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Derivative Nonlinear Schrodinger Equation
with General Cubic Nonlinearity

ERRE HMEXEFER b ER (Naovasu Kira)
Faculty of Education and Culture, Miyazaki University

1 Introduction and Main Theorem

We consider the Cauchy problem for the nonlinear Schrédinger equation which includes
the first order derivatives of unknown function in its nonlinearity :

{ O = —302u+ N(u,0u),

(1.1)
U(O, IB) = ’uO(fC),

where u is unknown function from (t,z) € R X R to C. The derivatives 9, and 9; denote

0/0t and 9/0z, respectively. The nonlinearity N (u, g) consists of the cubic palynomial
of u, 14, g and ¢, i.e.,

N (u,q) = Z lejzjsj-tu'nﬂhqjaq.“,
J1+j2+73+34=3
where Cj,j,j.5. € C and j, - - -, j4 are nonnegative integers.

When the nonlinear term contains the derivatives, it causes the regularity loss un-
less the special structure is imposed in the nonlinearity. Since the Schrédinger group
Uo(t) = exp(itd2/2) does not absove the derivatives in L$(L2), we could not make use of
contraction mapping principle simply in L$(L2) framework, where L%.(L1) denotes the

T 1/p
function space endowed with the norm || f||zp(zs) = ( /0 £ (s dt) . Of course, if

we impose the special structure on N(u,q), it is possible to derive a priori estimate so
that the energy method works. For the general nonlinearity as in the present case, we
refer to Kenig-Ponce-Vega’s work [2]. In [2], they derived the crucial smoothing property
of U(t) in the new function space LP(L2.) :

t
162 [ Ut~ )F(€) iy, < CIFlaany

where ||ul| Lo (g, = sup, (Jg [u(t, z)|? dt)"/? and ||ul| z2(zs) = l([lu(-, )l|zg)ll 2. This linear
estimate recovers the regularity loss in the nonlinearity and the contraction mapping
priciple is applicable via the integral equation and obtain the local well-posedness of the
solution. In their work, however, one requires the size restriction on the initial data. This
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is because the estimate L2(L) - L2(LY) - LL(L*) C LL(L?) is applied to the nonlinear
term and the quantity |lu||z(Ls) does not expect to be small even when T' | 0.

To remove this size restriction, Hayashi-Ozawa [1] applied a nonlinear transformation
of unknown function so that the nonlinear component causing the regularity loss is elim-
inated. They showed that the energy method is still applicable to the general nonlinear
case. In [1], they obtained the existence and uniqueness of the solution by assuming that
up € H? (the sophisticated estimate likely relaxes this regularity condition into H? with
s > 5/2 since the regularity of uo is determined by the estimate of ||02u(t)||z%), where
H2 = {u; |[ulla = ||{D2)°ullz < o0} with (D)7 = F1(€)°F with (€) = (1 + €2)1/2

More recently, Kenig-Ponce-Vega [4] have studied how to remove the size restriction
of up and obtained the local well-posedness of the solution. In [4], they write (1.1) as

u®) = ——%aﬁu(") + N, (4, 8,u)0,u® + Nj(u, 8,u)0,@*) + (remainder)
1
—§8§u(k) + Ny (uo, Oxu0)0:u®) + Nj(uo, Bzu0)0:@™ + (remainder), (1.2)

where u® = dku, Ny(u,q) = ;N (u, g), Nj(u,q) = 9N (1, ¢) and the remainder consists
of at most k-th order derivatives together with 9, (u — up)0,u'*) etc. They derived the
smoothing property of the linear solution to Lv = F in the time-space norm, where

Lv =i0v + —;-va - Ny(uo, Qmuo)a.,v — N;(uo, Ozu0) 0, 1.

The merit arising from the representation (1.2) is that ||0z(u—uo)||L2(Ls) or |lu—uollr2(Lee) -
included in the remainder is regarded as negligible quantity by taking T > 0 sufficiently
small. Hence, one can apply the contraction mapping principle via the integral equation.
In their argument, the theory of pseudo-differential operators is the key to the estimate
of v. This suggests that one requires the large regularity of wuy.

