the scheme is still secure if the
adversary postpones the measurement of whatever
information he posse8\S es encodcd in aquantum
state until alater time when he might have gath-
ered extra information, e.g., part of the message,
telling him how to perform the measurement, thus
unlocking much more information than he could
have obtained initially, This extra information
the adversary might get, could be from another
protocol, when several are combined together. So
$the8e$ two approaches are basically the same. But
the latter can also be seen $a8$ ageneralization of
other speciflc security requirements, $8ucha8$ want-
ing the last bit of the key to still be $8ecret$ if the
rest of it is revealed, or not wanting the adversary
to be able to $di8tingui8h$ between any two possi-
ble ciphers, which was the security criteria used in
$|9]$ for the quantum $a\epsilon ymmetric$-key cryptosystem
proposed in [11].

Generally, let $S$ be asecret (e.g., akey or $me\epsilon-$

sage) with distribution $P_{S}$ , which consists of the
input or output of aprotocol $\mathcal{P}$ , and let $\rho_{B}$ be
the adversary’s syst$em$ after the execution of this
protocol, when the secret take\S the value $\epsilon$ , for
any element $\epsilon$ of S. The resulting system can be
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described by the following density operator:

$\rho_{SB}=\sum_{s\in S}P_{S}(s)|sXs|\rho_{B}^{s}$
, (1)

where { $|\epsilon\rangle$ $1,\in S$ is an orthonormal basis of some
Hilbert space $\mathcal{H}_{S}$ . With an ideal protocol $\mathcal{P}\tau$ , the
adversary $s$ system would be uncorrelated to the
secret. Thus not only he gets no direct information
about the secret, but if this protocol is combined
with others which share the same secret input or
output and leak some information about it, the ad-
versary cannot use this extra information to help
him extract the secret from the states this proto-
col leaked. I.e., the system would be in the state

$\rho_{U}\otimes\rho_{B}$ , (2)

where $\rho_{U}=\Pi^{1}s^{I}=\cap^{1}s\sum_{\iota}\epsilon s|\epsilon Xs|$ is the fully
mixed state in the Hilbert space of the secret $\mathcal{H}s$ ,
and $\rho_{B}$ is the $adver8arys$ state, namely

$\rho_{E}=tr_{S}(\rho_{SB})=\sum_{l\epsilon s}P_{S}(\epsilon)\rho_{B}^{l}$
. (3)

We want the distance between the real situation
(Eq. (1)) and the ideal one (Eq. (2)) to be small.
Therefore

have access to her secret key, so no extra informa-
tion will ever be leaked about it. The adversary’s
system consists of all the encryption keys and the
intercepted cipher state $\rho_{\nu},$ ’ from Bob, as defined
in Section 2. If Alice chooses the decryption key
$\nu$ uniformly at random from a set $\Gamma$ and publishes
$k$ copies of the encryption key $\rho_{\nu}$ , the adversary’s
system conditioned on the secret message being $\epsilon$

is then in the state

$p_{B}^{l}= \frac{1}{|\Gamma|}\sum_{\nu\epsilon\Gamma}\rho_{\nu,\iota}\otimes\rho_{\nu}^{\otimes k}$ . (5)

By placing Eq. (5) in Eq. (4), we get a universal
security criteria for the scheme. It depends how-
ever not only on the choice of the encryption-key
states $\rho_{\nu}$ , but also on the way the encoding of the
message $s$ is done and the resulting cipher states
$\rho_{\nu_{l}},$ . In Theorem 3 we will show that the uni-
versal security of the encryption-key scheme only
depends on a near-uniform distribution of the mes-
sages $\epsilon\in S$ and the security of the encryption-key
state, namely the difficulty to distinguish it from
the fully mixed state when drawn uniformly at ran-
dom, given $k$ extra copies of it.

Theorem 3. If
$||\rho_{SB}-\rho_{U}\otimes\rho_{B}||_{1}\leq\epsilon$ . (4)

where the distance measure used, known as the
l-distance, is defined as $||\rho-\sigma||_{1}$ $:=tr(|\rho-\sigma|)$ .

