goooboooogn
O 15540 2007 0O 171-177 171

Confluence of Length Preserving String Rewriting Systems is Undecidable

Yi Wang, Masahiko Sakai. Naoki Nishida,
Toshiki Sakabe, Keiichirou Kusakari

Graduate School of Information Science, Nagoya University

{wangyi®@trs.cm., sakai®, nishida®, sakabe@, kusakari®}is.nagoya-u.ac.jp

Abstract

This paper shows the undecidability of confluence for length preserving string rewriting
systems. It is proven by reducing the Post's correspondence problem (PCP), which is known
to be undecidable, to confluence problem for length preserving string rewriting systems.
More precisely, we designed a reduction algorithm having the property that the existence
of a solution for a given instance of PCP coincides with the non-confluence of the string
rewriting system obtained from the reduction algorithm.

Keywords Post’s Correspondence Problem

1 Introduction

String rewriting systems (SRSs) are said to be length preserving if the left-hand side and the
right-hand side of each rule have the same length. Caron showed that its termination is an
undecidable property[l]. This paper shows its confluence is also an undecidable property, al-
though both of the reachability problem and confluence of given strings are easily known to be
decidable.

Confluence is generally undecidable for term rewriting systems (TRSs) and for string rewrit-
ing systems. Hence several decidable classes on confluence have been studied: terminating
TRSs|6], ground TRSs([9], linear shallow TRSs|[3], shallow right-linear TRSs[4]. There are also
results on undecidable classes on confluence: semi-constructor TRSs|7] and flat TRSs(5, 8].

In this paper, we show the undecidability of confluence for length preserving SRSs and prove
it by reducing the Post’s correspondence problem (PCP), which is known to be undecidable, to
confluence problem for length preserving string rewriting systems. More precisely, we designed
a reduction algorithm having the property that the existence of a solution for a given instance
of PCP coincides with the non-confluence of the SRS obtained from the reduction algorithm.

2 Preliminaries

Let X be an alphabet. A string rewrite rule is a pair of strings I, r € X*, denoted by | — r.
A finite set of string rewrite rules is called a string rewriting system (SRS). An SRS R induces
a rewrite step relation —g defined by s — t if there are u,v» € X* and arulel - rin R
such that s = ulv and t = urv. We use ;—:v for the transitive closure of —+% and % for the



172

reflexive-transitive closure of —%. We say that strings s; and s, are joinable if 81‘;’3:—82 for
R

some s, denoted by 1 lr s2. A string s is confluent if s; |g so for any 81%3—;’32. An SRS R

is confluent if all strings are confluent.
In this paper, the notation |u| represents the length of string u. The notation g - - a denotes

the string that consists of m symbols of a. We refer {r » 1|l —-r € R} by R~L.

3 Length preserving SRSs and undecidability of their confluence
Definition 3.1 An SRS R is said to be length preserving if |l| = |r| for every rule =7 in R.

Since rules are finite, symbols appearing in rules are also finite. Hence strings composed of
n such symols are finite. Thus the decidability of the following problems for length preserving
SRSs are trivially follows:

1. Reachability problem is a problem to decide s%t for given strings s and t and a SRS R.

2. String-confluence problem is a problem to decide confluence of s for a given string s and a
SRS R.

Now we recall Post’s correspondence problem, which is known to be undecidable.

Definition 3.2 An instance of PCP is a set P C A* x A* of finite pairs of strings over an
alphabet A with at least two symbols. A solution of P is a string w such that

W=Uy* U=V Vg

for some (u;,v;) € P. The Post’s correspondence problem (PCP) is a problem to decide whether
such a solution erists or not.

,Eé:am.ple 3.8 P = {(aba,a), (aab, abab),(bb, babba)} is an instance of PCP. P has a solution
ababbaababa with (uy,v1) = (aba,a), (ug,v2) = (bb, babba), (u3,vs) = (aab,abab) and (u4,v4) =
(aba,a).

Theorem 3.4 ([10}) PCP is undecidable.

As a preparation of the algorithm that transform an instance of PCP to an SRS, we introduce
a kind of null symbol — and an equal length representation of each pair in instances of PCP.
Let P = (uj,v1),...,(un,vy) be an instance of PCP over A.