Our aim in this work is to minimize the regularity of up without any size restriction
and to obtain the local well-posedness of the solution. The idea is based on a gauge
transformation different from Hayashi-Ozawa type and a priori estimate in terms of the
smoothing properties of U(t) due to Kenig-Ponce-Vega [2]. Concretely speaking, we first
modify (1.1) by the following regularization:

{ ic’?tu,, = —%a:uu + N(uua a:cnv * ul/)7

w(0,2) = uo(z),

(1.3)

where n,(z) = v~1n(z/v) and [n(z)dz = 1 with n € C(R) and v € (0,1]. Since 7,*
provides the regularizing property like ||0;n, * u, ||z < Cv~!ju,||z2, & convenient local
solution to (1.3) is constructed via the integral equation. Let T, € (0, 0] be the upper
time bound for the existence of the solution. To realize the solution to (1.1) by taking
v | 0, we require the lower uniform bound of T,. For this purpose, we derive an a priori
estimate in the Banach space Y7 with the norm:

lully: = IIUHL%(H;)-FlI(Dz)"3/23§UIILg°(L%)+§ggD§II(D=)" FullLzws)

where s > 0 will be specified later and u > 0 is small. This is the remarkably differnt
point from the usual energy method. To seek for the a priori estimate, we apply the gauge
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transformation given by the pseudo-differential operator and, roughly speaking, eliminate
the heavy term in the nonlinearity of (1.2) after diagonalizing the system of @, = (u,, @, )
(see section 2). This kind of elimination is available especially in one space dimension.
In our argument, the regularity condition on ug are essentially given by (so-called) the
estimate of maximal function, i.e., ||0;U(t)uollzz(zss) < Clluollrg, where o > 3/2. Our
main theorem in this article is

Theorem 1.1 Let ug € H; with s > 3/2. Then, we have the following assertions.

(1) For someT > 0, there exists a unique solution u to (1.1) such thatu € C([0,T); H2)N
Yr.

(2) Let u' be the solution to (1.1) with initial data ugy € B,y(uo) = {vo; ||vo — uollas < p}
where p > 0 is sufficiently small. Then, for some T' € (0,T), we have

v = ullgmsy < Cllug — wollae,
I{D2)* 282w’ — )l gpz,) < Cllup — wollms-

We now close this section by introducing several notations. The quantity ||- || x denotes
the norm of a Banach space X. Let B(X;Y) be the set of bounded operators from X
to Y. When X = Y, we simply write B(X;X) as B(X). The summation space is
defined by X +Y = {z +y;z € X and y € Y} with the norm ||f|lx+y = inf{]|z||x +
lwlly;f =% +y,2 € X and y € Y}. Let L2(L%) and L3-(LE(R)) be the function spaces -
LP(R; LT[0, T]) and L7([0,T]; L2), respectively. The fractional order differentiaion Dj
stands for F!|£|*F. We sometimes use f or Ff for the Fourier transform. Throughout
this paper, C denotes a positive constant which is independent of v € (0, 1] and does not
diverge as ¢ — up in H2. Also, C, denotes a positive constant which is independent of
v € (0,1] but may possibly diverge as ¢ — ug in H.

2 Deformation of (1.3)

In this section, we deform (1.1) by using a gauge transformation defined by a pseudo-
differential operator so that the uniform bound of ||u,|y, (0 < v < 1) is derived. Let
ul = 9;u,. Then, ull) satisfies

1
i0ul) = —s0ul) + Noluw, m, % ulD)uny * uf?) + Ny(uw, ny * uD)Bn, + 2l
+ N (U, o * uﬁl))nu * Uz(zl) + Na(uy, n * uﬁl))ﬂv * ﬁs,l),

where N, and N; stand for the partial derivatives of AV(u,q) with respective to u and
4. Since 8,4 does not vanish by the gauge transformation, we first eliminate it by
the diagonalization. To this end, we employ the systemized representation of the above
equation. Namely, let @) = (u({l), 2(V)* and write

1

0 = ~3

A2ED + B, (u,)0;m, * @ + P, (u,), (2.1)
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0 No(u, 0z xu)  Ny(u, Gz * u)
where A = ( 0 -1 ), B,(u) = and P,(u) is
_'N’ﬁ(uv 8177!/ * u) —'Nq(ua 5z77u * u)

No(u, 8emy *x w)0emy * u + Ng(u, 81, * u)0:n, * i

_-N:i (u» aznu * u)az")u *U— Nu(u, Oz * u)axnu *U

(Step 1) Diagonalization. Let ¢(z) € C5°(R) (which will be taken sufficiently close to
uo in X* so that u,(t) — ¢ is small when t | 0). We write (2.1) as

iatﬁg) = _%Aagﬁg) + By () 0z * 1-“9)
+(Bv(uu) - Bu(‘p))aznv * ﬁf;l) + Pu(uu): (2‘2)

Some readers might wander why we do not take ¢ = up. The answer to this question will
be shown at the end of this section. Let

v =1~ J,,(Dz)_2(9zn,,*)ﬁ9), (2.3)
— 10 — 0 *-/V‘E(‘pv amnv * <P)
where I = 0 1 ), J, = ( _N(0.5m ) 0 . By the commutator
relation like o o ;
- 1. e 0 =Ny, 8y * ) -
_ 2 _iAs — g\p; Oz 243
(- 320, -3A0) = (g TN (D)%, »
~A((0.3,)(D2)7782 + 5(823,)(D2) 0. )
we see that |
07, = —5 A0, + Bua(p)Oum * 7,
+(B.(w) - BV(‘P))az"?v * Uy, + QV(¢’ uy), (2.4)
where @, = (u,, @,)" and B, 4iqe(¢) denotes the diagonal part of B, (y) and
QA‘Py u) = “JV<D2>—261"7V * B,,(u)azn,, x4+ (I- JV(Dm)—zaznV*)ﬁV(u)

