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Abstract

This paper examines a simple mode of endogenously growing econ-
omy in the absence of secure property rights. Unlike the existing
studies on growth model without secure property rights that assume
constant-returns to scale technologies with fixed labor supply, this pa-
per considers variable labor-leisure choice and increasing returns. As
a result of these generalizations, it is shown that growth performance
of the economy depends not only on over consumption due to the
common-pool problem but also on the scale effect generated by the
presence of increasing returns.

1 Introduction
The purpose of this paper is to investigate the role of property rights in
the process of economic growth. When examining the relationship between
property rights and economic growth, it is useful to investigate the behavior
of growing economies in which private property rights are insecure. In this
respect, a series of papers by Tornell and Velasco (1992), Lane and Tornell
(1996), Tornell (1998) and Tornell and Lane (1999) present useful frameworks
for analyzing dynamic economies in the absence of secure property rights.1
These studies construct dynamic games played by multiple interest groups
that intend to exploit commonly accessible resources. A distinguished feature

’This paper is based on Mino (2006) and Itaya and Mino (2007). A more detailed
discussion can be found in Itaya and Mino (2007).
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of this kind of modeling is that due to the common $po$ol problem, arise in
the number of agents participating the exploitation game generally has a
negative inlpact on growth. In addition, there may exist the ‘voracity effect’:
an lncrease in productivity may yield alarger consumption growth of each
agent than the income growth generated by the technological improvement.
If this is the cas$e$ , ahigher productivity depresses economic growth, which
will not be observed in an economy with secure property rights.

The existing investigations mentioned above use $Ak$ growth models to
obtain analytically tractable solutions of the dynamic games. Namely, they
assume that final goods are produced by acommonly owned capital stock
alone with alinear technology.2In this setting each agent can consume final
goods without participating any production activity. One may conjecture
that the main findings in the growth models with insecure property rights
may be generated not only by the common $po$ol issue but also by such a
simple technological specification. To examine this question, we extend the
baseline model by aesuming that production needs labor as well as capital
and hence the agents should participate production activities by supplying
their labor force. To keep the tractability of model analysis, we still assume
that output linearly depends on capital, which means that the $ag$gregate
production technology exhibits increaeing returns to scale with respect to
capital and labor. As aresult of our generalization, we find that there are
two opposing factors that affect growth performance of the economy. The
first is over consumption caused by the common pool problem and the second
is the scale effect generated by the presence of increasing returns. The first
factor may yield the voracity effect, while the second one contributes to
accelerating growth. The resulting growth performance of the economy with
insecure property rights, therefor.e, depends on which factor dominates in the
process of capital accumulation.

This paper is organizes as follows. In the next section, we summarize
the main results obtained in the simplest $Ak$ model of endogenous growth
without secure property rights. Even though the model is extremely simple,
many of the existing studies on growth and property rights have utilized this
framework so that it present the baseline consideration on the issue. Section
3constructs our original model by introducing variable labor supply td
increasing returns to scale. Our main results under alternative specifications
of utility function are also displayed in this section. Section 4concludes..

2Lindner and Strulik $(2002, 2004)$ also analyze a model with convex technology under
which continuing growth is not sustained in the steady state equilibrium.
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2Voracity and Growth: A Simple Example
Before discussing our setting, it would be useful to review the baseline model
of endogenous growth without secure property rights. Although the model
is extremely simple, the analytical results displayed below present the com-
mon background for many existing studies on growth and property rights.
Consider an economy consisting of $n(\geq 2)$ interest groups. The production
technology of the economy is jointly owned by the groups and it is specified
as

$y=Ak,$ $A>0$ , (1)

where $y$ is the aggregate product and $k$ denotes capital stock. The number
of the agents in each group is normalized to one. The objective of each group
is to maximize a discounted sum of utilities,

