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Abstract
In negation-limited complexity, one considers circuits
with a limited number of NOT gates, being mo-
tivated by the gap in our understanding of mono-
tone versus general circuit complexity, and hop-
ing to better understand the power of NOT gates.
We give improved lower bounds for the size (the
number of $AND/OR/NOT$) of negation-limited cir-
cuits computing Parity and for the size of negation-
limited inverters. An inverter is a circuit with inputs
$x_{1},$ $\ldots,x_{\mathfrak{n}}$ and outputs $\neg x_{1},$

$\ldots,$ $\neg x_{n}$ . We show that
(a) For $n=2^{f}-1$ , circuits computing Parity with $r-1$
NOT gates have size at least $6n-\log_{2}(n+1)-O(1)$ ,
and (b) For $n=2^{r}-1$ , inverters with $r$ NOT gates
have size at least $8n-\log_{2}(n+1)-O(1)$ . We derive
our bounds above by considering the minimum size
of a circuit with at most $r$ NOT gates that computes
Parity for sorted inputs $x_{1}\geq\cdots\geq x_{n}$ . For an arbi-
trary $r$, we completely determine the minimum size.
It is $2n-r-2$ for odd $n$ and $2n-r-1$ for even $n$ for
$\lceil\log_{2}(n+1)\rceil-1\leq r\leq n/2$ , and it is $\lfloor 3/2n\rfloor-1$ for
$r\geq n/2$ . $\backslash Ve$ also determine the minimum size of an
inverter for sorted inputs with at most $r$ NOT gates.
It is $4n-3r$ for $\lceil\log_{2}(n+1)\rceil\leq r\leq n$ . In particular,
the negation-limited inverter for sorted inputs due to
Fischer, which is a core component in all the known
$construction8$ of negation-limited inverters. is shown
to have the minimum possible size. Our fairly simple
lower bound proofs use gate elimjnation arguments
in a somewhat novel way.

1 Introduction and Summary
Although exponential lower bounds are known for the
monotone circuit size [4], [6], at present we cannot
prove a superlinear lower bound for the size of circuits
computing an explicit Boolean function: the largest
known lower bound is $5n-o(n)[\eta, |10],$ $[8]$ . It is
natural to ask: What happens if we allow a limited
number of NOT gatae? The hope is that by the study
of negation-limited complexity of Boolean functions
under various scenarios [3], [17], [15]. [2], $|1$], $[13]$ , we
understand the $po\mathfrak{n}^{r}er$ of NOT gates better.

We consider circuits consisting of $AND/OR/NOT$
gates. and the size of a circujt is the number of gates
in jt. An r-circuit is a circuit wjth at most $r$ NOT
gates. For a Boolean function $f$ , let $si’\ell e(f),$ $si_{\ell}’e_{r}(f)$ ,
and $size_{mono}(f)$ respectively denote the minimum size
of general circuits, r-circuits, and monotone circuits
computing $f$ .

An inverter for $n$ Boolean inputs $x_{1},$ $\ldots,$ $x_{n}$ is a
circuit whose outputs are the negations of the inputs,
i.e., $\neg x_{1,\ldots\}\neg x_{n}$ . We denote this n-input n-output
function by Inv$n$ . Beals, Nishino, and Tanaka [3] have
shown that one can construct a $si_{4’}e- O$( $n$ log $n$ ) depth-
$O(\log n)$ inverter with $\lceil\log_{2}(n+1)\rceil$ NOT gates. The
Boolean function Parity$n(x_{1}, \ldots, x_{n})$ is 1 if $\sum x_{i}$ is
odd, and $0$ otherwise. For general $AND/OR/NOT$
circuits. Red kin [12] lias shown that size$(Parity_{n})=$

$4n-4$ .
Following previous works, which we will explajn

below. we consider the circuit complexity of $Parity_{n}$

and $Inv_{n}$ with a tightly limited number of NOT gates:
We assume that $n=2^{r}-1$ and we consider computa-
tions of Par$ity_{n}$ and Inv$n$ with $r-1$ and $r$ NOT gates
respectively. For $Parity_{n}$ and $Inv_{n},$ $n=2^{r}-1$ is the
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Table 1: the lower bounds of previous works and this paper for the negation-tightly-limitd cIrcuit size

maximum $n$ such that computations are $p_{OS8}ible$ with
$r-1$ and $r$ NOT gates respectively. The Boolean
function $Majority_{n}(x_{1}, \ldots,x_{n})$ is 1 if $\sum x_{i}\geq n/2$,
and $0$ otherwise. We give the following lower bounds.