+Bu,diag(‘P)az77v * (JV<D1)—2332:77V * ﬁ) - BU,Off(‘P)(I + (D,)-23§)a§7),, * U
~A((0.3,)(D2) 255, x i+ 3(820,)(Dx) 0, * @)

with @ = (u, @)* and B, 07(p) = B,(p) — B, diag-

(Step2) Gauge Transformation. To eliminate B, giao (7, * @)1, * ¥, on the right hand
side of (2.4), we set W, = K,(z,i718,;)v, = K,v, where K,(z,i"18;) is the pseudo-
differential operator with the symbol:

Ku($,€) = ( exp(—ﬁ(yg)a;qu(‘Pr 63:7711 * ‘P)) 0 ) )

0 exp(—7(v€)9; ' No(p, By * )
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where 9, f denotes / : f(y) dy. This transformation yields

95, = —%Aagw; + K, (B, (1) — B, (0))n, * 88, + B, w), (2.5)

where B,(p,u,) = (1/2)A(82K,)%, + K, G, (,u,) and the symbol of (82K,) is defined
by 82K, (z,£). Since the remainder R, (yp,u,) contains the large order derivatives of ¢,
we could not replace ¢ by up.

'3 Preliminaries

In this section, we introduce several key estimates frc:,quently used in our argument. In
what follows, we employ the brief notation GF for / U(t —t')F(t') dt’. The smoothing
0

property of U(t) and G plays an important role to recover the regularity loss arising from
the nonlinearity. Hereafter, we assume that 0 < T < 1.

Lemma 3.1 Let p € [2,00] and q € [2,00). Then, we have

ID2PU®)leaz) < Cligllze, (3.1)
N0:GFllLerzy < ClIFllLazys (3.2)
< CllFlraazy- (3.3)

IDY*GF\lLeay

Proof of Lemma 3.1. All the estimates in Lemma 3.1 are given in [3; Theorem 2.3,
Corollary 2.3]. O

Let us call || f(-,z)||zs "the maximal function of f(t,z)”. We next give the estimates
for the maximal function. Remark that the estimate (3.5) essenntially determines the
regularity constraint of the initial data.

Lemma 3.2 Let 0 > 1/2. Then, we have

U@ Slzegy < Clidllae, (3.4)
IGFllawg) < CTYA(1+T)/*4[(D2)* V2 F| 1y 2. (3.5)

Proof of Lemma 3.2. For the estimate (3.4), see [5]. The estimate (3.5) is proved in
[6], where the estimate of maximal function is derived for the linearized Benjamin-Ono
equation but the derivation in [6] is similarly applied to the Schrédinger equation. In
(3.5), the power of T is extracted by the normal scaling argument. O

When we apply the fractional order derivative to the nonlinear term, we often use
Leibniz’ type rule described in the following.
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Lemma 3.3 (1) Let o € (0,1), 01,02 € [0,0] with ¢ = 01 + 02. Also, let p,r € (1,00)
and p1,p2, 71,72 € (1,00) with 1/p=1/p1 + 1/p2 and 1/r = 1/ry + 1/ry. Then, we have

IDZ(f9) — (DIf)g = f(DeMzwsy < CNDZ flim wnll D22 glle iy (36)

Moreover, for o, = 0, the value r, = 0o is allowed.
(2) Let 0,01,02 as in (1). Also, p1,ps, 71,72 € (1,00) satisfy 1 = 1/p; + 1/p2 and
1/2=1/ry + 1/ry. Then, we have

IDZ(fg) — (D2 f)g = f(Dzlsezy < CUDZ fllezr iyl D229l o2 272)- - (3.7)

Proof of Lemma 3.3. See [4; Appendix]. O
In the nonlinear estimate, we often encounter the lower order derivatives like D2~3/29,u
and 8%u etc. The following interpolation helps us estimate these quantities. In particular,

we require the end point case, i.e., po = 1,p = 00,79 = 00 and 7y = 2.

