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Abstract

Arai (2007b) has obtained a sufficient condition under whlch the q-
optimal martingale measure exists in discrete time, where $1<q<\infty$ .
This sufiicient condition is called the nondegeneracy condition. In this
paper, the results in Arai (2007b) are introduced and two examples are
illustrated, which one satisfies the nondegeneracy condition, and another
does not.
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1 Introduction
The q-optimal martingale measure is defined as a signed martingale measure
whose density minimizes the $\mathcal{L}^{q}$-norm. There are many literatures concerning
the q-optimal martingale measure. For example, Grandits and Krawczyk (1998),
Grandits (1999), Grandits and Rheinl\"ander (2002), Hobson (2004), and so on.
Moreover, Arai (2007a) has introduced the p-optimal hedging, whlch has much
something to do with the q-optimal martingale measure, where $p$ is the conjugate

index of $q$ , namely, we have $\frac{1}{q}+\frac{1}{p}=1$ .
We firstly show how to calculate the density of the q-optimal martingale

measure for discrete-time models. We introduce a predictable process $\beta$ satis-
fying the following backward induction:

$E[\Delta X_{T}\varphi_{p-1}(1-\mathcal{B}_{T}\Delta X_{T})|\mathcal{F}_{T-1}]=0$,

and

$E[ \Delta X_{k}\varphi_{p-1}(\prod_{t=k}^{T}(1-\beta_{t}\Delta X_{t}))|\mathcal{F}_{k-1}]=0,$ for $t=1,$ $\ldots,$ $T-1$ ,
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where, $T\in N$ is the market maturity, $X$ is the asset price process, and $\varphi_{\alpha}(x)$ $:=$

$sgn(x)|x|^{\alpha}$ for $\alpha>0$ and $x\in R$ . We call $\beta$ the adjustment process for $X$ . The
q-optimal martingale measure $Q^{(q)}$ then is given by

$\frac{dQ^{(q)}}{dP}=\frac{\varphi_{p-1}(\prod_{t=1}^{T}(1-\beta_{t}\Delta X_{t}))}{E[\varphi_{p-1}(\prod_{t=1}^{T}(1-\beta_{t}\Delta X_{t}))]}$ .

Actually, Schweizer $(1995, 1996)$ introduced this fact for the $\mathcal{L}^{2}$-case. On the
other hand, Grandits(1999) studied this induction for the bounded aaset price
process case for $1<q<\infty$ . Moreover, Arai (2007b) dealt with this induction
for the general $\mathcal{L}^{q}$-case. In the unbounded asset price process case, we have to
pay attention to a sufficient condition under which there exists the q-optimal
martingale measure. Note that the existence of the q-optimal martingale mea-
sure is ensured by the existence of a signed martingale measure whose density
is in $\mathcal{L}^{q}$-space. He introduced the nondegeneracy condition and revealed the
relationship with the closedness of the space of portfolio values and with the
no-arbitrage condition. In this paper, we introduce the results of Arai (2007b)
and two examples related to the nondegeneracy condition.

2 Preliminaries
Throughout this paper, we deal with a discrete time incomplete financial market
with maturity $T\in N$ . Suppose that one riskless asset and only one risky asset
are tradable. The price of the riskless asset is assumed to be given by 1 at
all times. On the other hand, the fluctuation of the risky asset is expressed
by a one-dimensional discrete time stochastic process $X$ . Let $(\Omega,$ $\mathcal{F},$ $P,$ $F=$
$\{\mathcal{F}_{t}\}_{t=0,1,\ldots,T})$ be a completed probability space. Suppose that $X$ is F-adapted.
We denote $\Delta X_{t}=X_{t}-X_{t-1}$ and $G_{t}( \theta)=\sum_{i=1}^{t}\theta_{i}\Delta X_{i}$ for any predictable
process $\theta$ . Next, we define some notations:

Definition 1 (1) We denote by $\Theta^{p}$ the set of predictable processes $\theta$ such that
$\theta_{k}\Delta X_{k}\in \mathcal{L}^{p}(P)$ for any $k=1,$ $\ldots,$

$T$ .
(2) We define $G_{T}^{p}=\{G_{T}(\theta)|\theta\in\Theta^{p}\}$ .

