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Abstract

Yi and Sakai [7] showed that the termination problem is decidable for a class of semi-
constructor term rewriting systems, which is a superclass of the class of right ground term
rewriting systems. The decidability was shown by the fact that every non-terminating TRS in
the class has a loop. In this paper we modify the proof of [7] to show that innermost termination
is decidable for the class of semi-constructor TRSs.

1 Introduction

Termination is one of the central properties of
term rewriting systems (TRSs for short), where
we say & TRS terminates if it does not admit
any infinite reduction sequence. Since termina-
tion is undecidable in general, several decidable
classes have been studied (3, 4, 5, 6, 7]. The
class of semi-constructor TRSs showed in [7] is
one of them, where a TRS is in the class if ev-
ery subterm of right hand sides of rules, whose
root symbol is defined, is ground.

Innermost reduction, the strategy which
rewrites innermost redexes, is used as call-by-
value computation semantics. The termination
property with respect to innermost reduction
is called innermost termination. Since inner-
most termination is also undecidable in gen-
eral, methods for proving innermost termina-
tion have been studied [1].

In this paper, we prove that innermost ter-
mination for semi-constructor TRSs is a decid-
able property. The proof is done by following

the proof (7] for decidability of termination for
semi-constructor TRSs.

2 Preliminaries

We assume the reader is familiar with the stan-
dard definitions of term rewriting systems [2]
and here we just review the main notations
used in this paper.
. A signature F is a set of function sym-
bols, where every f € F is associated with
a non-negative integer by an arity function:
arity: F — N(= {0,1,2,...}). Function sym-
bols of arity 0 are called constants. The set
of all terms built from a signature F and a
countable infinite set V of variables such that
F NV =0, is represented by T(F,V). The set
of ground terms is denoted by T (F,0) (T(F)
for short). The set of variables occurring in a
term t is denoted by Var(t). We write s = ¢
when two terms s and ¢ are identical. The root
symbol of a term t is denoted by root(t).

Let C be a context with a hole [J. We write



C|[t] for the term obtained from C by replacing
O with a term ¢t. We say t is a subterm of s
if s = C[t] for some context C. We denote the
subterm ordering by <, that is, t < s if t is a
subterm of s, and t < s if t I s and t # s.

A substitution 0 is a mapping from V to
T(F,V) such that the set Dom(§) = {z €
V | 8(z) # z} is finite. We usually identify
& substitution @ with the set {z +— 0(z) | z €
Dom(#)} of variable bindings. In the following,
we write t0 instead of 6(t).

A rewrite rule | — r is a directed equation
which satisfies [ ¢ V and Var(r) C Var(l). A
term rewriting system TRS is a finite set of
rewrite rules. A redez is a term 1@ for a rule
! — r and a substitution . A term containing
no redex is called a normal form. A redex is
innermost, if its all proper subterms are in nor-
mal forms. A substitution 0 is normal if 20 is
in normal forms for every z. The reduction re-
lation — gC T (F, V) x T (F, V) associated with
a TRS R is defined as follows: s — g ¢t if there
exist a rewrite rule | — r € R, a substitution
@, and a context C such that s = C[l8] and
t = C[rf]. We say that s is reduced to ¢ by
contracting redex 16. Especially, if s is reduced
to t by contracting an innermost redex, then
s —p tis said to be innermost reduction de-
noted by s — _ t.

in R

Let — be a binary relation on terms, the
transitive closure of — is denoted by —*. The
transitive and reflexive closure of — is denoted
by —*. If s —* t, then we say that there is a
reduction sequence starting from s to t or t is
reachable from s with respect to —. We write
s —* t if t is reachable from s by reductions
with k steps. For a TRS R, a term t € T(F, V)
terminates with respect to — if there is no in-
finite reduction sequence starting from ¢ with
respect to — . We say that R terminates with
respect to — if every term terminates with re-
spect to —. We say that R innermost termi-
nates if it terminates with respect to R
Proposition 1 For a TRS R, if there is a re-
duction 8 <= . t, then C[s] = Clt] for any
context C.