According to the work done in $[3, 2]$ , if Eq. (4)
is respected, then the environment cannot distin-
guish between the real protocol $\mathcal{P}$ and the ideal
functionality $\mathcal{P}x$ , except with probability $\epsilon$ . The
protocol $\mathcal{P}$ is said to $\epsilon$-securely realize the ideal
functionality $\mathcal{P}_{\mathcal{I}}$ , and by the composition theorem
from $[3, 2]$ , any protocol $Q$ which is $\epsilon’$-secure when
using the ideal functionality $\mathcal{P}x$ as subroutine, is
$(\epsilon’+\epsilon)$ -secure when using the real protocol $\mathcal{P}$ as
subroutine. In [15], if Eq. (4) is respected, the se-
cret $S$ is said to be $\epsilon$-secun with respect to $\mathcal{H}_{B}$ .
The ideal and real situations are $\epsilon$-close, and as
the l-distance cannot increase when applying an
arbitrary quantum operator, it will remain so for
any further evolution of the world.

We therefore take Eq. (4) as our definition of
universally composable security, and adapt it to
the particular context of our encryption scheme.
The secret which maybe be seen as both input and
output of the encryption protocol is Bob’s message
$\epsilon$ . Alice or Bob may publish part of it, or encrypt
it again to send it to another party. It can be used
by any super protocol which accesses this encryp-
tion scheme as subroutine. Ahce’s secret key on
the other hand is kept secret by Alice. No mat-
ter how other protocols use thiv one, they do not

$\Vert\frac{1}{|\Gamma|}\sum_{\nu\epsilon r}p_{\nu}^{\otimes(t+1)}-\frac{1}{d}I\otimes\frac{1}{|\Gamma|}\sum_{\nu\epsilon r}\rho_{\nu}^{\otimes k\Vert_{1}\leq\frac{\epsilon}{2}}$ , (6)

where $d$ is the dimension of $\rho_{\nu}$ and I is the identity
operator of dimension $d$, and if the $non- unifomit\emptyset$

of the message probability distnbution is less than
$\frac{\delta}{2}$ then an asymmetric-key cryptosystem as de-
scribed in Section 2, $i.e.$ , which leaves the adver-
sary’s system in the state $\rho_{B}^{l}=k\sum_{\nu\epsilon r}\rho_{\nu,\iota}\otimes\rho_{\nu}^{\otimes k}$

(Eq. (5)) when the message is $s$ and the encryption
key is chosen uniformly at random from. $\{\rho_{\nu}\}_{\nu\epsilon}r$ ,
then such a scheme is $(\delta+\epsilon)$-secure with respect
to the Hilbert space $\mathcal{H}_{B},$ $i.e.$ ,

$||\rho_{SB}-\rho_{U}\otimes\rho_{B}||_{1}\leq\delta+\epsilon$ . (7)

$Pr\mathfrak{v}of$. Let

$\sigma_{\iota}$ $;= \frac{1}{|\Gamma|}\sum_{\nu\epsilon r}p_{\nu,\iota}\otimes\rho_{\nu}^{\emptyset k}-\frac{1}{d}I\otimes\frac{1}{|\Gamma|}\sum_{\nu\in\Gamma}\rho_{\nu}^{\theta k}$
,

then

$\frac{1}{|\Gamma|}\sum_{\nu\epsilon r}p_{\nu,\iota}\otimes\rho_{\nu}^{\otimes k}=\frac{1}{d}I\otimes\frac{1}{|\Gamma|}\sum_{\nu\epsilon r}\rho_{\nu}^{\Phi k}+\sigma_{\iota}$
. (8)

Because $\rho_{\nu,\iota}$ is obtained from $\rho_{\nu}$ by applying the
unitary $U,$ , and because a unitary operation does
2 The non-unifomity of a probability distribution $P\chi$ is its

variational distance from the uniform distribution, i.e.,
$d\langle P\chi)=_{2\epsilon x}1\Sigma.|P_{X}(x)-*|$
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not change the l-distance, we have $||\sigma_{\iota_{1}}||=||\sigma_{\epsilon_{2}}||$

for any $s_{1},$ $s_{2}\in S$ . Then by the hypothesis of this
lemma (Eq. (6)), $|| \sigma_{t}||_{1}\leq\frac{\epsilon}{2}$ .