$U_{i}= \int_{0}^{\infty}\frac{c_{i}^{1-\sigma}}{1-\sigma}e^{-\rho t}dt$, $\sigma>0$ , $\sigma\neq 1$ , $\rho>0$ , $i=1,2,$ $\ldots.,n$ ,

where $c_{i}$ is consumption of group $i$ .
We have assumed that there is no property right for capital, so that the

capital stock is accumulated according to

$\dot{k}=Ak-\Sigma_{i=1^{C_{i}}}^{n}$ . (2)

In this setting, group $i(i=1.2\ldots.n)$ selects the optimal level of $c_{j}$ in each
moment to maximize $U_{i}$ subject to (2) and the initial level of $k_{0}$ . Hence, our
model is a differential game among $n$ groups in which the control of each
player is $q$ and the state variable of the game is the aggregate capital stock
$k$ . We will focus on the Markov-perfect Nash (feedback Nash) equilibrium of
this game.

Defining the value function of group $i$ as

$V_{i}(k)= \max_{\{\alpha\}_{t=0}^{\infty}}\{\int_{0}^{\infty}\frac{c_{i}^{1-\sigma}}{1-\sigma}e^{-\rho t}dt$ subject to (2) $\}$ ,

we may set up the following Hamilton-Jacobi-Bellman (HJB) equation for
this problem:

$\rho V_{i}(k)=\max_{c}\{\frac{c_{i}^{1-\sigma}}{1-\sigma}+V_{i}’(k)(Ak-\Sigma_{i=1}^{n}q.)\}$ for all $t\geq 0,$ $j=1,2,$ $\ldots,n$ .
(3)

The first-order condition for the optimal choice of consumption is

$c_{i}^{-\sigma}=V_{i}’(k)$ . (4)
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Therefore, the optimal consumption is expressed as

$c_{i}=c_{i}(k)$ .

Substituting this into the HJB equation and applying the envelope theorem,
we obtain:

$\rho V’(k)=V_{i}’(k)A+V_{i}^{\prime’}(k)(Ak-\Sigma_{i=1}^{n}q(k))-V_{i}’(k)\Sigma_{j\neq i}c_{j}’(k)$ , $i=1,2,$ $\ldots,$
$n$ .

(5)
Since (4) holds for all $t\geq 0$ , it gives $-\sigma c_{i}^{-\sigma-1}d_{j}(k)=V_{i}’’(k)$ . Substituting
this and (4) into (5), we find

$\rho=A-\sigma\frac{d_{j}(k)}{c_{i}(k)}(Ak-\Sigma_{i=1}^{n}c_{i}(k))-\Sigma_{j\neq i}c_{j}’(k)$ , $i=1,2,$ $\ldots n$ .

We now consider the symmetric equilibrium, i.e, $q(k)=c(k)$ for all $i$ . In
addition, we focus on the balanced-growth equilibrium where $c$ and $k$ grow at
a common, constant rate. Note that on the balanced-growth path, $c$ should be
proportional to $k$ . Thus, assuming that $c_{i}=c$ and $c=\phi k$ ( $\phi$ is a constant),
equation (3) yields $\rho\phi=A\phi-\sigma(A-n\phi)-(1-n)\phi$ , implying that

$\phi=\frac{\rho+(\sigma-1)A}{1+(\sigma-1)n}$ . (6)

As a consequence, the balanced growth rate, $g=k/k=\dot{c}/c=A-nc/k$ , is
written as

$g=A-n \phi=\frac{A-n\rho}{1+(\sigma-1)n}$ . (7)

When $n=1$ , the model is reduced to the standard representative agent case
where the balanced-growth rate is

$g= \frac{1}{\sigma}(A-\rho)$ . (8)

The balanced-growth rate given by (7) shows that

$\frac{dg}{dA}=\frac{1}{1+(\sigma-1)n}$ .

Therefore, $dg/dA$ has a negative sign if

$\sigma<\frac{n-1}{n}$ . (9)

If this is the case, a rise in the total factor productivity, $A$ , lowers the
balanced-growth rate. In words, when a more efficient technology becomes
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available, the interest groups raise their consumption levels more than the
income growth due to the technological improvement, and hence the result-
ing $balance^{-}d$-growth rate decreases. This is a simple example of the ‘voracity
effect’ emphasized by Tonell and Lain (1998): the economy without secure
property rights may yield a counter intuitive impact of technological progress
that should improve growth performance if property rights are established.
In what follows, we extend this simple model and consider the presence of vo-
racity effect as well as the growth effect of a change in the number of players
in a more general setting.