For a TRS R, a function symbol f € F is a
defined symbol of R if f = root(l) for some rule

167

I — 7 € R. The set of all defined symbols of R
is denoted by Dg = {root(l) |l - r € R}. A
term t has a defined root symbolif root(t) € Dg.

Let R be a TRS over a si%nature F. F de
notes the union of F and D%, = {f* | f € Dg}
where F N Dg{ = @ and f! has the same arity
as f. We call these fresh symbols dependency
pair symbols. Given a term t = f(t1,...,tn) €
T (F,V) with f defined, we write t¥ for the term
fHt1,...,tn). fl = r € R and u is a sub-
term of r with a defined root symbol, then the
rewrite rule I* — u¥ is called a dependency pair
of R. The set of all dependency pairs of R is
denoted by DP(R).

3 Decidability of Innermost
Termination for Semi-
Constructor TRSs

Many infinite reduction sequences contain
loops, in which an instance of a term re-occurs
as a subterm. Decidability of termination for
semi-constructor TRSs is proved based on the
observation that there exists an infinite re-
duction sequence having a loop if it is not
terminating(7]. In this section, we prove de-
cidability of innermost termination in similar
way.

Definition 2 (Loop) A reduction sequence
loops if it contains ¥ —* C[t'f] for some con-
text C, substitution 6. Similarly, a reduction
sequence cycles if containing ¢/ —* C[t/], and
head-cycles if containing ¢/ —+ t'.

The following proposition holds from propo-
sition 1.

Proposition 3 If there exists a cycling se-
quence that loops, then there exists infinite in-
nermost sequence.

Definition 4 (Semi-Constructor TRS) A

term t € T(F,V) is a semi-constructor term if
every term s such that s <t and root(s) € Dg
is ground. A TRS R is a semi-constructor
system if r is a semi-constructor term for every
riel—reR.



A TRS R is called right-ground if for every
l—r € R, ris ground.

Proposition 5 The
hold:

following statements

1. Right-ground TRSs are semi-constructor
systems.

2. For a TRS R, R is semi-constructor TRS
if and only if all rules in DP(R?) are right-
ground.

For a given TRS, let 7' denote the set
of all minimal non-terminating terms for —,
here “minimal” is used in the sense that all its
proper subterms terminate. For a given TRS,
let NF denote the set of all normal forms for

-—*.

Definition 6 (Innermost DP-chain) For a
TRS R, a sequence of the elements of DP(R)
sg — t’{,sg — tg, . is an innermost de-
pendency chain if there exist substitutions
T1,72,... such that sg‘r,- € NFinr and
tf‘r,- _z'?;z sf +17i+1 holds for every i.

Theorem 7 ([1]) For a TRS R, R does not
innermost terminate if and only if there exists
an infinite innermost dependency chain.

Definition 8 (C-min) For a TRS R, let C C
DP(R). An infinite reductlon sequence in RUC

: ¢ b .
in the formi t2 T Ruc 13 TRu

with t; € To" ® for all i > 1 is called a C-min
innermost reduction sequence. We use Ci%,, (t%)
to denote the set of all C-min innermost reduc-
tion sequence starting from tf.

Proposition 9 ([1]) Given a TRS R, we have
the following statements:

1. If there exists an infinite innermost depen-
dency chain, then C: m(t”) # @ for some

C C DP(R) and t € Tog™ 7.

2. For any sequence in Ci% (&%), reduction by
rules of R takes place below the root while
reduction by rules of C takes place at the
root.
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3. For any sequence in C'%, (t%), there is at
least one rule in C which is applied in-

finitely often.

Lemma 10 For any sequence in C*7, (%), sub-
sequence st —% . " implies s +}, C[s'] for
some context C.

Proof We use induction on number n of re-
duction steps s* —7 s In the case that
n = 0, it holds wzth%)c O. Letn > 1. Then
we have ¢! 71— g - o 9" for some ",
By induction hypothesis, s —=% Cls").