By placing Eq. (8) in the left-hand side of Eq. (7)
and replacing $\rho_{SB}$ and $\rho_{E}$ with their exact values
(Eqs. (1), (3) and (5)), we get

$\Vert\sum_{\prime\epsilon s}P_{S}(s)|sX^{s|\otimes}(\frac{1}{d}I\otimes\frac{1}{|\Gamma|}\sum_{\nu\in\Gamma}\rho_{\nu}^{\otimes k}+\sigma.)$

$- \frac{1}{|S|}I\otimes\sum_{\epsilon s}P_{S}(\epsilon)(\frac{1}{d}I\otimes\frac{1}{|\Gamma|}\sum_{\nu\epsilon r}p_{\nu}^{\otimes k}+\sigma_{\iota})\Vert_{1}$

$\leq\Vert\sum_{l\in S}P_{S}(s)|_{\delta}X\epsilon|-\frac{1}{|S|}I\Vert_{1}+\Vert\sum_{l\epsilon s}P_{S}(\epsilon)|_{8}X^{\epsilon|\otimes\sigma_{\iota}\Vert_{1}}$

$+ \Vert\frac{1}{d}I\otimes\frac{1}{|S|}\sum_{\iota\epsilon s}\sigma.\Vert_{1}\leq\delta+\frac{\epsilon}{2}+\frac{\epsilon}{2}$ .

口

We can require from Bob that the non-uniformity
of the distribution of his messages $\epsilon\in S$ be neg-
ligible. So the sufficient conditions for universal
security expressed in Theorem 3 are reduced to
Eq. (6). From the universal composability view-
point, this criteria can be see$n$ as a universal se-
curity requirement for the encryption key, namely
a negligible probability that the environment can
distinguish between the encryption key $\rho_{\nu}$ drawn
uniformly at random from all possible key-states
and the fully mixed state, given $k$ extra copies of
the key.

This criteria can be used to find bounds on the
number of copies $k$ of the encryption key which
can safely be released, for particular instances or
family of instances of states and encoding opera-
tions implementing Definition 1, which is what we
do in the next section.

can directly use the security bound derived in Sec-
tion 4.1.

4.1 Coset States
Definition 4. Let $G$ be a finite group and $H$ a
subgroup of $G$ . The coset state of $H$ is then $p_{H}=$

$\Pi^{1}G\sum_{g\epsilon c}|gHXgH|=E^{H}\sum_{g\epsilon c/H}|gHXgH|$ , with
$|gH \rangle=\frac{1}{\sqrt{}|H|}\sum_{h\in H}|gh\rangle$ , where $\{|g\rangle\}_{g\in G}$ is an or-
thonormal basis of some Hilbert space $\mathcal{H}_{G}$ , and
$gh$ is the composition of $g$ and $h$ with the group
operation.

These coset states appear in what is known as
the standard method to solve the hidden subgroup
problem, which is one of the central issues in quan-
tum computation, introduced for revealing the struc-
ture behind exponential speedups in quantum com-
putation. Let $G$ be a finite group, and $H$ a hidden
subgroup of $G$ . Given a map $f_{H}$ from $G$ to a fi-
nite set $S$ such that $f_{H}(g)=f_{H}(gh)$ if and only if
$h\in H$ , the hidden subgroup problem (HSP) is the
problem of outputting a set of generators for the
hidden subgroup $H$ .

In the following lemma (which is a slight mod-
ification of Theorem 2.4 in [9]) and Corollary 6
just after, we substitute coset states $\{\rho_{H}\}_{H}\epsilon H$ of
subgroups $H\in H$ with prime cardinality for the
encryption-key states $\{\rho_{\nu}\}_{\nu\in\Gamma}$ in Eq. (6), and find
an upper bound on the number of $co$pies $k$ of the
coset state $p_{H}$ which can be released, so that the
environment can only distinguish with probability
$\epsilon$ between an encryption key drawn at random and
the fully mixed state when provided with $k$ extra
copies of it.

$\Vert\frac{1}{|H|}\sum_{H\epsilon H}p_{H}^{\otimes(k+1)}-\frac{1}{|G|}I\otimes\frac{1}{|H|}\sum_{H\epsilon w}p_{H}^{\otimes k}\Vert_{1}\leq\epsilon$ ,

for $H\in H$ with $p$rime cardindity.