Theorem 1 For $n=2^{r}-1$ ,

$si_{l}\prime e_{r-1}(Parity_{n})$

$\geq 2n-\log_{2}(n+1)-1+size_{mono}(Majority_{n})$

$\geq 6n-\log_{2}(n+1)-O(1)$ .
Theorem 2 For $n=2^{r}-1$ ,

$size_{r}(Inv_{n})$

$\geq 4n-\log_{2}(n+1)+size_{mono}(Majority_{n})$

$\geq 8n-\log_{2}(n+1)-O(1)$ .

Now we explain the previously known lower bound8
shown in Table 1, and how we obtain our improve-
ments focusing on $Parity_{n}$ .

Let $C$ be a circuit computing Parity$n$ with a tightly
limited number of NOT gates as in Theorem 1. Then,
the first NOT gate $N$ , i.e., a unique NOT gate that is
closest to the inputs, must compute $\neg Majority_{n}$ , and
the subcircuit $C’$ at the immediate $predeces8or$ of $N$

is a monotone circuit computing $Majority_{n}$ . Long [9]
has shown that such a monotone circuit has size at
least $4n-O(1)$ :

Proposition 1 (Long $[9J$)

$s\dot{u}e_{mono}(Majority_{n})\geq 4n-O(1)$.
We want to show that in addition to those gates in
the subcircuit $c’,$ , the circuit $C$ must contain a certain
number of gates; i.e., we want to show as good a lower
bound as possible for the number of gates in $C-C’$ .
Tanaka, Nishino. and Beals [17] showed that there are

at least $3\log_{2}(n+1)$ additional gates; Sung [14] and
Sung and $Tana$]$a[15]$ showed that there are at least
about 1.$33n$ additional gates: we show that there are
at least about $2n$ additional gates. We show thi8 in
the following way.

We argue that a part of $C-C’$ must be com-
puting what we call a sorted parity function, and
we show that a circuit computing a sorted parity
function has size at least about $2n$ if the number of
NOT gates is tighlly limited. A Boolean function
$f$ : $\{0,1\}^{n}arrow\{0,1\}$ is a sorted parity function if for
all sorted inputs $x_{1}\geq x_{2}\geq\cdots\geq x_{\mathfrak{n}},$ $f(x_{1}, \ldots,x_{n})=$

$Parity(x_{1}, \ldots, x_{n})$ . A function $f$ is a sorted $\neg parity$

function if for all sorted input8 $x_{1}\geq x_{2}\geq\cdots\geq x_{n}$ ,
$f(x_{1}, \ldots,x_{n})=\neg Parity(x_{1}, \ldots, x_{n})$ .

In fact, we completely determnine the minimum
size of circuits with at most $r$ NOT gates comput-
ing Sorted $Parity_{\mathfrak{n}}$ and Sorted $\neg Parity_{n}$ , where a pa-
rameter $r$ is an arbitrary nonnegative integer. From
about $2n$ , the minimum size decreases by 1 with each
additional NOT gate. This decrease stops at about
1. $5n$ : one cannot make a circuit smaller using more
NOT gates.

