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Abstract

Yi and Sakai [7] showed that the termination problem is decidable for a daae of semi-
constructor term rewriting systems, which is a $supercl\epsilon\ s$ of the class of right ground term
rewriting systems. The decidability w&8 $8hown$ by the fact that every non-terminating TRS in
the cl&ae has aloop. In this paper we modify the $pr\infty f$of [7] to show that innermost termination
is decidable for the class of semi-constnictor TRSs.

1 Introduction

Termination is one of the central properties of
term rewriting systems (TRSs for short), where
we say a TRS terminates if it does not admit
any infinite reduction sequence. Since termina-
tion is imdecidable in general, several decidable
classes have been studied [3, 4, 5, 6, 7]. The
class of semi-constnlctor TRSs showed in [7] is
one of them, where a TRS is in the class if ev-
ery subterm of right hand sides of rules, whose
root symbol is defined, is ground.

Innermost reductlon, the strategy which
rewrites innermost redexes, is iised as call-by-
value computation semantics. The termination
property with respect to innermost reduction
is called innermost termination. Since inner-
most termination is also undecidable in gen-
eral, methods for provin$g$ innermost termina-
tion have been studied [1].

In this paper, we prove that innermost ter-
mination for semi-constructor TRSs is a decid-
able property. The proof is done by following

the proof [7] for decidability of termination for
$\Re mi- COIL\S tnlctor$ TRSs.

2 Preliminaries

We asrmime the reader is familiar with the stan-
dard definitions of term rewriting systems [2]
and here we jiust review the main notations
$\tau\iota^{s}’ ed$ in this paper.
. A signa\ddagger ure $\mathcal{F}$ is a set of function sym-
bols, where every $f\in F$ is $\ W^{\backslash }ociated$ with
a non-negative integer by an arity fimction:
arity: $\mathcal{F}arrow N(=\{0,1,2, \ldots\})$ . Emction sym-
bols of arity $0$ are called constants. The set
of all \ddagger erms buiit from a signature $\mathcal{F}$ and a
coimtable infinite set $V$ of variables such that
$\mathcal{F}\cap \mathcal{V}=\emptyset$ , is repraeented by $\mathcal{T}(\mathcal{F},V)$ . The set
of ground \ddagger erms is denoted by $\mathcal{T}(F,\emptyset)(\mathcal{T}(\mathcal{F})$

for chort). The set of variables occtlning in a
term $t$ is denoted by $Var(t)$ . We write $s=t$
when two terms $\epsilon$ and $t$ are identical. The root
symbol of a term $t$ is denoted by root$(t)$ .

Let $C$ be a con\ddagger ext with a hole $\square$ . We write
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$C[t]$ for the term obtalned $homC$ by replaclng
$\square$ with aterm $t$ . We say $tis^{t}$ a $8^{\backslash }11bterm$ of $s$

if $s=C[t]$ for $\mathfrak{t}^{\backslash }ome$ context C. We denote the
subterm ordering by $\underline{\triangleleft}$ , that is, $t\underline{\triangleleft}s$ If $t$ Is a
$f^{\backslash }11bterm$ of $s$ , and $t\triangleleft s$ if $t\underline{\triangleleft}s$ and $t\neq s$ .

Asubstitution $\theta\dot{L}S^{\backslash }$ amapping $hom\mathcal{V}$ to
$\mathcal{T}(F, \mathcal{V})$ sllch that the $8etDom(\theta)=\{x\in$
$\mathcal{V}|\theta(x)\neq x\}$ it; flnite. We llSllally $identi\Phi$

a $s11bstit_{11}tion\theta$ with the set $\{x\vdasharrow\theta(x)|x\in$

$Dom(\theta)\}$ of varlable $bindin\mathfrak{B}^{\backslash },$ . $\bm{t}$ the following,
we write $t\theta$ instead of $\theta(t)$ .

Aoewrite rule $larrow r$ is adirected $eq_{11}ation$

$wh\ddagger chsat_{\dot{L}}sfiesl\not\in \mathcal{V}$ and $Var(r)\subseteq Var(l)$ . A
$tem$ oewriting system TRS $i_{\iota}\backslash \backslash$ afinite ftet of
rewrite $nl1\infty$ . A $\mathcal{M}exi_{b^{\backslash }}$ atem $l\theta$ for anlle
$larrow r$ and a $Sllb\epsilon titution\theta$ . Atem containing
no r\’eex is called anomal $fom$. Aredex is
innemost, if $it_{8}$ all proper $S11bterm^{s}$;are in nor-
mal forms. A $sub\epsilon tit_{11}tion\theta$ is nomal if $x\theta_{\dot{L}}s$