4 Instances

In Section 4.2 we will give a specific implemen-
tation of encryption key, encoding-operation and
measurement tuple, with a precise bound on the
security. But before that, in Section 4.1, we will
study a family of good encryption key candidates,
namely what $i_{8}$ known as coset states of a subgroup
of prime order (see Definition 4). This allows us
to derive a bound on the number of encryption-
key states which can be released for the universal
security criteria found in Section 3 (Eq. (6)), for a
specific family of states with common proprieties.
The final scheme we propose in Section 4.2 is a
particular instance of this family of states, and we

Proof. Simply by expanding the coset states and
using the triangle inequality with a similar argu-
ment of [9], we obtain

$\Vert\frac{1}{|H|}\sum_{H\epsilon H}\rho_{H}^{Q(k+1)}-\frac{1}{|G|}I\otimes\frac{1}{|H|}\sum_{H\in H}\rho_{H}^{\emptyset k\Vert_{1}}$

$\leq$
$m \frac{\max_{H\epsilon H}|H|^{k+\iota}}{|H|}$ ,

where $||\cdot||_{2}$ is the L2-norm. The last inequality
is obtained by using the fact that the $8ubgrou\mu$

considered have prime cardinality which implies
that $|H\cap H’|=1$ if $H\neq H’$ .
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Corollary 6. If we use coset states $\{p_{H}\}_{H\epsilon H}$ as
encryption keys $\{\rho_{\nu}\}_{\nu\in\Gamma}$ in the scheme described
in Section 2, and each $H\in H$ has the same car-
dinality, then the scheme is $\epsilon\cdot secure$ if the number
of copies $k$ of the encryption key released is

$k \leq\frac{2\log\epsilon+\log|H|}{\log|H|}-1$ . (9)

4.2 $Implementationtions$ with Cyclic Permuta-

We now propose a particular instance for the
scheme discussed so far, namely cosets of subgroups
of the group $G=\mathbb{Z}_{m}xS_{\mathfrak{n}}$ , where $\mathbb{Z}_{m}$ is the set
of natural numbers smaller than $m$ and the group
operation is addition modulo $m$ , and $S_{n}$ is the set
of all permutations of an n-tuple and the group op-
eration is permutation composition. $n$ and $m$ are
two parameters such that $m$ is prime and $m$ di-
vides $n$ , but for the rest they can be chosen freely.
As it will become clear as we define the encryp-
tion scheme more precisely, $m$ is the number of
messages which can be encoded, and $n$ is a secu-
rity parameter. By choosing $n$ big enough, we will
be able to make the scheme $\epsilon$-secure, for an $\epsilon$ ex-
ponentially small in $n$ .

$ln$ Section 4.2.1 we will deflne the encryption-
key states, encoding operations and decoding mea-
surements precisely, and show that the scheme is
correct, i.e., that Alice can decode Bob’s message
with probability 1 if the adversary does not inter-
vene. In Section 4.2.2 we will then prove that the
scheme is secure and find a bound on the number
of encryption keys which can be released.

4.2.1 Correctness
The following definition specffies the encryption-

key state $\rho_{l}$ , where $\pi$ is the decryption key.

Deflnition 7. Let $\mathcal{K}_{n}^{m}\subseteq S_{n}$ , be the set composed
of $n/m$ disjoint cyclic permutations. We now de-
fine the encryption-key state $p_{n}$ , where the decryp-
tion key $\pi$ is chosen uniformly at random from $\mathcal{K}_{n}^{m}$ ,
as

$\rho_{\pi}:=\frac{1}{n!}\sum_{\sigma\epsilon s_{*}}|\Phi_{\pi}^{\sigma}X\Phi_{\pi}^{\sigma}|$ , (10)

where $|\Phi_{\pi}^{\sigma}\rangle$ $= \star_{m}\sum_{\iota=0}^{m-1}|x,$ $\sigma\pi^{x}\rangle$ .

Alice will send this state to Bob, or any party
who wishes it. To send a message $s$ to Alice, Bob
will apply a unitary $U$, to t.he encryption key $p_{\pi}$ ,
obtaining $\rho_{\pi,\iota}=U,\rho_{l}U_{l}^{1}$ , which he sends back to
Alice. The operations $U$, are defined as follows.

Definition 8. Let the message set $S$ , which the
scheme allows Bob to send, have cardinality $m$ ,

$|S|=m$ , and let us represent them by the natural
numbers, i.e., $S=\{0, \cdots , m-1\}$ . To encrypt the
message $\epsilon$ in the state $\rho_{\pi}$ defined previously, let
Bob apply the unitary

$U,$ $:= \sum_{x=0}^{m-1}e^{2\pi i\iota r/m}|XX^{x|}$ . (11)

This unitary is only defined on a space of dimen-
sion $m$ and acts on the first register of the encryption-
key state $p_{r}$ , so it needs to be padded by an iden-
tity operator of dimension $n!$ to be formally cor-
rect. But we will omit it for simplicity and al-
low ourselves to write $\rho_{\pi},$. $=U.\rho_{\pi}L_{l}^{r\dagger}$ instead of
$\rho_{\pi,\iota}=(U_{*}\otimes I)\rho,$ $(U_{l}^{1}\otimes I)$ .