We also consider the minimum size of an inverter
for sorted inputs, i.e., a circuit with Boolean in-
puts $x_{1},$ $\ldots,$

$x_{\mathfrak{n}}$ that outputs $\neg x_{1},$ $\ldots,$
$\neg x_{n}$ for all the

sorted input8 $x_{1}\geq\cdots\geq x_{n}$ . The negation-limited
inverter for sorted inputs due to Fischer [5] (shown in
Figure 3) is a core component in all the known con-
structions of negation-limited inverters due to Fischer
[5], Tanaka and Nishino [16], and Beals, Nishino and
Tanaka [3]. (Explanations of all the three inverters
can be found in [3].) We again completely determine
the minimum size of inverters for sorted inputs with
at most $r$ NOT gates for any $r$ . In particular, we
show that Fischer’s inverter for sorted input8 has the
minimum possible size.
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Table 2: the size and the number of $AND/OR/NOT$ gates in a smallest circuit with $\leq r$ NOTs computing
Sorted Parity; $t=\lceil\log_{2}(m+1)\rceil-1$ .

Table 3: the size and the number of $AND/OR/NOT$ gates in a smallest circuit with $\leq r$ NOTs computing
Sorted $\neg Parity;t’=\lceil\log_{2}(n+2)\rceil-1$ .

We think that our complete determination of
$size_{r}(Sort\text{\’{e}} Parity_{n})$ and size.(Sorted $Inv_{n}$ ) are in-
teresting in their own. For the trade.off of size versus
the number of NOT gates, an $a\epsilon ymptoticdly$ tight
result has been shown by Amano, Maruoka. and
Tarui [2]. They showed that for $0\leq r\leq\log_{2}\log_{2}n$ ,
the minimum size of circuits computing $hlerge_{n}$ with
$r$ NOT gates is $\Theta$( $n$ log $n/2^{r}$ ); thus they showed
a smooth tradeoff between the monotone ca8e of
$\Theta$( $n$ log $n$) and the general case of $\Theta(n)$ . But as far
as we know, our results for Sorted Parity and invert-
ers for sorted inputs are the first ones that establish
exact trade-offs.

Our fairly simple lower bound proofs use gate elim-
ination arguments in a somewhat novel way. The
following are preciae statements of our results.

Theorem 3 The size and the number of
$AND/OR/NOT$ gates in smallest circuits with
at most $r$ NOT gates that compute Sorted $Parity_{\mathfrak{n}}$

and Sorted $\neg Pa\dot{n}ty_{n}$ are as shoum in Table 2 and
Table 3. In particular, for $n=2^{\delta}-1$ , a smallest
circuit unth $s-1$ NOT gates computing Sorted
$Pa\dot{n}ty_{n}$ has size $2n-s-1=2n-\log_{2}(n+1)-1$ .
$Th\infty rem4$ For $\lceil\log_{2}(n+1)\rceil\leq r\leq n$ , a smallest
inverter for sorted inputs utth at most $r$ NOT gates

has size $4n-3r$ conststing of $2n-2r$ AND gales,
$2n-2r$ OR gates, and $r$ NOT gates. In particular,
for $n=2^{r}-1$ , a smatlest inverter for sorted inputs
uyith $r$ NOT gates has size $4n-3r=4n-3\log_{2}(n+1)$ .

2 Lower Bounds for Parity and
Inverters

2.1 Preliminaries
Markov [11] precisely determined the minimum num-
ber of NOT gates necessary to compute a Boolean
function. We state a special case of Markov’s result
relevant to our work. (Fischer [5] contain8 a good
exposition of Markov’s result.)

Proposition 2 (Markov [111) The maximum $n$ such
that Iniij. is computable by an r-circuit $\dot{u}n=2^{r}-1$ .
The maximum $n$ such that $Pa\dot{n}ty_{n}$ is computable by
an r-circuit is $n=2^{r+1}-1$ .

We will use the following result by Sung and
Tanaka[15].

Lemma 1 (Sung and Tanaka $[15J$) For $n=2^{r}-1$ ,

$si_{4}^{r}e_{r}(Inv_{n})\geq si_{l}^{r}e_{r-1}(Paritv_{\mathfrak{n}})+2n+1$ .
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2.2 Crossing wires
We introduce the notion of crossing wire and show
simple lemmas. The lemmas are not strictly neces-
sary for our proofs of the theorems, but their state-
ments and proofs should be helpful for understand-
ing our framework, and we think that the lemmas
may be useful for further investigations of negation-
limited circuits. A similar notion of boundary gate
ha8 been introduced by Sung [14]. We focus on wires
as opposed to gates.

