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Abstract
This paper shows the undecidability of confluence for length $pr\infty er\backslash \prime ing$ string rewriting

systems. It is proven by reducing the Post’s correspondence problem (PCP). which is known
to be undecidable, to $\infty nfluence$ problem for length preserving string rewriting systems.
More precisely, we designed a reduction algorithm having the property that the existence
of a solution for a given instance of PCP coincides with the non-confluence of the string
rewriting system obtained kom the reduction algorithm.
Keywords Post’s Correspondence Problem

1 Introduction
String rewriting systems (SRSs) are said to be length preserving if the left-hand side and the
right-hand side of each rule have the same length. Caron showed that its termination is an
undecidable property[l]. This paper shows its confluence is also an undecidable property, al-
though both of the rea&abilit\breve v problem and confluence of given strings are easily known to be
decidable.

Confluence is generally undecidable for term rewriting systems (TRSs) and for string lewrit-
ing systems. Hence several decidable classes on confluence have been studied: terminating
TRSs[6], ground TRSs[9]. linear shallow TRSs[3], shallow right-linear TRSs[4]. There are also
results on undecidable classes on confluence: semi-constructor TRSs[7] and flat TRSs$[5, 8]$ .

In this paper, we show the undecidability of confluence for length $praeelt’ing$ SRSs and prove
it by reducing the Post’s correspondence problem (PCP), which is known to be undecidable, to
confluence problem for length preserving strin$g$ rewriting systems. More precisely, we designed
a reduction algorithm having the property that the existence of a solution for a given instance
of PCP coincides with the non-confluence of the SRS obtained fiiom the reduction algorithm.

2 Preliminaries
Let $L^{\backslash }$ be an alphabet, A stmng rewrite rule is a pair of strings $l,$ $r\in 2_{d}^{\backslash t}$ . denoted by $larrow r$ .
A finite set of string rewrite rules is called a $st\dot{n.}ng$ rewnting system (SRS). An SRS $\mathcal{R}$ induces
a oewnte step $relationarrow R$ defined by $sarrow Rt$ if there are $u,v\in L^{\backslash *}$ and a iule $larrow r$ in $\mathcal{R}$

such that $s=ul.v$ and $t=urv$ . We $usearrow \mathcal{R}+for$ the transitive closure $ofarrow \mathcal{R}$ and $arrow \mathcal{R}*$ for the
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reflexive-transitive closure $ofarrow R$ . We say that strings $s_{1}$ and $s_{2}$ are joinable if $s_{1}arrow sarrow s_{2}R\mathcal{R}**$ for

some $s$. denoted by $s_{1}\downarrow_{\mathcal{R}}s_{2}$ . A string $s$ is conffuent if $s_{1}\downarrow \mathcal{R}s_{2}$ for any $s_{1}arrow 8arrow s_{2}\mathcal{R}\mathcal{R}**$ An SRS $\mathcal{R}$

is confluent if all strings are confluent.
In this paper, the notation $|u|$ represents the length of string $u$ . The notation

$a\cdots a\vee m$

denotes

the string that consists of $m$ symbols of $a$ . We refer $\{rarrow l|larrow r\in \mathcal{R}\}$ by $\mathcal{R}^{-1}$ .

3 Length preserving SRSs and undecidability of their confluence
Deflnition 3.1 An SRS $\mathcal{R}$ is said to be length preserving $if|l|=|r|$ for every rule $larrow r$ in $\mathcal{R}$ .

Since rules are finite, symbols appearing in rules are also flnite. Hence stringn composed of
$n$ such symols are finite. Thus the decidability of the followin$g$ problems for length preserving
SRSs are trivially follows:

1. Reachability problem is a problem to decide $s$ il $t$ for given strings $s$ and $t$ and a SRS $\mathcal{R}$ .

2. String-confluence problem is a problem to decide confluence of $s$ for a given strin$gs$ and a
SRS $\mathcal{R}$ .

Now we recall Post’s correspondence problem, which is known to be undecidable.

Deflnltion 3.2 An instance of PCP is a set $P\subseteq \mathcal{A}^{*}xA^{i}$ of finite pairs of strings over an
alphabe$t$ $A$ with at least tu $0$ symbols. A solution of $P$ is a stnng $uJ$ such that

$w=u_{1}\cdots u_{k}=v_{1}\cdots t_{k}’$

for some $(u_{i}.\cdot\iota_{i})\in P$ . The Post’s $co$rrespondence problem $(PCP)$ is a prvblem to decide whether
such a solution exists or not.