in nomal forms for every $x$ . The nduction re-
$lationarrow_{R}\subseteq \mathcal{T}(\mathcal{F}, \mathcal{V})x\mathcal{T}(F, \mathcal{V})k8ociated$ with
aTRS $R\dot{x}s$ defined as $follow\epsilon:sarrow_{R}t$ if there
exist arewrite rte $larrow r\in R$ , asllbstitution
$\theta$ , and acontext $C$ sut that $s=C[l\theta]$ and
$t=C[r\theta]$ . We say that $s\dot{\iota}\backslash red\iota lc\text{\’{e}}$ to $t$ by
contracting redex $l\theta$ . E.specially, if $S\dot{L}\backslash \backslash r\text{\’{e}}_{11}c\text{\’{e}}$

to $t$ by contracting $an$ innermost redex, then
$Sarrow Rt\dot{L}\backslash \backslash$ said to be innemost oeduction de.
noted by $sarrow t2\mathfrak{n}R$

$Letarrow be$ abinary relation on tems, the
transitive $cl\alpha sureofarrow is$ denoted $byarrow+$ . The
traoitive and reflexive clo\S llre $ofarrow i_{\iota}s$ denoted
$byarrow S$ If $sarrow^{*}t$ , then we say that there is a
rduction $s\eta uence$ starting $homs$ to $t$ or $tis^{\backslash }$

reachable $homs$ with $raep\propto ttoarrow$ . We write
$sarrow^{k}t$ if $t\dot{\iota}s$ reachable $homs$ by reductiono
with $k\epsilon te\mu$ . For aTRS $R$, atem $t\in \mathcal{T}(\mathcal{F},\mathcal{V})$

$tem\iota inates$ with $re_{\iota}specttoarrow if$ there is no in-
flnite reduction $s\alpha_{1}11enoe$ starting $homt$ with
$r\alpha;pecttoarrow$ . We say that $R$ teminatae with
raepect $toarrow if$ every term terminatae with $r\triangleright$

spect $toarrow$ . We $t^{\backslash }ay$ that $R$ innemost temi-
natae if it teminates with $r\propto pecttoarrow jnR$

Proposition 1 For a TRS $R$ , if there is a re-
duction $s\sim ti\mathfrak{n}R$ then $C[s]arrow|nRC[t]$ for any
context $C$ .

For a TRS $R$ , a fiiction symbol $f\in \mathcal{F}$ is a
defined symbol of $R$ if $f=root(l)$ for some rule

$larrow r\in R$ . The set of all defined symbols of $R$

is denoted by $D_{R}=$ {$root(l)$ I $larrow r\in R$}. A
term $t$ has a defined root symbol if root$(t)\in D_{R}$ .

$note_{\iota^{\backslash }}the\backslash lnionof\mathcal{F}andD_{R}=\{f\#|f\in D_{R}\}LetRbeaTRSoveras_{P^{ature\mathcal{F}.\mathcal{F}^{\psi}d\triangleright}}i$

where $\mathcal{F}\cap D^{\int_{R}}=\emptyset$ and $f^{\#}ha$; the same arity
as $f$ . We call these fresh symbols dependency
pair symbols. Given a term $t=f(t_{1}, \ldots,t_{n})\in$

$\mathcal{T}(\mathcal{F}, \mathcal{V})$ with $f$ defined, we write $t\#$ for the term
$f^{\#}(t_{1}, \ldots,t_{n})$ . If $larrow r\in R$ and $u$ is a sub-
terrn of $r$ with a defined root symbol, then the
rewrite rule $l\#arrow u\#$ is called a dependency pair
of $R$. The set of all dependency pairs of $R$ is
denoted by $DP(R)$ .

3 Decidability of Innermost
Termination for Semi-
Constructor TRSs

Many infinite reduction sequences contain
loops, in which an instance of a term re-occurs
as a subterm. Decidability of termination for
semi-constnlctor TRSs is proved based on the
observation that there exists an infinite re
duction sequence having a loop if it is not
terminating[7]. In this section, we prove de-
cidability of innermost termination in similar
way.

Deflnition 2 (Loop) A $rdu$ction sequence
loops if it contains $tarrow^{+}C[t\theta]$ for some $\infty n-$

text $C$ , substitution $\theta$ . Similarly, a reduction
sequence cycles if containing $t‘arrow+C[t]$ , md
head-cycles if containing $t’arrow^{+}t’$ .

The following proposition holds from propo-
sition 1.

Proposition 3 If there exists a cycling se-
quence that loops, then there exists infinite in-
nermost sequence.

Deflnition 4 (Semi-Constructor TRS) A
term $t\in \mathcal{T}(\mathcal{F}, \mathcal{V})$ is a semi-constructor term if
every term $s$ such that $s\underline{\triangleleft}t$ and root$(s)\in D_{R}$

is groumd. A TRS $R$ is a semi-constnzctor
$sy_{8}tem$ if $r$ is a semi-constructor tem for every
nlle $larrow r\in R$ .
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A TRS $R$ is called right-ground if for every
$larrow r\in R,$ $r$ is ground.