Fix a circuit $C$ . A gate. $g$ in $C$ is black if there $is$ a
path from some input to 9 going through a NOT gate,
including the case where $g$ itself is a NOT gate. Oth-
erwise $g$ is white; also, inputs $x_{1},$ $\ldots,$

$x_{\mathfrak{n}}$ are white.
Say that a wire going from gate $g$ to gate $h$ is a

crvssing wire if $g$ is white and $h$ is black. The white
gates and inputs constitute the monotone part of $C$,
and the black gates constitute the nonmonotone part.

Lemma 2 Distin$ct$ crossing urires go into distinct
gates.

Proof. Let $w_{1}$ from gate $g_{1}$ to gate $h_{1}$ and $w_{2}$

from gate $g_{2}$ to gate $h_{2}$ be distinct crossing wires.
By definition. $g_{1}$ and $g_{2}$ are white. If $h_{1}=h_{2}$ , this
single gate is white; this contradicts the assumption
that $w_{1}$ and $W$ are crossing wires. $0$

Lemma 3 Let $C$ be a circuit computing a nonmono-
tone Boolean function $f$ . Suppose that there are
$a0,$ $\ldots,a_{k}\in\{0,1\}^{n}$ such that $a0<$ – $<a_{k}$ and
$f(a:)\neq f(a_{i+1})$ for $0\leq i<k$ . Then, $C$ contains at
least $k$ crossing utres.

Proof. The output gate $T$ of a nonmonotone cir-
cuit $C$ is black. Hence any path in $C$ from an input
$x_{i}$ to $T$ contains a crossing wire. If the values on all
crossing wires remain the same, then the output re-
mains the same. The value of a crossing wire changes
only monotonically. The lemma follows. $0$

We note that the two lemmas above immediately
yield an $n$ lower bound for the size of nonmonotone
area of circuits computing Parity$n$ and Inv$n$ .

2.3 Proofs of Theorems 1 and 2
We prove Theorems 1 and 2 using the lower bound for
Sorted $Parity_{n}$ in Theorem 3, which will be proved
in Section 3.

Proof of $Th\infty rem1$ . Let $C$ be an $(r-1)$-circuit
that computes $Parity_{n}$ for $n=2^{r}-1$ . It is known that
there is a NOT gate $N$ in $C$ such that the subcircuit
$C’$ at its immediate predecessor is a monotone circuit
computing $Majority_{n}$ . All the gates in $C’$ are white,
and by Proposition 1 the number of them is at least
$size_{mono}(Majority_{\mathfrak{n}})\geq 4n-O(1)$ .

$V^{r}e$ can convert the nonmonotone, black part of $C$

into a circuit computing Sorted Parity for new’ in-
puts $y_{1},$ $\ldots,$ $y_{n}$ as follows. Con8ider the chain $\langle a_{0}=$

$0^{n}.a_{1}=10^{n-1}\ldots.,a_{n}=1^{n})$ , and the computation
of $C$ on $a_{0}\ldots.,$ $a_{n}$ . When the input changes from
$a_{i-1}$ to $a_{i}(1\leq i\leq n)$ , some crossing wires change
the value from $0$ to 1. Let $W_{i}$ be the set of such
crossing wires. Note that each $W_{2}$ is nonempty and
the sets $tV_{1}’ s$ are mutually disjoint.

Connect a new input $y_{j}$ to all the gates $g$ in $C$ such
that some crossing wire $u$ in $tV_{C}$ goes into $g$ . Let $D$

be the circuit thus obtained. Clearly, $D$ computes
Sorted Parity for $y_{1}\geq\cdots\geq y_{n}$ , and the number of
gates in $D$ is a lower bound for the number of black
gates in $C$ . By the lower bound for Sorted $Parity_{\mathfrak{n}}$ in
Theorem 3, the size of $D$ is at least $2n-(r-1)-2=$
$2n-\log_{2}(n+1)-1$ .