Ifthe first register is represented by $\lceil\log m\rceil$ qubits,
Eq. (11) can be rewritten as $\hat{U},$ $=\otimes_{j=0}r\log m1-1U_{l,j}$ ,
where

$U_{\iota j}=|($ $01$ $e^{2wi\cdot 2^{j}\prime m}0$ ).
Note that $\hat{U}_{*}$ differs slightly from $U_{1}$ , in that it is
defined on a space of dimension 2 $\lceil\log m\rceil$ and also
modifies the first register if it takes a value $m\leq$

$x\leq 2^{\lceil\log m1}-1$ . But the encryption-key states
$\rho$, are only defined with values of the first register
$0\leq x\leq m-1$ , so for all decryption keys $\pi$ and
messages $s,$

$U.\rho_{\pi}U_{l}^{1}=\hat{U}.p_{\pi}\hat{U}_{*}\dagger$ . The operators
$\{U,\}_{\iota\in S}$ can thus be efficiently implemented.

The operators $U_{*}$ defined in Eq. (11) take any
encryption-key state $\rho_{\pi}$ to mutually orthogonal
subspaces, which allows them to be distinguished
by Alice with probability 1, as the following theo-
rem shows.

Theorem 9. There exists a polynomial-time quan-
tum algorithm that, for each $\pi\in \mathcal{K}_{n}^{m}$ , decrypts
$\rho_{\pi},$ . $=U_{\iota}\rho_{\pi}U_{l}^{1}$ to $s$ with prvbability 1.

Proof. $\rho_{\pi,\iota}=\urcorner_{n}1$. $\sum_{\sigma\in S}$. $|\Phi_{\iota}^{\sigma}X^{\Phi_{\iota}^{\sigma}|}$ , where $|\Phi_{w}^{\sigma},\rangle$ $=$

$7^{1}\overline{m}^{\sum_{\epsilon=0^{1}}^{m-}e^{2\pi i*x/m}|x,\sigma\pi^{l})}$ This state is a super-
position of the pure states $|\Phi_{\pi,\iota}^{\sigma}\rangle$ . So it $i_{8}$ suffi-
cient to give a polynomial-time quantum algorithm
which can extract $s$ from any $|\Phi_{\pi,*}^{\sigma}\rangle$ independently
from $\sigma$ , and by linearity the algorithm can extract
$\epsilon$ from $\rho_{\pi,*}$ .

By applying to $|\Phi_{\pi,\iota}^{\sigma}\rangle$ the $controlled-\pi^{-1}$ oper-
ator, $C_{\pi^{-1}}= \sum_{x=0}^{m-1}\sum_{\sigma\epsilon s}$. $|x,$ $\sigma\pi^{-e}Xx,\sigma|$ , which
applies $x$ times the permutation $\pi^{-1}$ to the sec-
ond register, when the first register contains $x$ , we
obtain: $C_{n^{-1}}|\Phi_{\pi}^{\sigma},\rangle$ $=\nabla^{1}\overline{m}^{\sum_{l=0}^{m-1}e^{2ri\iota ae\prime m}|x\rangle|\sigma)}$

The second register is now un-entangled from the
first, and by applying the inverse Fourier trans-
form on the first register we get $\epsilon$ .
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The efficiency of this algorithm is straightfor-
ward from its construction. $\square$

Theorem 9 not only proves that the cipher states
$p_{\pi,s}$ can be decoded, but it also gives an explicit
efficient algorithm to do it, which serves as the
decoding POVMs required by the definition of the
scheme (Definition 1 in Section 2).

4.2.2 Security
To prove that a scheme using the encryption key

defined in the previous section (Deflnition 7) is se-
cure, we will show that it is a coset state, and then
we apply the bound from Eq. (9) from Corollary 6.

Theorem 10. An encryption scheme as defined in
Section 2 using the encryption keys given in Defi-
nition 7 is $\epsilon$-secure, if the number $k$ of encryption
keys $re$leased is $k\leq m_{\log m}610_{3}\epsilon n1on$

Thus, if the number $k$ of the released encryption
keys is at most $n$ log $n/3\log m-O(n/\log m)$ , we
can guarantee $\epsilon=2^{-\Theta(n)}$ by this theorem.
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