It is also to be noted that (7) presents

$\frac{dg}{dn}=-\frac{p+(\sigma-1)A}{[1+(\sigma-1)n]^{2}}$ .

To keep $\phi$ positive, $\rho+(\sigma-1)A>0$ if $1+(\sigma-1)n>0$ , while $\rho+(\sigma-1)A<$

$0$ if $1+(\sigma-1)n<0$ . Therefore, in the normal case without voracity effect,
we obtain $dg/dn<0$ : an increase in the number of interest groups is harmful
for growth. In contrast, in the presence of voracity effect, a larger number of
players realizes a higher balanced-growth rate. This because, as (6) shows,
an increase in $n$ lowers the consumption share if $1+(\sigma-1)A<0$ , which
contributes to increasing growth.

3 A Model with Endogenous Labor Supply

3.1 The Model
Considering endogenous labor supply, we now extend the baseline model in
the previous section. The economy produces a homogenous final good and
the production technology is specified as

$y=Akf(L)$ , $A>0$ , (10)

where $L$ denotes the aggregate labor supply. We assume that function $f(L)$ is
positive, monotonically increasing, strictly concave in $L$ and satisfies $f(0)=$
$0$ . Since we still assume that the production technology is linear in capital
stock, the introduction of labor input means that the production technology
exhibits increasing return to scale with respect to capital and labor.3

Again, we assume that are $n(\geq 2)$ interest groups. In what follows, we
will distinguish the effects of changes in the number of interest groups and

3In the context of the representative agent settings, Benhabib and Farmer (1994) and
Pelloni and Waldmann $(2000, 2001)$ utilize the production function (10).
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the size of each group. In so doing, we assume that the i-th group has $s_{i}$

members, and hence the total number of agents in the economy at large
is $\Sigma_{i=1}^{n}s_{i}=N$. All the agents in the same group are identical. While the
capital stock $k$ is jointly owned by the groups, each member supplies its
own labor for production. Therefore, when an individual agent supplies $l_{i}$

units of labor, the aggregate labor supply is $L=\Sigma_{i=1}^{n}s_{i}l_{i}$ . The instantaneous
utility of an individual agent in group $i$ depends positively on consumption,
$c_{i}$ , and negatively on labor supply, $l_{i}$ . Given these assumptions, the objective
function of group $i$ is its discounted-sum of utilities over an infinite-time
horizon:

$U_{i}= \int_{0}^{\infty}s_{i}u(q)l_{i})e^{-\rho t}dt$ , $\rho>0$ , $i=1,2,$ $\ldots,$
$n$ ,

where the utility function of each member $u(q, l_{i})$ is assumed to be strictly
concave in $(c_{i}, l_{i})$ . The final good is used for consumption and capital for-
mation. Since we have assumed that the aggregate production technology is
commonly owned by all the groups, the capital formation is determined by

$k=Akf(\Sigma_{i=1}^{n}s_{i}l_{i})-\Sigma_{i=1^{S_{i}Q}}^{n}$ . (11)

Each group maximizes $U_{i}$ by selecting the sequences of $q$ and $l_{i}$ subject to
(11) together with the given initial level of capital, $k_{0}(>0)$ .

In this differential game, each player’s strategies are its consumption and
labor supply and the state variable of the game is the aggregate stock of
capital. As well as in the previous section, we focus on the Markov-perfect
Nash equilibrium. We thus assume that each group’s strategies, $c_{i}$ and $l_{i}$ ,
are functions of the current level of the aggregate capital $k$ alone. As a
consequence, that the value function of the i-th $groups$

) optimization problem
at time $t$ can be written as

$V_{i}(k(t)) \equiv\max\int^{\infty}s_{i}e^{-\rho(\tau-t)}u(\alpha(\tau), l_{i}(\tau))d\tau$ .