Adding up the lower bounds for the number of
white gates in $C$ and the number of black gates in
$C$ yields the theorem. $\square$

Theorem 2 immediately follows from Theorem 1
and Lemma 1. We note that instead of using
Lemma 1, we can argue similarly as above using the
lower bound in Theorem 4, and obtain a lower bound
that is smaller by 2 $\log_{2}n$ than the bound in Theo-
rem 2.

3 Sorted Input Case: The Min-
imum Size Determined

The upper bounds of Theorem 3 and Theorem 4 can
be shown by straightforward constructions as we will
explain in section 3.2. We prove the lower bound8 of
Theorem 3 and Theorem 4 in section 3.1.

3.1 Lower bounds
We use well-known gate elimination arguments: We
fix $x_{i}$ . one at a time, to be 0/1 and eliminate some
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gates. A gate $g$ is eliminated if its value is fixed or
else the value of one wire coming into $g$ is fixed. In
the latter case, the other input wire of $g$ replaces
all the out-going wires of $g$ , and $g$ is eliminated. A
lower bound for the total number of eliminations is
a lower bound for the number of gates in a circuit.
More information on gate elimination methods can
be found, e.g., in Wegener $s$ book [18].

Proof of the lower bound of Theorem 3. As-
sume that $n$ is odd and let $C$ be a circuit computing
Sorted $Parity_{n}$ for $x_{1}\geq\cdots\geq x_{n}$ at the top output
gate $T$ . Starting from $(0,0\ldots.,0)$ , consider fliPping
and flxing $x_{i}=1$ for $i=1,$ $\ldots,$ $n-1$ . in this order
one at atime: Fix $x_{j}=1$ after $x_{1},$ $\ldots$ , $x_{1-1}$ have been
flxed and remain to be 1. Each time we flip and fix
$x_{j}=1$ . the value of $T$ changes flipping from $0$ to 1 or
1 to $0$ . There must be a path $p$ from $x$: to $T$ such that
all the gates on $p$ flip the values when we fix $x_{i}=1$ .
Call such a path a $p$ropagating path with respect to
$x_{i}$ .

Consider flxing $x_{i}=1$ . Let $p$ be a propagating
path for $x:$ . Consider the gates on $p$ from $x_{i}$ towards
$T$ . If all the gates on $p$ (including $T$) are ORs, fixing
$x_{i}=1$ will fix $T=1$ ; this is a contradiction. Thus
there is either an AND or a NOT in $p$ . Let $g$ be
the first non-OR gate in $p$. All the OR gates, if any,
before $g$ are fited to be 1 once we fix $x_{i}=1$ . Thus
one input wire of $g$ is fixed to be 1.
(1) If 9 is AND, $g$ is eliminated.
(2) If $g$ is NOT, $g$ is flxed to be $0$ and is eliminated.
In this case, there must be at least one $AND/OR$ gate
in $p$ beyond 9: If all the gates beyond 9 are NOTs, all
their values are fixed; this is a contradiction. Hence
at least one $AND/OR$ gate (the first $AND/OR$ be-
yond g) gets eliminated.

Now assume that the circuit $C$ contains $\epsilon$ NOT
gates. Ftom (1) and (2) we see that there are at
least $n-1AND/OR$ gates; thus there are at least
$n-1+\epsilon$ gates. This bound becomes meaningful when
$s$ is large. In particular. combined with the bounds
we derive below it will be easy to see that a smallest
circuit for Sorted $Parity_{n}$ does not contain more than
$\lfloor n/2J$ NOT gates. By (1). at least $n-1AND/NOT$
gates are eliminated; thus the circuit contains at least
$n-l-s$ ANDs.

Starting from $(1’. 1, \ldots.1)$ . consider fliPping $x_{i}=0$

for $i=n,$ $n-1\ldots.,$ $2$ in this order one at a time.
Dual arguments yield the same lower bound for the
number of ORs.

Consider the case where $n$ is even. In this case the
circuit obtained after flxing $x_{i}=1$ for $i=1,$ $\ldots.n-$
$1$ must contain one NOT gate; thus at most $s-l$
NOT gates are eliminated, and hence the lower bound
for the number of ANDs increa8es by 1. A similar
increase occurs for odd $n$ and Sorted $\neg Parity_{n}$ . $\square$

For Theorem 4 we want to show a lower bound
about twice as large by showing that the number of
$AND/OR$ gates eliminated is twice as large.