Example 3. S $P=$ { $(aba,$ $a)$ .(aa.b, abab), $(bb$, babba)} is an instance of PCP. $P$ has a solution
ababhaababa with $(u_{1}, v_{1})=(ak,a),$ $(u_{2}, \iota_{2})=$ ( $bb$, babba), $(u_{3},v_{3})=$ ($aab$, abab) and $(u_{4}, v_{4})=$

$(aba,a)$ .
Theorem 3.4 ([10]) PCP is undecidable.

As a preparation of the algorithm that transform an instance of PCP to an SRS, we introduce
a kind of null symbol –and an equal length representation of each pair in instances of PCP.
Let $P=(u_{1}, v_{1}),$ $\ldots$ . $(u_{n}.v_{n}.)$ be an instance of PCP over $A$.

$\overline{P}=$ { $(u,varrow^{--}|(u,v)\in P$ and $|u|-|v|=m\geq 0$}
$m$

$\cup$ { $(u-\cdots-,$
$v)\vee m|(u,?1)\in P$

and $|u|-|v|=m<0$}

We $\tau xse\overline{A}$ for $A\cup\{-\}$ .

Example 3.5 For instance $P=\{(ab.a), (a., ba)\}$ of PCP over $\{a, b\}$ , we have

$\overline{P}=\{(ab, a.-), (a-, ba)\}$
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We use symbols lIke $X_{a}^{a}b$ For an easy handling of strings that consist of such symbols, we
introduce a notation $define^{b}d$ as follows:

$(X_{1}\cdots X_{n})_{a_{1}.\cdot a_{n}’}^{b_{1}^{1}\cdot.\cdot..\cdot.b_{\eta}}b_{1}’b_{\eta}a\cdots an=X_{1_{a_{1}}}^{b_{1}},\ldots X_{n_{a_{n}’}}^{\iota_{n}^{n}}b_{1}^{\prime b_{n}’}a_{1a}$

For example $(eee)_{c_{123} ,ddd^{\dot{3}}}^{bb\iota_{3}}a_{12,1^{C}2^{c}}1^{\Phi}2^{a}3$ denotes $e_{c^{1}}^{b^{1}}e_{r}^{\iota_{2}^{2}}e_{c_{3}}^{b_{3}^{3}}d_{1}^{1}d_{2}d_{3}aa_{2}a$ Note that the length of the strings in the superscripts

and subscripts are the same when we use this notation. We call $X$ the tag of $X_{n,b}^{a}b$

Deflnition 3.6 Let $P$ be an instanoe of PCP over A. The SRS $\mathcal{R}_{P}$ over $\rangle_{\lrcorner}^{\backslash }$ obtained fiom $P$ is
defined as follows:

$\rangle_{\lrcorner}^{\backslash }$

$=$ $\{--\overline{=}--, \Psi_{0}, \Psi_{1}, \Psi_{2}\}\cup L_{c}^{\backslash }$

$L_{c}^{\backslash }$ $=$ $t^{xx_{4}rx_{2}xr_{2}}c_{x_{3}}^{x_{2}^{1}},\tilde{c}_{x_{8}}^{x_{2}^{1}}.p_{xs}^{x_{2}^{1}},\tilde{p}_{x_{3}}^{x^{1}},e_{x}^{x_{2}^{1}},\tilde{e}_{x_{4}}^{a:^{1}}x_{4}xxgx_{4}x_{4}^{\theta}r^{\theta}|x_{i}\in z\}$

$\mathcal{R}_{P}$ $=$ $\circ\cup e^{-1}\cup\Phi$

$\Theta$ $=$ $\delta\cup\alpha_{1}\cup\beta_{1}\cup\alpha_{2}\cup h$

$\phi$ $=$ $\eta_{1}\cup\gamma_{2}$

$\gamma_{2}\beta_{2}\gamma_{1}\alpha_{2}\beta_{1}a\delta.1$

$=======$

Example 3.7 Let $P=$ { $(a,$ $ba)$ , (ab, $a)$ } be an instance of PCP, where $P$ has a solution $ah$ . In
$\mathcal{R}_{P}$ , rules in $\alpha_{1}$ and $\beta_{1}$ depends on $P$ and the other rules depend only on the signature $A$.