This function satisfies the Hamilton-Jacobi-Bellman (HJB) equation such
that

$\rho V_{i}(k)=\max_{c_{i}.l}\{s_{i}u(c_{i}, l_{i})+V_{i}’(k)[Akf(\Sigma_{i=1}^{n}s_{i}l_{i})-\Sigma_{i=1}^{n}s_{i}c_{i}]\}$ (12)

for all $t\geq 0$ . In solving the maximization problem defined in the right-hand-
side of (12), the i-th group takes the other players’ strategies, $\{c_{j}, l_{j}\}_{J\neq i}$

$(j=1,2, .., n)$ , as given. The first-order conditions for maximization are:

$u_{c}(c_{i}, l_{i})-V_{i}’(k)=0$ , $i=1.2.,$ $\ldots,$
$n$ , (13)
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$u_{l}(c_{i}, l_{i})+V_{i}’(k)Akf’(L)=0$ , $i=1,2,$ $\ldots,$
$n$ . (14)

Equations (13) and (14) yield a set of the Markov-perfect Nash solutions
that are expressed as $\{c_{i}(k), l_{i}(k)\}$ $(i=1,2, \ldots, n)$ . Note that due to our
assumption of strict concavity of $u(c_{i}, l_{i})$ and $f(L)$ , the above maximization
problem satisfies the second-order conditions as well.

3.2 Balanced-Growth Equilibrium
The Markov-perfect Nash strategies, $\{c_{i}(k), l_{i}(k)\}(i=1,2, \ldots, n)$ , simulta-
neously satisfy (13) and (14). Substituting these optimal solutions into the
HJB equation (12), we obtain

$\rho V_{i}(k)=s_{i}u(Q(k), l_{i}(k))+V_{i}’(k)[Akf(\Sigma_{j=1}^{n}s_{j}l_{j}(k))-\Sigma_{j=1}^{n}s_{j}c_{j}(k)]$ .
(15)

Using the envelop theorem, we find that differentiation of both sides of (15)
with respect to $k$ yields:

$\rho V_{i}’(k)$ $=$ $V_{i}’(k)[Af(\Sigma_{j=1}^{n}s_{j}l_{j}(k))+Ak(\Sigma_{j\neq i}^{n}s_{j}l_{j}’(k))f’(\Sigma_{j=1}^{n}s_{j}l_{j}(k))]$

-V’
$(k)\Sigma_{i\neq j}^{n}s_{j}c_{j}’(k)+V_{i}’’(k)[Akf(\Sigma_{j=1}^{n}l_{i}(k))-\Sigma_{j=1}^{n}s_{i}c_{j}(k)](16)$

$i$ $=$ 1, 2,
$\ldots,$

$n$ .

In the following analysis, we restrict our attention to the symmetric equi-
librium in which $s_{i}=s,$ $q(k)=c(k)$ and $l_{i}(k)=l(k)$ for all $i$ . We also
focus on the balanced-growth equilibrium where $c,$ $k$ and $y$ grow at a positive,
common rate. Since the production technology has the $Ak$ property, these
restrictions require that the optimal consumption of each agent is propor-
tional to the aggregate capital stock and that the optimal labor supply is
constant over time. Hence, we can set

$c_{i}(k)=\phi k$ , $l_{i}(k)=l$ , $i=1,2,$ $\ldots,$
$n$ , (17)

where $\phi$ and $l$ are unknown, positive constants.
To be more specific, we now assume that the instantaneous utility function

takes the following form:

$u( q, l_{i})=\frac{c_{i}^{1-\sigma}}{1-\sigma}h(l_{i})$ , $0<\sigma\leq 1$ .