In the lower bound proof of Theorem 3 above, the
eliminations of gates are always due to the fact that
the value of a gate has been determined by having
flxed some inputs. In the lower bound proof of Theo-
rem 4, we also eliminate a gate when its value is not
necessarily determined for an arbitrary input, but its
value must stay constant for sorted input8. With this
additional argument we proceed similarly as in the
lower bound proof of Theorem 3.

Proof of the lower bound of Theorem 4. Let
$C$ be an inverter for $n$ sorted input8 $x_{1}\geq\cdots\geq x_{n}$ .
Starting from $(0,0, \ldots,0)$ , consider flipping and fix-
ing $x_{i}=1$ for $i=1,$ $\ldots$ , $n$ : Fix $x:=1$ after
$x_{1},$ $\ldots,x_{i-1}$ have been fixed and remain to be 1. Each
time we flip and $flx_{X:}=1$ , the output $\overline{x_{i}}$ changes flip-
ping from 1 to $0$ . There must be a path $p$ from $x_{i}$ to
$F_{j}$ such that all the gates on $P$ flip the values when
we fix $x:=1$ . Call such a path a PmPagating path
for $x_{i}$ .

Consider flxing $x_{*}\cdot=1$ . Let $p$ be a propagating
path for $x_{j}$ . Consider the gates on $p$ from $x_{1}$. towards
$\overline{x_{j}}$ . If all the gates on $p$ are ORs, fixing $x_{1}=1$ will flx
Zi!; $=1$ ; this is a contradiction. Thus there is either
an AND or a NOT in $p$ .

Let $g$ be the first non-OR gate in $p$. The gate $g$

gets eliminated after flxing $x_{i}=1$ . Note that if $g$ is
an AND. the value of 9 is 1 after fixing $x:=1$ since
all the gates, if any. before $g$ are ORs.

Let $h$ be the last non-OR gate in $p$. All the gates,
if any, beyond $h$ are ORs. After fixing $x_{1}=1$ , the
values of all the gates between $h$ and the output $\overline{x_{j}}$,
including $h$ and $\overline{X;}$, are $0$ .

We claim that we can fix $h$ to be $0$ and thus elim-
inate $h$ from the circuit in the following sense. We
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have fixed $x_{1},$ $\ldots,$
$x_{i}$ to be 1; $x_{i+1},$ $\ldots,$

$x_{n}$ are $0$ at
present. We will further flip and fix $x_{i+1},$ $\ldots,x_{n}$ to
be 1 one at a time: but in this process the value of
gate $h$ must remain to be $0$ since if the gate $h$ has
value 1, the outPut $\overline{x_{i}}$ gets flipped back from $0$ to 1
contradicting to the fact that $x_{i}$ has been fixed and
remains to be 1. Sinoe the gate $h$ will always be $0$ ,
we can fix $h$ to be $0$ and eliminate $h$ ; the resulting
circuit behaves in the same way. We note that if
we set $xx$ to be a non-sorted 0/1 sequence,
it is possible that the gate $h$ evaluates to 1 even if
$x_{1}\ldots.,x_{i}$ are all 1.

It is possible that the gate $g$ and $h$ are the same
NOT gate, i.e., $g=h$. But they can not be the same
AND gate 8ince after fixing $x_{i}=1,$ $h$ is $0$ and $g$ is 1
if $g$ is an AND. Thus unless both $g$ and $h$ are NOTs,
$g\neq h$ . Therefore if the circuit $C$ contains $s$ NOT
gates, we can eliminate a total of at lea8t $2n-2s$
AND gates, and hence $C$ contains at least $2n-2s$
AND gates.