(3) A slgned measure $Q$ is a signed martingale measure, if $Q\ll P,$ $E[ \frac{dQ}{dP}]=1$ ,

and $E[ \frac{dQ}{dP}G_{T}(\theta)]=0$ for all $\theta\in\Theta^{p}$ .
(4) The set of all signed martingale measures is denoted by $\mathcal{M}^{s}$ . In addition,

$\mathcal{M}_{q}^{\epsilon}$ denotes the set of all signed martingale measures whose density with respect
to $P$ is in $\mathcal{L}^{p}(P)$ .
(5) The q-optimal martingale measure $Q^{(q)}$ is defined as

$Q^{(q)}= \arg\inf_{Q\in \mathcal{M}_{q}^{s}}\Vert\frac{dQ}{dP}\Vert_{q}$ .
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We define two processes $M$ and $A$ as $A_{k}=E[X_{k}|\mathcal{F}_{k-1}]$ with $A_{0}=0$ and
$M_{k}=X_{k}-X_{0}-A_{k}$ for any $k=0,$ $\ldots,$

$T$ . Note that $M$ is a martingale with
$M_{0}=0$ and $A$ is predictable. Moreover, $X$ is represented as $X=X_{0}+M+A$ .
We now assume that there exists a predictable process $\lambda$ satisfying $\Delta A_{k}=$

$\lambda_{k}E[(\Delta M_{k})^{2}|\mathcal{F}_{k-1}]$ . In general, this condition is called the structure condition
(SC). We finally define a norm on $\Theta^{p}$ as follows:

$\Vert\theta\Vert_{\Theta^{p}}$ $:= \sum_{k=1}^{T}\Vert\theta_{k}\Delta X_{k}\Vert_{p}$ .

3 Closedness and no-arbitrage

Note that all results in this section are obtained in Arai (2007b). Hence, we
omit all proofs.

We introduce the nondegeneracy condition (ND): there exists a constant
$C>0$ such that

$| \Delta A_{k}|^{q}\leq C\frac{E^{q}[|\Delta M_{k}|^{2}|F_{k-1}]}{E[|\Delta M_{k}|^{q}|\mathcal{F}_{k-1}]}$ .

We have the following three propositions:

Proposition 2 Under the condition $(ND)$ , there exists a constant $C>0$ such
that $||\theta||_{\Theta^{p}}\leq C\Vert G_{T}(\theta)\Vert_{p}$, for any $\theta\in\Theta^{p}$ .

Proposition 3 The operator $G_{T}(\cdot)$ : $\Theta^{p}arrow \mathcal{L}^{p}(P)$ is closed.

Proposition 4 Let $V$ and $W$ be two Banach spaces. Suppose that a closed
operator $U$ : $Varrow W$ satisfies, for some constant $C>0$ ,

$\Vert v||_{V}\leq C\Vert Uv\Vert_{W}$ , $v\in D(U)$ ,

where $D(U)$ is the domain of U. Then, the region of $U$ is a closed subspace.

We conclude the following theorem from the above Propositions 2, 3 and 4:

Theorem 5 Under the condition $(ND),$ $G_{T}^{p}$ is $\mathcal{L}^{p}(P)$ -closed.

Finally, we introduce the relationship between the condition (ND) and the fun-
damental theorem of mathematical finance.

Theorem 6 Under the condition $(ND),$ $1\not\in G_{T}^{p}$ if and only if $\mathcal{M}_{q}^{s}\neq\emptyset$ .
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4 Examples

We introduce two examples. The first example is one of typical unbounded
models. We confirm that it satisfies the condition (ND). On the other hand,
the second does not have the closedness of $G_{T}^{p}$ . We make sure that it does not
satisfy the condition (ND).