$\beta_{1}\alpha_{1}$ $==$ $\{\begin{array}{ll}c_{a,b}^{b}c_{\overline{\frac{o}{g}}}\Psi_{0}aarrow p_{a}^{b}\tilde{c}_{\overline{\frac{a}{a}}}\Psi_{1}\epsilon b r_{r,a}^{\alpha}ac^{\frac{b}{b-}}\Psi_{0}arrow p_{Q}^{a}aa\overline{c}^{\frac{b}{b-}}\Psi_{1}\}c^{b},c_{\overline{\frac{a}{a}}}p_{\nu_{1}^{2}}^{x_{2}^{1}}bxa^{l}.arrow p_{a}^{b}\overline{c}_{\frac{l-}{a}}\overline{p}_{a}^{x_{2}^{1}}bx_{2}^{1}a^{A}. c_{a,a_{x_{2}}}^{a}c^{\underline{\frac{b}{b}}}p_{x_{1}}^{a_{2}}a^{l}.1arrow p_{a}^{a^{P}}qa_{r_{2}}\tilde{c}^{\frac{b}{b-}}\tilde{p}_{x_{1}^{2}}^{\alpha}1|x_{1}\in\overline{A}\}\end{array}$

$\mathcal{R}_{P}$ is not confluent since we have the followin$g$ reduction sequences:

$L_{0}^{\backslash }d_{\emptyset b}^{\alpha a}c^{\frac{b}{b-}}c_{a}^{b}r_{\wedge\frac{a-}{a}}\Psi_{0}arrow\alpha_{1}L_{0}^{\backslash }c[cp_{u}^{a}\tilde{c}_{\overline{\frac{a}{a}}}\Psi_{1}barrow\beta_{1}2_{\lrcorner 0}p_{r}^{a}\tilde{c}^{\frac{b}{b-}}\tilde{p}_{a}^{a}\tilde{c}_{\overline{\frac{a}{a}}}\Psi_{1}abarrow\gamma_{1}L_{1}^{\backslash }\tilde{p}_{a,a_{ba}}^{a}\overline{c}^{\underline{\frac{b}{b}}}\overline{p}_{a}^{b}d_{-}\Psi_{1}\iota a_{\sim}-$,

$2_{0}^{\backslash } \lrcorner ae_{4}^{aa}c^{\frac{b}{b-}}c_{a,b}^{b}c_{\frac{a-}{n}}\Psi_{0}arrow*\delta 2_{\lrcorner}^{\backslash }0_{a}c_{\alpha}^{t}qc^{\frac{b}{bb}}c[c_{-,-}^{\overline{a}}\Psi_{0}arrow L_{0_{aa_{-}}^{c_{\emptyset}^{a},c^{\frac{b}{bb}}c_{\alpha}^{b}e_{-}^{a}\Psi_{2}}}^{\backslash }\alpha_{2}na-arrow\delta_{2}^{*}\}_{d}^{\backslash ^{0}}0e_{a,a}^{a}\tilde{e}^{\frac{b}{bb}}\tilde{e}[\tilde{e}_{-,-}^{\overline{n}}\Psi_{2}arrow\gamma_{2}1_{d}^{t}2_{an_{-}}\tilde{e}_{a}^{n}c\frac{b}{bb}b$

and their last step by $\gamma_{i}’$ rules are one way.
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Obviouslv $\mathcal{R}_{P}$ is length preserving. The proof of the following main lemma is foumd in the
next section.

Lemma 3.8 Let $P$ be an $in,stanoe$ of $PCP$. Then, $P$ has a solution if and only if $\mathcal{R}_{P}$ is not
confluent.

Theorem 3.9 Confluence of length presern ing SRSs is undecidable.

Proof We assume that confluence of length preserving SRSs is decidable. Then it follows $h\cdot om$

Lemma 3.8 that PCP is decidable, which contradicts to Theorem 3.4. $0$

Strings can be regarded as terms over unaly functions and a variable. For example, a string
abc corresponds to a term $a(b(c(x)))$ . Hence we can consider classae of TRSs that contains all
length preserving SRSs. Then, the undecidabihity of confluence for such classes is a corollary of
the above theorem.

Structure preserving TRSs are TRSs in which the left-hand side and right-hand side of each
rule have the same tree structure and the same variable occurrences. The tree structures are
$8table$ against reductions in this class of TRSs. Hence we have the following corollary.