Here, we assume:

$0<\sigma<1,$ $h’(l)<0$ , $h”(l)<0$ ,
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which ensure that $u(c_{i}.l_{i})$ is strictly concave in $(c_{i}.l_{i})$ . Then, in view of (17),
condition (13) becomes $V’(k)=\phi^{-\sigma}k^{-\sigma}h(l)$ , implying that

$V”(k)=-\sigma\phi^{-\sigma}k^{-\sigma-1}h(l)$ . (18)

Since (17) means that $c_{i}’(k)=\phi$ and $l_{i}’(k)=0$ , from (17), $(??)$ and (18) we
find that (16) can be written as

$\rho=Af(Nl)-s(n-1)\phi-\sigma[Af(Nl)-N\phi]$ ,

implying that
$\phi=\frac{p+(\sigma-1)Af(Nl)}{N/n+(\sigma-1)N}$ , (19)

where $N=sn$. Note that under the symmetric condition, (13) and (14) give
$\phi h’(l)=(\sigma-1)Af’(_{\backslash }Nl)$ . Hence, from (19) we obtain

$\frac{\rho/A+(\sigma-1)f(Nl)}{N/n+(\sigma-1)N}=\frac{(\sigma-1)f’(Nl)}{h’(l)}$ . (20)

This equation determines the equilibrium level of individual labor supply,
$l$ , on the balanced-growth path.4 Letting the steady-state level of $l$ be $l^{*}$ , the
relatlon between consumption and the aggregate capital stock is thus given
by

$c= \frac{\rho+(\sigma-1)Af(Nl^{*})}{N/n+(\sigma-1)N}k$ ,

where $l^{*}$ is the solution of (20). Consequently, the balanced-growth rate,
which is given by $g=\dot{k}/k=Af(Nl^{*})-Nc/k$ , can be expressed as

$g= \frac{Af(Nl^{*})-n\rho}{1+(\sigma-1)n}$ . (21)

3.3 Voracity Effect
In our setting, the steady-state levels of $g$ and $l$ are determined by (20) and
(21). Equation (21) shows that the effect of a change in productivity on
growth is:

$\frac{dg}{dA}=\frac{1}{1+(\sigma-1)n}[f(Nl^{*})+Af’N\frac{dl^{*}}{dA}]$ , (22)

4Suppose that $f(O)=0,$ $f’(0)=+\infty$ and $h’(0)=0$ . Then it is easy to see that if
$1+(\sigma-1)n<0,$ (20) has a unique solution. If $1+(\sigma-1)n>0$ , there may exist multiple
balanced-growth paths. In this paper we do not consider the case of nonunlque long-run
equilibrium.
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where from (20) $dl^{*}/dA$ is given by

$\frac{dl^{*}}{dA}=\ovalbox{\tt\small REJECT} A^{2}(\sigma-1)[h^{\prime 2}f’N-s(1+(\sigma-1)n)(Nf’’h’-f’h’’)]ph^{\prime 2}$ .

This has anegative sign, if $1-(1-\sigma)n<0$ and $Nf”h’>f’h’’$ . Hence, if
arise in $A$ yields asufficient reduction of individual labor supply, then $(??)$

shows that $dg/dA$ hau apositive value even under $1+(\sigma-1)n<0$ . This
means that introducing endogenous labor supply and increasing returns to
scale rednces the possibility that the voracity effect prevails. However, note
that $dl^{*}/dA$ can be negative for the case of $1+(\sigma-1)n>0$ ae well. Thus
in our generalized setting, the voracity effect may be present even though
$1+(\sigma-1)n>0$ , under which ahigher $A$ always increase the long-term
growth rate in the sttdard $Ak$ technology. In asimilar vein, we may confirm
that the growth of an increase in the number of interest groups cannot be
uniquely determined without imposing further specification on the functional
forms and the magnitudes of parameters involved in the model. Notice that
This is true regardless whethera rise in the number of group $n$ is associated
with arise in the total population $N$ : neither the signs of $dg/dn|_{N=constant}$

nor $dg/dn|_{s=cootant}$ are determined under our assumptions.
As an example, let us assume:

$h(l) \equiv\frac{1}{\chi}(1-l)^{\chi(1-\sigma)}$ , $0<\chi<1$ , $-(23)$

$f(L)=L^{\beta}$ , $0<\beta<1$ ,

which is defined on $l\in[0,1]$ . Since 1 $-l$ represents leisure, (23) means
that the instantaneous felicity of the household is expressed as the standard
Cobb-Douglas function of consumption and leisure in such a way that

$u(c, l) \equiv\frac{\chi^{-1}(c(1-l)^{\chi})^{1-\sigma}}{1-\sigma}$ . (24)

Under these specifications, we see that (20) becomes

$\frac{p/A+(\sigma-1)(Nl)^{\beta}}{N/n+(\sigma-1)N}=\frac{\beta(Nl)^{\beta-1}}{(1-l)^{\chi(1-\sigma)-1}}$ (25)

It is easy to see that under our restrictions, $0<\sigma<1$ and $0<\beta<1$ ,
equation (25) has a unique solution of $\iota*\in(O, 1)$ . Thus the balanced-growth
rate given by

$g= \frac{AN^{\beta}l^{*\beta}-n\rho}{1+(\sigma-1)n}$
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is also uniquely determined as well.5
In this situation, the effect of a change in the total factor productivity,

$A$ , on the $e^{-}quilibrium$ level of employment, $l^{*}$ , is given by:

$\frac{dl^{*}}{dA}=\frac{p(1-l^{*})^{-\chi(1-\sigma)-1}}{D}$

where
$D=A^{2}(\sigma-1)\beta(Nl^{*})^{\beta-1}[\rho(1-l^{*})^{-\chi(1-\sigma)-1}$

$-s(1+(\sigma-1)n)(N(\beta-1)(Nl^{*})^{-1}-(1-l^{*})^{-\chi(1-\sigma)-1})]$ .

Since $0<\sigma<1$ and $0<\beta<1$ , the above shows that $dl^{*}/dA$ has a negative
sign if $1+(\sigma-1)n<0$ . Therefore, the impact of a rise in $A$ on the balanced-
growth rate determined by (22) is ambiguous. That is, even in the presence
of voracity-effect condition, $1+(1-\sigma)n<0$ , the reduction of $l^{*}$ caused by
a rise in $A$ may reduce the aggregate output-capital ratio, $A(Nl^{*})^{\beta}$ . If this
is the case, a higher $A$ does not increase labor input, which may prevent
the agents from over consumption and thus the voracity effect will not be
observed.

3.4 Separable Utility
We first consider a simpler case where the instantaneous utility function is
additively separable the utility function is given by

$u$ (窃, $l_{i}$ ) $=\log q+\Lambda(l_{i})$ , $\Lambda’<0$ , $\Lambda’’<0$ , (26)

conditions (??) and (18) respectively become $V’(k)=1/\phi k$ and $V”(k)=$
$-1/\phi k^{2}$ . Thus (16) shows that $\phi=\rho$ . As a result, (13) and (14) yield

$-\rho\Lambda’(l)=Af’(Nl)$ . (27)

This equation determines the steady-stat$e$ level of individual labor supply
for the case of additively separable utility. The balanced-growth rate in this
case is

$g=Af(Nl^{*})-n\rho$ . (28)

First, consider the effect of a rise in $A$ . Using (27) and (28), we find:

$\frac{dg}{dA}=f(Nl^{*})-\frac{AN(f’)^{2}}{Af’N+\rho\Lambda’’}>0$ .

5As pointed out in footnote $()$ , the steady-state level of $l^{*}$ (so the balanced growth
rate) may not be unique when $1+(1-\sigma)n>0$ . Itaya and Mino (2007) consider the case
of multiple balanced-growth paths as well.
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Therefore, if the agents utility functions are additively separable between
consumption and labor, there is no voracity effect.

Next, c\={o}nsider a change in the number of interest groups. If the total
population, $N(=sn)$ , is constant, a rise in $n$ (so a decrease in the number
of agents in each group, s) unambiguously lowers the balanced growth rate,
because form (27) the steady state level of $l$ does not depend on $n$ but on
$N$. In contrast, if the number of groups stays constant but the number of
members of each group increases (so the total population $N$ rises), we obtain

$\frac{dg}{ds}|_{n=constant}=\frac{pnl^{*}Af’\Lambda’’}{ANf’+\rho\Lambda^{u}}>0$.