P= {(uv—-=)|(u,v) € Pand |u| - v| =m > 0}

U{(u="-+-—,v) | (u,v) € P and |u| - |v]| = m < 0}

m

We use A for AU{-}.
Ezample 3.5 For instance P = {(ab, a), (a,ba)} of PCP over {a,b}, we have
P = {(ab,a~),(a—,ba)}



We use symbols like X!,. For an easy handling of strings that consist of such symbols, we
¥
introduce a notation defined as follows:

ay-an

a) ﬂn
(X1 Xa)h T = X :* Xna)
b b, b’l b
ajagag a] az ag
For example (eee)%%%‘i denotes e:1 e§§ egi Note that the length of the strings in the superscripts
1 92

and subscripts are the same when we use this notation. We call X the tag of X?,.

Definition 3.6 Let P be an instance of PCP over A. The SRS Rp over Y. obtained from P is
defined as follows:

\ — p— — Al
Y = {505:'19:21 Wo,\pl’wz}ULc
Lt | | et T bt | Ty
Al Ed —w -
LC = {ng,c;,.p;g,p:g,e;-,,erq l Z; GZ}
L2 T, Ty T4 T3 rg

Rp = OuUB-lyud
6 = UaUBZiUaaUB3
¢ = MmUnm .
:;l zl bt ] gl :! v1 ;l vl —
é = <c?ef? — 2”2, c,§c$§ —cict |z y; € A z€A
vy ¥4 T4 yy - = =
@1 = fleeafvo— (-t | (uv) € P
i - T - -
B = (o afpll = (o0} | (wo) € Py € A
*2
F1 +1 —
— Fd —
71 = < Egpi — E1pi? l r; €A
r2 xr2
1 1 —_—
az = <cV¥y— eiVy l T;,y; €A
T3 3
, oo 1 v
B2 = Crgevg - "xgew l Tj,Y; € A
r3 vs r3 9.
£y
Y2 = 4 Zpe:l -+.=.2e§§ x; GI}
3 r3

Ezample 3.7 Let P = {(a,ba), (ab,a)} be an instance of PCP, where P has a solution aba. In
Rp, rules in a; and 3 depends on P and the other rules depend only on the signature A.

a — a a b q-b
a; = c‘g’c‘i‘llo—»pﬁct\lll, c:c,,"llo—vpzc;\lll
a
a - ¥ - "1 a b -'1 a b —
B/ = c§c”.p;§ —»pac“ p,l, ciey pr, = 3 pp, ;€A
a r2

Rp is not confluent since we have the following reduction sequences:

a b a - a - ab a - b a -

Yocic, cber Vg — X 82 Wy — Yoplé, phée v — Y pac phee

d;b_ggox Ocacbpg;\plﬂllo:;a'ga_l_“ lpgt_,_Pgn 1,

Yoche, bt Wo 5 Yocher chet o Fet Wy 5 Moeler ghet vy — 3 W
—_— a A — a Al —

c‘g’,,_zcs 0 ocgczcgc:\yo:;)_‘ocgcgr%e:\llzg 0e3 €, Egét 2—-’ 2eae,,eae 2

and their last step by ~; rules are one way.

173



174

Obviously Rp is length preserving. The proof of the following main lemma is found in the
next section.

Lemma 3.8 Let P be an instance of PCP. Then, P has a solution if and only if Rp is not
confluent,

Theorem 3.9 Confluence of length preserving SRSs is undecidable.

Proof. We assume that confluence of length preserving SRSs is decidable. Then it follows from
Lemma 3.8 that PCP is decidable, which contradicts to Theorem 3.4. 0

Strings can be regarded as terms over unary functions and a variable. For example, a string
abe corresponds to a term a(b(c(x))). Hence we can consider classes of TRSs that contains all
length preserving SRSs. Then, the undecidability of confluence for such classes is a corollary of
the above theorem. .

Structure preserving TRSs are TRSs in which the left-hand side and right-hand side of eac
rule have the same tree structure and the same variable occurrences. The tree structures are
stable against reductions in this class of TRSs. Hence we have the following corollary.

Corollary 3.10 Confluence of structure preserving TRSs is undecidable.

4 Proof of Lemma 3.8
We use notion of persistency to simplify proofs as done in [2].

Theorem 4.1 (persistence of confluence[11]) A well-typed (many-sorted) term rewriting
system is confluent if and only if its underlined (untyped) term rewriting system is confluent.

Now we apply Theorem 4.1 to Rp.