Example 7 We consider a 2-period $mo$del whose risky asset is not bounded.
The asset price process $X$ is given by the following figure.

time $0$ time 1 time 2

We assume that $P(X_{1}=2)=P(X_{1}=0)=P(X_{1}=-2)$ and $P(X_{2}=2|X_{1}=$

$0)=P(X_{2}=0|X_{1}=-2)=1/2$ . Note that the conditional distribution of $\Delta X_{2}$

under $X_{1}=2$ follows $N(2,2)$ . In this model, $A_{1}=0$ , and $A_{2}=0$ when $X_{1}\neq 2$ .
When $X_{1}=2,$ $A_{2}=2$ . On the other hand, $M_{1}=X_{1}$ , and $M_{2}=X_{2}$ when
$X_{1}\neq 2$ . Moreover, if $X_{1}=2$ , then $\Delta M_{2}$ follows $N(O, 2)$ . Thus, $|\Delta A_{2}|^{q}\leq 2^{q}$ ,
and $E^{q}[|\Delta M_{2}|^{-}|X_{1}=2]=2^{q}$ . For $C\geq E[|\Delta M_{2}|^{q}|X_{1}=2]>0$, the condition
(ND) is satisfied.

Example 8 Consider a 3-period model, namely, set $T=3$ . Let $U_{1}$ and $U_{2}$

be independent two random variables which distribute uniformly on [-1, 1].
Moreover, let $V$ be a $\{-1,1\}$-valued random variable satisfying the following
conditional probabilities:

$P(V=1|U_{1})=|U_{1}|^{p},$ $P(V=-1|U_{1})=1-|U_{1}|^{\rho}$ .

121



Next, we define a filtration $\{\mathcal{F}_{t}\}_{t=0,1,2,3}$ as $\mathcal{F}_{0}=trivial,$ $\mathcal{F}_{1}=\sigma(U_{1}),$ $\mathcal{F}_{2}=$

$\sigma(U_{1})\vee\sigma(U_{2})$ , and $\mathcal{F}_{3}=\sigma(U_{1})\vee\sigma(U_{2})\vee\sigma(V)$ . The asset price process $X$ is
defined as $X_{0}=0,$ $\Delta X_{1}=U_{1)}\Delta X_{2}=U_{2}$ and

$\Delta X_{3}=\{\begin{array}{ll}|U_{1}| if V=1,-1 f V=-1.\end{array}$

Now, we define a predicta,ble process $\xi$ as
$\xi_{1}=0,$ $\xi_{2}=|U_{1}|^{-1},$ $\xi_{3}=U_{2}/|U_{1}|$ .

Then, $G_{3}(\xi)\in \mathcal{L}^{p}(P)$ and $\xi\not\in\Theta^{p}$ . In addition, when we denote $\xi^{n}$ $:=$

$\xi 1_{t|tJ_{1}|\geq 1/n\}}$ , we have that $\xi^{n}\in\Theta^{p}$ and $G_{3}(\xi^{n})arrow G_{3}(\xi)$ in $\mathcal{L}^{\rho}(P)$ . In sum-
mary, Proposition 2 does not hold.

Actually, our model does not satisfy the condition (ND). Let us confirm
this fact. We firstly remark that

$|\Delta A_{3}|^{q}=||U_{1}|^{1+p}+|U_{1}|^{p}-1|^{q}$

and the right hand side of (ND) at $k=3$ is given by
$(1+|U_{1}|)^{q}(1-|U_{1}|)^{q-1}|U_{1}|^{q}((1-|U_{1}|^{p})^{q-1}+|U_{1}|^{q})^{-1}$ .

When $|U_{1}|$ tends to $0$ or 1, the left hand side of (ND) converges to 1 and the
right hand side $0$ . Thus, there is no $co$nstant $C>0$ satisfying the condition
(ND).
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