Corollary 3.10 Conf uence of structure preserwing TRSs is undecidable.

4 Proof of Lemma 3.8
We use notion of persistency to simplify proofs as done in [2].

Theorem 4.1 (persistence of confluence[ll]) A well-typed (many-sorted) term, $muJt\cdot\dot{t}ting$

system is confluent if and only if its underlined (untyped) term. $oeu\prime ri$.ti.ng system is confluent.
Now we apply Theorem 4.1 to $\mathcal{R}_{P}$ .

Lemma 4.2 Let $\mathcal{R}_{P}$ be the SRS over $L^{\backslash }=\{_{-0,-1}^{--}--,\Xi_{2}, \Psi_{0}, \Psi_{1}, \Psi_{2}\}\cup 1_{d}^{\backslash }C$ obtainedfrom an instance
$P$ of $PCP$. Then $\mathcal{R}_{P}$ is confluent if and only if $u$ is confluent for every $w$ in either of the follounng
three forms;

$(p1)-i-$

$(p2)\chi\Psi_{j:}$

$(pS)\Xi_{i}\chi\Psi_{j}$ ,

where $\chi\in(\Sigma_{c})^{*},$ $i,j\in\{0,1,2\}$ .

Proof. Considerin$g$ followin$g$ typing to $Rp$ . the lemma follows $h\cdot om$ the persistency (Theo-
rem 4.1).

$\Psi_{l}$, : $\mathcal{T}’’arrow \mathcal{T}$ for each $i\in\{0,1,2\}$

$X–$
: $\mathcal{T}arrow \mathcal{T}$ for each $X\in 2_{d}^{\backslash }c$

$rightarrow|$ : $Tarrow \mathcal{T}’$ for each $i\in\{0,1,2\}$

口
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In the sequel, we analyze the confluent propertv for $\mathcal{R}_{P}=e\cup\Theta^{-1}\cup\Phi$ obtained $h\cdot om$ an
instance $P$ of PCP.

We define an equivalence $relation\sim\subseteq(\overline{A})^{*}\cross(\overline{A})^{*}$ as identity relation with ignoring all null
svmbols-. that is $u\sim/1^{1}$ if and only if $\tilde{u}=\tilde{t’}$ where $\tilde{u}$ and $\tilde{v}$ denote the strings obtained $h\cdot omu$

and $v$ by omitting all $-s$ re pectively.
For a string $—o(c\cdots c)_{u,\iota},\Psi_{0}$, rules in $\alpha_{1}$ and $\beta_{1}$ are to check that $u=u’$ and $v=v’$ and

that $(u, v)$ consists of a list of pairs in $\overline{P}$. Rules in $\delta$ gather null symbols in subscripts $u’$ and $v’$

backward. Erom these observation. the following lemma holds.

Lemma 4.3 Let $u.u’,$ $v,$ $v’\in(\overline{A})^{*}$ . Then, $u’\sim u=u_{1}\cdots u_{k}$ and $v’\sim v=v_{1}\cdots v_{k}$ for some $k$

and $(u_{i},v_{i})\in\overline{P}$ if and only if $\Xi\cdot,,\Psi_{0_{R_{P}^{*}}}\underline{=}p_{x}^{x_{2}}\chi\Psi_{1}u^{x_{1}}\iota$ for some $\chi\in(\Sigma_{c})^{*}$ .

Proof. $(\Rightarrow)$ We have a reduction $8equence\Xi_{0}(c\cdots c)_{u}^{v},\Psi_{0}uarrow*---o(c\cdots c)_{u}^{u}l\Psi_{0}\mathfrak{i}$ since $u\sim u’$ and
$t’$ ’ $\delta\cup\delta^{-1}$