Thus if the number of players is constant, a rise in population stimulates
growth because there is only scale effect. However, if the population rises
due to an increase in the number of groups, we obtain:

$\frac{dg}{dn}|_{s=constant}=\frac{psl^{*}Af’\Lambda’’}{ANf’+\rho\Lambda’’}-\rho$.

The sign of this effect is ambiguous.
As for an example, let us specify $f$ and $h$ functions in such a way that

$f(L)=L^{\beta}$ and $\Lambda(l)=-l^{1+\chi}/(1+\chi)$ , where $0<\beta<1$ and $\chi>0$ . Then
from (27) the steady-state level of $l$ is given by

$l^{*}=[ \frac{(1-\sigma)A\beta}{\rho}]^{\frac{1}{\chi+1-\beta}}N^{\frac{\beta-1}{\chi+1-\beta}}$ .

Hence, the balanced growth rate given by (28) is written as

$g=A^{\frac{x+1}{\chi+1-\beta}}[ \frac{(1-\sigma)\beta}{\rho}]^{\overline{x}+1\overline{-\beta}}(sn)^{\frac{\beta_{X}}{x+1-\beta}}4-pn$ .

Since the right-hand side of the above is strictly concave in $n$ , the the growth
effect of a change in the number of agents is:

$\frac{dg}{dn}|_{s=constant}>0$ for $n<\hat{n}$ , $\frac{dg}{dn}|_{\epsilon=constant}<0$ for $n>\hat{n}$ ,

where $\hat{n}$ satisfies

$( \frac{\beta\chi}{\chi+1-\beta})A^{\frac{\chi+1}{\chi+1-\beta}}[\frac{(1-\sigma)\beta}{\rho}]Sx+1-\hat{n}^{\beta-1}1+x-=\rho$.
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Namely, when the number of interest groups is smaller than $\hat{n}$ , the scale effect
due to the presence of increasing returns dominates the negative effect of com-
mon pool $\overline{p}roblem$ caused by an increase in the number of players. However,
if $n$ exceeds $\hat{n}$ , the scale effect is not large enough to cancel the common pool
effect and thus alager number of interest groups depresses the long-term
growth. This example demonstrates that, unlike the representative-agent
economy with increasing returns, arise in the scale of economy may have a
negative impact on growth if property rights are insecure.

The presence of scale effect, i.e. alarger economy grows $fas$ter, has been
often criticized because it does not fit well to the empirical reality. Our
example presentsa reply to such aquestion: if property rights are not well
established, then the presence of scale effect supported by increaeing returns
does not always produce better performance in long-term growth. This may
explain poor growth performances in some developing countries with large
population and less established property rights.

4 Conclusion
This paper has examined agrowth model with insecure private property
rights. We introduce endogenous labor supply into the standard $Ak$ growth
model that has been commonly used in the existing literature on property
rights and growth. Since our model allows the presence of increasing returns
to scale, the growth performance of the economy depends not only on the
negative effect of common pool problem but also on the positive scale effect
generated by the presence of increasing returns. In particular, the effects
of arise in productivity and the population of economic agents would be
significantly different from the results obtained in the standard setting. Our
discussion indicates that examining economies without secure property rights
under alternative environments would be useful to shed further light on the
relationship between property rights and growth.

In this paper we have focused on the balanced-growth equilibrium An ex-
tended version of this paper, Itaya and Mino (2007), explores dynamic prop-
ertles determinacy of equilibrium of the model economy $\bm{t}d$ find that there
is aclose connection between equilibrium indeterminacy and the presence of
voracity effect. In addition to dynamic analysis, the welfare implication and
policy recommendations in our setting would be worth exploring. We are
plrning to conduct further investigation on these topics.6

6See also Long and Sorger (2006) for a generalized modelling of Tornell and Lane (1998,
1999).
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