(i): Consider the case that s”” —_ g, Since
8" sop ¥ wehave Cls"] - C [s'T by Propo-
sition 1. Hence s TR C'[s]

(ii): Consider the case that & —, s’
8" — R C’[4], by definition of dependency pair.
C[sﬁ — . C[C'[¢]], by Proposition 1. Hence
8 Th CFC'[S’]] o

Lemma 11 For a TRS R, if sq € C,
cles, then sq head-cycles.

m (t ) cy-

Proof Let sq € Cin (t%) cycles, then there
is a subsequence t! e C[t'] in sg. From
Proposition 9-(2) and the fact that dependency
pair symbols appea.rs only in dependency pairs,
we have C[t}] = th %» Which implies that sq head-

cycles. ]

Lemma 12 For a TRS R, if sq € Ci%, (t*) cy-
cles, then there is a term tlt in sg such that

sequence starting from tx cycles with respect

to ;‘*R

Proof From Lemma 11 and Lemma 10. O

Lemma 13 For a semi-constructor TRS R,
the following statements are equivalent:

1. R does not innermost terminate.

2. There exists I¥ — u* € DP(R) such that
sq head-cycles for some sq € Cir, (u%).
Proof (2 = 1) : It is obvious from Lemma
12, and Proposition 3. (1 = 2) : By Theorem
7 there exists an infinite innermost dependency
chain. By Proposition 9-(1), there exists a se-
quence sq € Ci»_(t). By Proposition 9-(2,3),



there is some rule I — uw! € C which is ap-
plied at root reduction in sq infinitely often.
By Proposition 5-(2), u! is ground. Thus uf

cycle in the form uf —*

3 in RUDP(R) = {li—uf} uf

Theorem 14 Innermost termination of semi-
constructor TRSs is decidable.

Proof The decision procedure for termina-
tion of semi-constructor TRS R with inner-
most rewriting is as follows: consider all terms
Ui, u2,...,Un corresponding to the right-hand
sides of DP(R) = {! - ! |1 < i < n},
and simultaneously generate all innermost re-
duction sequences with respect to R starting
from uy,us,...,u,. It halts if it enumerates all
reachable terms exhaustively or it detects a cy-
cling reduction sequence u; —} C[u;] for some
i.

Suppose R does not innermost terminate. By
Lemma 13, 12 and the groundness of u;’s, we
have a cycling reduction sequence u; -7 Clu]
for some i and C. Hence we detect inner-
most non-termination of R. If R innermost
terminates, then the execution of the reduc-
tion sequence generation stops finally since it
is finitely branching. Thus we detect innermost
termination of R after finitely many steps. O

4 Some Extension and Exam-
ple

In this section, we relax the condition that
guarantees decidability of innermost termina-
tion for semi-constructor TRSs.

Lemma 15 Let R be a TRS whose innermost
termination is equivalent to the non-existence
of an innermost dependency chain that con-
tains infinite use of right-ground dependency
pairs. Then innermost termination of R is de-
cidable.

Proof We apply the above procedure start-
ing with terms uy,us,...,us, where u;’s are all
ground right-hand sides of dependency pairs.
Suppose R is innermost non-termination, we
have an innermost dependency chain with in-
finite use of a right-ground dependency pair.
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Similarly to the semi-constructor case, we have
a loop u; —% C[us], which can be detected by
the procedure. O

Definition 16 (Innermost DP-Graph [1])
The innermost dependency graph of a TRS
R is directed graph whose nodes are the
dependency pairs and there is an arc from
st — t! to ! — o if there exists a normal
substitution o, 7 such that tle -;;:;‘% ubr and
ubr is in normal forms with respect to R.

An approximated dependency graph is a
graph that contains innermost dependency
graph as subgraph. One of computable such
graphs are proposed [1].

Theorem 17 Let R be a TRS and G be an
approximated dependency graph of R. If at
least one node in the cycle is right-ground for

every cycle of G, then innermost termination
of R is decidable.

Proof From Lemma 15. 0

Example 18 Let R = {f(s(z)) — g(z),
g(s(z)) — f(s(0))}. Then DP(R) = {f*(s(z))
— g'z), ¢*(s(z)) — f*(s(0))}. The depen-
dency graph of R has one cycle, which contains
a right ground node. The termination of R is
decidable by Theorem 17. Actually we know
R is innermost terminating from the procedure
in the proof of Theorem 14 since all innermost
reduction sequences from f(s(0)) terminates.
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