$v\sim\iota’$ . As shown in Example 3.5, we have a reduction sequence $\Xi_{0}(c\cdots c)_{u}^{\iota}vu_{\Psi_{0_{a_{1}\cup\beta_{1}}0_{x_{2}^{1}}}^{l}}^{x}-\overline{=}p_{x}^{x_{2}^{1}}\chi\Psi_{1}$

for some $x_{i}\in\overline{\mathcal{A}}$ since $u=u_{1}\cdots u_{n}$ and $v=v_{1}\cdots v_{n}$ for some $(u:, v_{i})\in\overline{P}$.
$(\Leftarrow)$ Let $\equiv o(c\cdots c)_{u}\mathfrak{i}_{\Psi_{0\overline{=}p_{x_{1}^{2}}^{x}\chi\Psi_{1}}^{s^{x}}}\iota-0v\mathcal{R}_{P}x_{2}1$ . Then rules $\alpha_{1}$ and $\beta_{1}$ must be used in the reduction and

all tags of $\chi$ are $p’$ or $d$ . Since $u$ and $v$ cannot be modifi$ed$ by any rule in $\mathcal{R}_{P}$ and any possible
reductions have no harmful branches from the construction of $\mathcal{R}_{P}$ , the string $\overline{=}o(c\cdots c)_{\dot{u}}^{u}1\Psi_{0}1$

’

must appears in the reduction. Thus we have $u=u_{1}\cdots u_{k}$ and $v=v_{1}\cdots v_{k}$ for some $k$ and
$(u_{i},v_{i})\in\overline{P}h\cdot 0\ln$ the construction of $\alpha_{1}$ and $\beta_{1}$ rules. We also have $u\sim u’$ and $v\sim v’$ from the
construction of $\delta_{1}u1u$ . $0$

For a string $\Xi_{0}(c\cdots c)_{u}^{v},\Psi_{0}u$ rules in $\alpha_{2}$ and $\beta_{2}$ are to check that $u’=v’$ . $Rom$ this obselva$\cdot$

$\sqrt{}$

tion, the following lemma holds.

Lemma 4.4 Let $u,$ $u’.v.v’\in(\overline{A})^{*}$ such that $|u|=|u’|=|v|=|v’|$ . Then, $u’\sim’\iota’$ if and only if
$—o(c\cdots c)_{u,\sqrt{}}^{1^{1}},0_{\mathcal{R}_{P}^{*}}u_{\Psiarrow}--0x^{\theta}r_{\theta}$ for some $\chi\in(\Sigma_{c})^{*}$ .

Proof. $(\Rightarrow)$ We hase a reduction sequence $\Xi_{0}(c\cdots c)_{u,t}^{v},0_{\delta\cup^{*-}\delta^{-1}}-o(c\cdots c)_{u,u}^{\iota},\Psi_{0}u_{\Psiarrow-}u$ since $u’\sim v’$ . As

shown in Example 3.5, we have a reduction sequence $\Xi_{0}(c\cdots c)_{u}^{v}u_{\Psi_{0_{\alpha_{2}\cup B_{2}}}^{r^{x}}}-\overline{=}0_{x_{2}}^{e_{x_{1}}^{x_{2}^{1}}\chi\Psi_{2}}u$ for some
$x_{i}\in\overline{\mathcal{A}}$ .

$(\Leftarrow)$ Let $-0-u_{\Psi_{0_{\mathcal{R}_{P}}}^{c^{x}}}\sqrt{}$ . Then iules $\alpha_{2}$ and $\beta_{2}$ must be used and all tags of $\chi$

are $e’$ . Since any possible reductions have no harmful branches from the construction of $\mathcal{R}_{P}$ ,
the string $\Xi_{0}(c\cdots c)_{w}^{\iota}\Psi_{0}w$ must appears in the reduction for some string $u$). Thus we have $u$ $‘\sim w$

and $v’\sim wh\cdot om$ the construction of $\delta$ rules. $\square$

Lemma 4.5 Let $P$ be an instance of $PCP$.
$(a)$ If $P$ has a solution, then $\Xi_{0}\Psi_{1-0}.\Psi_{0-0_{x_{3}^{l}}\lambda’}\Psi_{2}x_{2}R_{P}^{*-}1R_{P}^{*-}l\cdot u^{x}$ for some $\chi,\swarrow\in(\Sigma_{c})^{*}$ .

$(b)If—o_{\iota^{1}}p_{x_{2}^{2}}^{s^{1}}.\chi\Psi_{1}lrightarrow^{R_{P}^{*}}--0_{x_{S}}-e_{x}^{x_{\}^{1}}x^{J}\Psi_{2}x_{2/}$ for some $\chi.\chi’\in(\Sigma_{c})$ , then $P$ has a sdution.