Lemma 4.2 Let Rp be the SRS over ¥ = {Z4,E;, 3, Vo, ¥1, V2 }UY, obtained from an instance
P of PCP. Then Rp is confluent if and only if w is confluent for every w in either of the following
three forms:

(p1) Eix

(p2) x¥;,

(r3) SixV¥;,

where x € (£.)*, i,j € {0,1,2}.

Proof. Considering following typing to Rp, the lemma follows from the persistency (Theo-
rem 4.1).

V,: 7" > T foreachie€ {0,1,2}
X:T->T for each X € X,
Ei:T—>T foreachic€{0,1,2}



175

In the sequel, we analyze the confluent property for Rp = & U©~1 U ¢ obtained from an
instance P of PCP.

We define an equivalence relation ~C (A)* x (A)* as identity relation with ignoring all null
symbols —, that is u ~ v if and only if & = ¢ where @ and 7 denote the strings obtained from u
and » by omitting all —s respectively.

For a string Zg(c--- )2, Wo, rules in a; and 3; are to check that u = v’ and v = v’ and

that (u,v) consists of a list of pairs in P. Rules in § gather null symbols in subscripts u’ and »’
backward. From these observation, the following lemma holds.
Lemma 4.3 Let u,v/,v,v' € (A)*. Then, v/ ~u = u; ‘up and v' ~ v =y v for some k

and (u;,v;) € P if and only if Eg(c-- ) !llo-—v:.op,,x\lll for some x € (X.)*

Proof. (=) We have a reduction sequence Zg(c- - \J!o —b ...o(c c)g‘llo since u ~ v’ and

u x
v ~ v". As shown in Example 3.5, we have a reduction sequence Ep(c: - c)i VYo —:J-»B Zopa3 x¥q
v aUB T2
for some z; € A since u = u; - u,, and v = vy - - - v, for some (u;,v;) € P.
(¢=) Let Sp(c- - c)u, o — 1? -.-Op.rl x\lll Then rules a; and 3; must be used in the reduction and

all tags of x are p’ or c' Since u and v cannot be modified by any rule in Rp and any possible
reductions have no harmful branches from the construction of Rp, the string Zg(c-- c)..\llg
must appears in the reduction. Thus we have v = u;---ux and v = vy -+ v, for some k and
(ui,v;) € P from the construction of a; and B; rules. We also have u ~ u’ and v ~ v’ from the
construction of J rules. )

For a string Zg(c- - - c)E, Wy, rules in a3 and B; are to check that u’ = v/. From this observa-
v
tion, the following lemma holds.

Lemma 4.4 Let u,u’ s v' € (A)* such that |u| = |u/| = |v] = |v’|. Then, v’ ~ ' if and only if
Eo(e- C)..:‘I’o -+ ~0311X‘I’2 for some x € (X.)*.
Proof. (=>) We have a reduction sequence Eq(c- - r)u, \Iloa = Solc- +¢)%, o since v’ ~ . As
u’ rq
shown in Example 3.5, we have a reduction sequence Zg(c- - c):,\llo -'Jﬁz':‘.oeﬁ x¥2 for some
w! 251 Ir2
z; € A
u 1
(«=) Let Zg(c-- -c)", ‘110_"3 Eoeifx\llz. Then rules a3 and 32 must be used and all tags of x
are ¢/. Since any poss1ble reductlons have no harmful branches from the construction of Rp,
the stung Zolc-- ) V¥o must appears in the reduction for some string w. Thus we have u’ ~ w
and v ~ w from the construction of & rules. a
Lemma 4.5 Let P be an instance of PCP.

u 1
(a) If P has a solution, then -OPqX‘l’l 4— Zo(e- - e)i¥o é—v Zoer2x' Vg for some x, X' € (X.)*.
iy P ry
] ]
(b) If Eop:2 x ¥, 41%-» Zoez2 X' Yy for some x. X' € (.)*, then P has a solution.
¥ P s3

~ Proof.  (a) Let P has a solution. Then we have u = uj -+ ug ~ v; -+ v = v for some k and
(u4,v;) € P. Hence the claim follows from Lemma 4.3, Lemma 4.4.



176

o - . s -
(b) Let Zop:2xV¥, +—1€*—-> :Oelgx' V;. Then it is easy to see that a string Zg(c: - r)u,\lfo must
2 P

appear in this reductlon From Lemma 4.3 and Lemma 4.4, we have u = u] “up ~
vy« v = v for some k and (u;,v;) € P, which means P has a solution 1. m}

The following proposition obviously follows since (Rp\(11 U12))~! C Rp.