The dual argument about starting from
$(1, 1, \ldots, 1)$ and flxing $x:=0$ for $i=n,n-1,$ $\ldots,$

$1$

yields the same lower bound for the number of
$ORs$. $\square$

3.2 Upper bounds
Proof of the upper bound of $Th\infty rem3$. We
can construct a smallest circuit computing Sorted
$Parity_{n}$ with at most $r$ NOT gates for odd $n$ as fol-
lows. Constructions for even $n$ and for Sorted $\neg Parit\}^{f}$

will be explained in the end.
CASE 1: $r=\lceil\log_{2}(n+1)\rceil-1$ and $n=2^{r+1}-1$ : See
Figure 1.
CASE 2; $r=\lceil\log_{2}(n+1)\rceil-1$ and $2^{r}\leq n<2^{r+1}-1$ :
See Figure 2.

In cases 1 and 2 it is easy to see that $y;s$ are sorted
if $x:s$ are sorted, and that the circuit consists of $n-$
$r-1$ ANDs, $n-r-1$ ORs, and $r$ NOTs.
CASE 3: $r>\lceil\log_{2}(n+1)\rceil-1$ : Construct a circuit
of the following form:

$(x_{1}\wedge\overline{x_{2}})\vee\cdots\vee(x_{2*-1}\wedge X_{\overline{2\iota}})$

VSorted $Parity_{n-2},(x_{2s+1}, \ldots,x_{n})$ ,

where Sorted $Parity_{n-2\epsilon}$ is computed by a circuit in
case 1 or case 2: Let $s$ be the maximum integer sat-
isfying $2^{(r-*)+1}-1\geq n-2\epsilon\geq 1$ . Use $s$ NOT

gates for $s$ pairs $(x_{1},x_{2}),$
$\ldots,$

$(x_{2s-1},x_{2\epsilon})$ , and use
「$\log_{2}(n-2s+1)\uparrow-1$ NOT gates for $x_{2e+1},$ $\ldots$ , $x_{n}$ as
in cases 1 and 2. A8 for the size. the analysis for cases
1 and 2 aPplies for the subcircuit for $x_{2\epsilon+1},$ $\ldots.x_{n}$ ,
and we are using $s$ ANDs, $s$ ORs, and $s$ NOTs addi-
tionally.

For even $n$ , construct a circuit as
SortedParity$(x_{1}, \ldots , x_{n-1})$ A $\overline{x_{n}}$ .

For Sorted $\neg Parity_{n}$ , construct a circuit as
$T_{1}\vee$ Sorted Parity$(x_{2}, \ldots, x_{n})$ .

口

Proof of the upper bound of $Th\infty rem4$. Con-
struct a circuit as follows.
CASE 1: $r=\lceil\log_{2}(n+1)\rceil,$ $n=2^{r}-1$ : Figure 3
shows the circuit due to Fischer.
CASE 2: $r=\lceil\log_{2}(n+1)\rceil$ . $2^{r-1}\leq n<2^{r}-1$ : Use
$\overline{x_{p}}$ instead of $\overline{x_{2^{r-1}}}$ similarly as in case 2 of Sorted
Parity.
CASE 3: $r>$ $\lceil\log_{2}(n+1)\rceil$ : Similarly as in
case 3 of Sorted Parity, aPply 8 NOT8 directly to
inputs $x_{1}\ldots$ . , $x_{*}$ to obtain outputs $X_{\overline{1}},$ $\ldots,X_{\delta}^{-}$ , and
use $\lceil\log_{2}(n-s+1)\rceil$ NOT gates for $x_{\epsilon+1},$ $\ldots.x_{n}$ to
obtain $\overline{x_{\iota+1}},$ $\ldots,\overline{x_{n}}$ .

It is easy to see that the circuit thus constructed
has size $4n-3r$ consisting of $2n-2r$ ANDs.

$2n-2r\square$

ORs, and $r$ NOTs.
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Figure 1: Sorted Parity for $n=2^{r+1}-1$ with $r$

NOTs
Figure 2: Sorted Parity for $2^{r}\leq n<2^{r+1}-1$

with $r$ NOTs

Figure 3: $Fi_{8}cher’ s$ inverter for sorted inputs $x_{1}\geq\cdots\geq x_{n}$ with $r$ NOTs, where $n=2^{r}-1$
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