Proof. (a) Let $P$ has a solution. Then we have $u=u_{1}\cdots u_{k}\sim v_{1}\cdots v_{k}=v$ for some $k$ and
$(u_{i}, t_{i})\in P$. Hence the claim follows $h\cdot om$ Lemma 4.3, Lemma 4.4.
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(b) Let $-0_{J}-r_{1}1rightarrow^{\mathcal{R}_{P}^{*}}\Xi_{0^{e_{J^{\backslash }}^{J}}.3}x_{8}\chi’\Psi_{2}r_{2}1$ Then it is easy to see that a string $\Xi_{0}(c\cdots c)_{u,l}^{\iota},\Psi_{0}u$ must
appear in this reduction. $R\cdot om$ Lemma 4.3 and Lemma 4.4, we have $u=u_{1}\cdots u_{k}\sim$

$v_{1}\cdots v_{k}=v$ for some $k$ and $(u_{i,i}tJ)\in\overline{P}$, which means $P$ has a solution $\tilde{u}$ . $\square$

The following proposition obviously follows since $(\mathcal{R}_{P}\backslash (\gamma_{1}\cup\gamma_{2}))^{-1}\subseteq \mathcal{R}_{P}$.

Proposition 4.6 Let $S_{1},$ $S_{2}\in \mathfrak{x}^{\backslash }*$ . Then,
(1) $S_{1}\mathcal{R}_{P^{*}\backslash \gamma 1}^{-}S_{2}$ implies $S_{1}\iota_{\mathcal{R}_{P}}s_{2}$ , and

(2) $S_{1}\mathcal{R}_{P^{*}\backslash /2}^{-}\wedge S_{2}$ implies $S_{1}\downarrow R_{P}S_{2}$ .

Proof. Proof by induction on the number of reductions by $\gamma$

. rules. 口

Proof for Lemma 3.8
$(\Rightarrow)$ : Let $P$ has a solution. Then we have $\Xi_{0}p_{x_{1},x_{2}}^{x_{2}^{1}}\chi\Psi_{1}xR_{P}^{*}arrow---o(c\cdots c)_{u,\sqrt{}}’,0_{R_{P}^{*}}u_{\Psiarrow}\Xi_{0_{x_{\theta}}^{e_{x_{\theta}}^{\tau_{2}^{1}}\chi’\Psi_{2}}}l$ for some

$\chi.\chi’\in(\Sigma_{c})^{*}$ by Lemma 4.5(a). Hence we have $\Xi_{1}\tilde{p}_{x_{1}^{2},s_{2}}^{x}.\chi\Psi_{1}x1R_{P}^{*}arrow---o(c\cdots c)_{u,\iota}^{v},0_{R_{P}^{*}}u_{\Psiarrow}\underline{=}_{2,}\tilde{e}_{x\mathfrak{g}}^{x_{2}}\swarrow\Psi_{2}x_{l}1$by
usin$g$ rules $\gamma_{1}$ and $\gamma_{2}$ , which leads non-confluence of $R_{P}$ .

$(\Leftarrow)$ : Let $P$ has no solution. Let $s$ show that $\mathcal{R}_{P}$ is confluent. Let $S_{1}arrow S_{0}-S_{2}R_{P}^{*}R_{P}^{*}$
$R\cdot om$

Lemma 4.2, it is enough to consider three kind of forms (p1), (p2) and (p3) as $S_{0}$ .
$\bullet$ Consider the case that $S_{0}$ starts $with—0$ and ends with $\Psi_{i}$ for some $i\in\{0,1,2\}$ . Assume

that both of $\gamma_{1}$ and $\gamma_{2}$ are applied in the reduction sequence. Then $P$ must have a solution
by Lemma 4.5(b), which is a contradiction. Hence at least one of $\gamma_{1}$ or $\gamma_{2}$ rules cannot be
applied in the reduction sequence.

1 In either of the other cases:

-The case that $S_{0}$ ends with $\Psi_{i}$ for some $i\in\{0,1,2\}$ and all other symbols are of $\Sigma_{c}^{\backslash }$.
– The case that $S_{0}$ starts with $\Xi_{1}$ of $\Xi_{2}$ , and
-The case that $S_{0}$ start8 with $\Xi_{0}$ and all other symbols are of $2_{\lrcorner}^{\backslash }c$

’

It is easy to see that at least one of $\gamma_{1}$ or $\gamma_{2}$ niles cannot be aPpli\’e in the reduction
sequence.

In any of the above cases, we have $S_{1}\iota_{R_{P}}s_{2}$ by Proposition 4.6. 口
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