Proposition 5 The following statements
hold:

1. Right-grouid TRSs are semi-constructor
systems.

2. For a TRS $R,$ $R$ is semi-constructor TRS
if and only if all $nl1ae^{\backslash }$ in $DP(R)$ are right-
ground.

For a given TRS, let $\mathcal{T}_{\infty}^{arrow}$ denote the set
of all minimal non-teminating tems $forarrow$

here “minimal” is used in the $s^{\backslash }en_{\iota}se$ that all its
proper subterms teminate. For a given TRS,
let $\mathcal{N}F^{arrow}$ denote the set of all normal forms for
$arrow$ .

Deflnition 6 (Innermost DP-chain) For a
TRS $R$ , a sequence of the elements of $DP(R)$

$s_{1}^{\#}$ $arrow t_{1}^{\#},$ $s_{2}^{\#}arrow t_{2}^{\#},$
$\ldots$ is an innemost de-

pendency chain if there erist substitutions
$\tau_{1},$ $\eta,$ $\ldots$ such that $s_{*}^{\mathfrak{p}}\tau_{i}$ $\in$

$NF^{arrow}\dot{m}R$ and
$t_{1}^{\#}\tau_{i}arrow*|nRs_{1+1}^{\mathfrak{p}}\tau:+1$ holds for every $i$ .

Theorem 7 ([1]) For a TRS $R,$ $R$ does not
innermost terminate if and only if there exists
an infinite in$nerm\propto\cdot t$ dependency chain.

Deflnition 8 (C-min) For a TRS $R$ , let $C\subseteq$

$DP(R)$ . An infinite reduction $\iota c\backslash equence$ in $R\cup C$

in the form $t_{1}^{\#}-|\mathfrak{n}R\cup Ct_{2}^{\#}arrow t_{3}^{\#}inRLXarrow inR\cup C$

$arrow$

with $t_{1}\in\tau_{\infty^{lnR}}$ for all $i\geq 1$ is called a C-min
innemost reduction sequence. We ll\S e $C_{m2n}^{1n}(t\#)$

to denote the set of all C-min innermost reduc-
tion sequenoe starting from $t\#$ .

Proposition 9 ([1]) Given a TRS $R$, we have
the following statements:

1. If there exists an infinite innemost depen-
dency chain, then $C_{\min}^{in}(t\#)\neq\emptyset$ for some

$arrow$

$C\subseteq DP(R)$ and $t\in\tau_{\infty^{mR}}$ .
2. For any sequenoe in $C_{\min}^{1\mathfrak{n}}(t\#)$ , reduction by

nllae of $R$ takes place below the root while
reduction by rules of $C$ takes place at the
root.

3. For any sequence in $C_{\min}^{in}(t\#)$ , there is at
least one rule in $C$ which is applied in-
finitely often.

Lemma 10 For any sequence in $C_{\min}^{tn}(t\#)$ , sub-
sequence $s\#arrow*inRL\mathcal{L}^{S^{J\#}}$ implies $sarrow*|nRC[s’]$ for
some context $C$ .

Proof We $tL^{s};e$ induction on number $n$ of re-
duction steps $s\#-inn$

$s^{\prime\#}$ . In the case that
$n=0$, it holds with $\theta^{c}=\square$ . Let $n\geq 1$ . Then
we have $s\#arrow n-1s^{\prime\prime\#}arrow$ $s^{\prime\#}$ for some $s^{\prime\eta}$ .
By $inducti_{on\bm{h}thesis,s_{inR}}^{inR\cup C2\mathfrak{n}RL\mathcal{L}}yp_{0}arrow*C[s’’]$.

9 $-i\mathfrak{n}Rs’$ , we have $C[s”]arrow inRC[sintbyProp\triangleright$

$(i):Con_{\backslash }sider$ the case that $s^{\prime\prime\#}arrow$ $s^{\prime\#}$ . $Sin\infty$

sition 1. Hence $sarrow|*c[s’]$ .
(ii): Consider the $ca;e$ that $s^{\prime\prime\#}arrow inCs^{\phi}$ .
$s”arrow C’[s’]*R$ by definition of dependency pair.

$c[\theta^{\prime r_{1arrow C[C’[s’]],by}}siarrow*incPc’[s]]nR$
Proposition 1. $Henoe$

ロ

Lemma 11 For a TRS $R$, if $sq\in C_{\min}^{:n}(t\#)$ cy-
cles, then $sq$ head-cycles.