Proposition 4.6 Let 51,5 € X*. Then,
(1) 8 {-\-» Sy implies 81 |», Sz, and

P\71
(2) S «— S, implies S lr, Sa.
Rp\72
Proof. Proof by induction on the number of reductions by 4 rules. ]

Proof for Lemma 3.8
Y u bt |
(=): Let P has a solution. Then we have EOPES x¥, 1{; Zolc:-- c):;; 2 1?*; Eoezs x'V¥2 for some
11 = “ '
x:X € (X¢)* by Lemma 4.5(a). Hence we have Elﬁzzx\lll 14;—}’ :,o(c-o-c)';:\llo 1? ...2eu,x’\Ilg by
P

using rules y; and 49, which leads non-confluence of Rp.
(«=): Let P has no solution. Let’s show that Rp is confluent. Let sle-so—»sz From

Lemma 4.2, it is enough to consider three kind of forms (pl), (p2) and (p3) as So
e Consider the case that Sp starts with Z¢ and ends with ¥, for some i € {0,1,2}. Assume
that both of 4; and 72 are applied in the reduction sequence. Then P must have a solution

by Lemma 4.5(b), which is a contradiction. Hence at least one of 4, or 4, rules cannot be
applied in the reduction sequence.

o In either of the other cases:

— The case that Sy ends with ¥, for some ¢ € {0,1,2} and all other symbols are of ¥.,
— The case that Sg starts with Z; of Z;, and
~ The case that Sy starts with =g and all other symbols are of X,

It is easy to see that at least one of v; or 49 rules cannot be applied in the reduction
sequence.

In any of the above cases, we have S; |g, S2 by Proposition 4.6. m]

References

[1] A.-C. Caron. Linear Bounded Automata and Rewrite Systems: Influence of Initial Config-
uration on Decision Properties, Proc. of the Colloquium on Trees in Algebra and Program-
ming(CAAP 91), LNCS, 493, pp.74-89, 1991.

[2] A. Geser, A. Middeldorp, E. Ohlebusch, H. Zantema. Relative Undecidability in Term
Rewriting (Part 2: The confluence Hierarchy), Information and Computation, 178(1),
pp.132-148, 2002.

[3] G. Godoy, A. Tiwari, R. Verma. On the Confluence of Linear Shallow Term Rewriting Sys-
tems, Proc. of 20th Intl. Symposium on Theoretical Aspects of Computer Science (STACS
2003), Lecture Notes in Computer Science, 2507, pp.85-96, 2003.



[4] G. Godoy, A. Tiwari. Confluence of Shallow Right-Linear Rewrite Systems, Proc. of 14th
Annual Conf. on Computer Science Logic (CSL 2005), LNCS, 3634, pp.541-556, 2005.

[5] F. Jacquemard. Reachability and Confluence are Undecidable for Flat Term Rewriting Sys-
tems, Information Processing Letters 87(5), pp.265-270, 2003.

(6] K. E. Knuth, P. B. Bendix. Computational Problems in Abstract Algebra, Pergamon Press,
Oxford, pp.263-297, 1970. ‘

[7] 1. Mitsuhashi, M. Oyamguchi, Y. Ohta, and T. Yamada. The Joinability and Related De-
cision Problems for Confluent Semi-Constructor TRSs, Transactions of Information Pro-
cessing Society of Japan, 47(5), pp.1502-1514, 2006.

[8] 1. Mitsuhashi, M. Oyamaguchi and F. Jacquemard. The Confluence Problem for Flat TRSs,
Proc. of 8th Intl. Conf. on Artificial Intelligence and Symbolic Computation (AISC’06),
LNAI 4120, pp.68-81, 2006.

[9] M. Oyamaguchi, The Church-Rosser Property for ground term rewriting systems is Decid-
able, Theoretical Computer Science, 49, pp.43-79, 1987.

[10] E. Post. A Variant of a Recursively Unsolvable Problem. Bulletin of the American Mathe-
matical Society, 52, pp.264-268, 1946.

[11] H. Zantema, Termination of Term Rewriting: Interpretation and type elimination, Journal
of Symbolic Computation, 17, pp.23-50, 1994.

177