Proof Let $sq\in C_{\min}^{\dot{m}}(t\#)$ cycles, then there
is a subsequence $t_{k}^{\#}arrow+inR\cup CC[t_{k}^{\#}]$ in $sq$ . From
Proposition 9-(2) and the fact that dependency
pair symbols appears only in dependency pairs,
we have $C[t_{k}^{\#}]=t_{k}^{\#}$ , which implies that $sq$ head-
cycles. ロ

Lemma 12 For a TRS $R$, if $sq\in C_{\min}^{*\mathfrak{n}}(t\#)$ cy-
cles, then there is a tem $t_{k}^{\#}$ in $sq$ such that
sequence starting $\hslash omt_{k}$ cycles with respect
to $arrow$

in $R$

Proof From Lemma 11 and Lemma 10. ロ

Lemma 13 For a semi-constructor TRS $R$,
the following statements are equivalent:

1. $R$ does not innemost teminate.

2. There exists $l\#arrow u\#\in DP(R)$ such that
$sq$ head-cycles for some $sq\in C_{m:n}^{in}(u\#)$ .

Proof $(2\Rightarrow 1)$ : It is obvious from Lemma
12, and Proposition 3. $(1\Rightarrow 2)$ : By $Th\infty rem$

$7$ there exists an infinite innermost dependency
chain. By Proposition 9-(1), there exists a se-
quence $sq\in C_{\min}^{i\mathfrak{n}}(t\#)$ . By Proposition $9-(2,3)$ ,
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there is some rule $l\#arrow u\#\in C$ which is ap-
plied at root reduction in $sq$ infinitely often.
By Proposition 5-(2), $u\#i_{f^{\backslash }}$ groumd. Thus $u\#$

$cycle\square$
in the fom $u\#arrow*inR\cup DP(R)$ $arrow\{l^{t}arrow ut\}^{u}\#$

Theorem 14 Innermost termination of semi-
constnlctor TRSs is decidable.

Proof The decision procedure for $temina\ulcorner$

tion of semi-constructor TRS $R$ with inner-
most rewriting is as follows: $co\iota\iota sider$ all terms
$u_{1},u_{2},$ $\ldots,u_{n}$ corresponding to the right-hand
sides of $DP(R)=\{l_{i}^{\#}arrow r_{i}^{\#}|1\leq i\leq n\}$ ,
and $s\cdot imul\tan\infty 1lsly$ generate all innermost re-
duction sequences with respect to $R$ starting
from $u_{1},u_{2},$ $\ldots,$ $u_{n}$ . It halts if it enumerates all
reachable terms exhaustively or it detects a cy-
cling reduction sequence $u_{i}arrow+{}_{R}C[\psi]$ for some
$i$ .

Suppose $R$ does not innermost terminate. By
Lemma 13, 12 and the youlndn\infty of $u_{i}s$

} we
have a cycling reduction sequence $u_{i}arrow^{+}inRC[u_{1}]$

for some $i$ and $C$ . Hence we detect inner-
most non-termination of $R$ . If $R$ innemost
terminates, then the execution of the reduc-
tion sequence generation stops finally since it
is finitely branching. Thus we detect innermost
temination of $R$ after finitely many steps. ロ

4 Some Extension and Exam-
ple

In $th\dot{\iota}s$ section, we relax the condition that
guarantees decidability of innermost termina.
tion for $aemi- co\iota\iota structor$ TRSs.

Similarly to the semi-constnictor $ca_{\wedge}\backslash \backslash e$ , we have
a loop $u_{i}arrow+RC[u_{i}]$ , which can be detected by
the procedure. $\square$

Deflnition 16 (Innermost DP-Graph [1])
The innermost dependency graph of a TRS
$R$ is directed graph whose nodes are the
dependency pairs and there is an arc &om
$s\#arrow t\#$ to $u\#arrow v\#$ if there exists a normal
substitution $\sigma,$ $\tau$ such that $t\#\sigmaarrow*inRu\#\tau$ and
$u\tau\#$ is in nomal forms with respect to $R$.

An approximated dependency gaph is a
graph that contains innermost dependency
graph as subgraph. One of computable such
graphs are proposed [1].

Theorem 17 Let $R$ be a TRS and $G$ be an
approximated dependency graph of $R$ . If at
least $0$ne node in the cycle is right-ground for
every cycle of $G$ , then innermost temination
of $R$ is decidable.

Proof Ftom Lemma 15. 口

Example 18 Let $R$ $=$ $\{f(s(x))arrow$ $g(x)$ ,
$g(s(x))arrow f(s(0))\}$ . Then $DP(R)=\{f\#(s(x))$

$arrow g\#(x),$ $g\#(s(x))arrow f^{\#}(s(0))$ }. The depen-
dency graph of $R$ has one cycle, which contains
a right ground node. The temination of $R$ is
decidable by Theorem 17. Actually we know
$R$ Lg innemost terminating from the procedure
in the proof of Theorem 14 since all nemost
reduction sequences from $f(s(O))$ terminates.
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