Lemma 3.4 Leto = (1 40)00+001, 1/p=(1-6)/po+6/py and 1/r = (1—8)/ro+0/r,
with 8 € [0,1] and po, p1,70,m1 € [1,00]. Then, for f € S(R;C*(0,T]), we have

1Dz f||L§(L ) < sup(e” - ||D°°+v\(«n—ao)f”L,,D(Lro)) 1-6

xiup(e]' X3”Da1+u\(01—ao)f“bp1 ,1)) (3.8)

Proof of Lemma 3.4. Let f,g € C§°(R; C*[0,T]) and

g:(t, z) = ”9( x)n(l—z)(P [Pp—7'[ro)+2(p /P1—T'/T§)lg(t‘, z)I(l—z)r’/r(,+zr'/r’lsgng(t7 z)

with 2 € C and 1/p+ 1/p' = 1/r + 1/r" = 1. By the three line theorem on the strip
{z;0 < Rez < 1}, we see that

6((9, DI )] < suple™ ((gon, D700 f) R
x sup e+ (gyup, D= p) R, (3.9)
A

where ((-,-)) denotes the integration of time-space variables. Take z = 6. Then, Holder’s
inequality gives the bound of the right hand side of (3.9) like

a2 ; - 2 i _
gl Lg’(L;')SIiP(C || DgotiXer=eo) ¢ “L’;O(L;J)) sup(el ~3||DgrHiMer=eo) £ e )°.
Then, the duality argument yields Lemma 3.4. O

We next show the estimate of the gauge transform K, (z,i719,).
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Lemma 3.5 Letp,r € [1,00] and o € [0,1). Then, we have

| DK, (z, i_laz)ﬂh',’(%)
< Cexp(Cllella){(D)® fllLzces,)- (3.10)

In the above inequality, we may replace || - || 2z by || - ||z

Proof of Lemma 3.5. It sufficies to consider the pseudo-differential operator with the

symbol like k, (x, ) = exp(7)(v€)y(z)), where ¢ = 87 Ny(ip, M *02) or 87 ' Ny(p, 1, * B:¢0).
We first show that k,(z,i718,) € B(LEL}). Note that k,(z,i718;) — I has the integral

kernel given by

|k (2,i710:) — I)(2,9)| = |(27w)‘1 / {exp(A(E)(x)) — 1}eXE ge
< Cnexp(Cllllre)v(z —y)/v)7",

where the last inequality in the above follows from the integration by parts. Therefore,
Young’s inequality yields k,(z,i7'8,) = I + (k,(z,i718,) — I) € B(LE(LY)).

We next show that [(D;)?, k,(z,i718,)] € B(LP(L%)) and its operator norm is bounded
by C||0;%|| L exp(C||9]|Ls). Note that the integral kernel of [(D,), k.(z,i718,)] is given
by the oscillatory integral like

L(z,y) = (2m)? /ff e (£)7 x e=¥K (k, (2, C) — ku(x,¢)) dédCdz
= (2m)? /// e =19, (£)7 x =¥ /O ' d:k,(0z + (1 — 0)z,¢) dBdéd(dz.

Since
[ Roey de| < Cwlo — 21~ (w = 2™
and
. 1
/ eilzu)¢ /0 8.k, (62 + (1 — 0)z, () dd(
< Cn||8:vl|Le exp(Cll¥llLe) v {(z — v)/v) 7",
we see that

L(z,9) < M@l exp(Cllz) [ |s — 2= ( = ™0 (z = 9)/)™ de
Cn 184 Iz ep(Clltlze Iz — yl” (e - ).

Thus, Young’s inequality yields [(D.)?, k,(z,i7'8;)] € B(LE(L%)). Since (D;)° — DZ €
B(L?(L%)), we obtain Lemma 3.5. O

IA
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4 Nonlinear Estimates

When we apply Lemma 3.1 to the nonlinearity, we require the nonlinear estimates given
in the following two lemmas. In what follows, we only consider the case s € (3/2,2).

Lemma 4.1 Let s as in Theorem 1.1 and u € (0,1). Then, there exist C > 0 and
6 € (0,1) such that

(Dz)*~*2(£ 98:)|| Lyz2)
< Clfllzesllgllzzes) 1{(De)* =20 h]| Lo,
FCIDY F (D) */20, £ 1 2y
X (D2 Y hll T (o) | (D2} =20kl Lo 12,
+C”f||L2(L°°)||( )" 91|2,3(Lgs)“(Dz)8_3/23 QHLw(L?
X DBl ey (D220 (4.1)
1{D2)*~32(£ 98=h) |l Ly (z2)
< CTl/z”f”L;’(H;-l)(||9”L3(L5‘~°) + ||9”Lg9(H;—‘))
x(“(Dz)S_slzathLf(L?r) + ”h“LgS(H;“))' (4.2)

Lemma 4.2 Let R,(p, u,) defined in section 2 and s' < s. Then, we have

B w)liy@y S CoT(lullyr + Huly), (4.3)
||§u(¢7UV) - ﬁv’(‘P, uu’)”L%(H;’—l) < C‘PT(I + muv‘“%’r + muv'm%a.)muu — Uy mYT
+Co(V* + V)1 + vy + Nuvllyr)®. (44)

Proof of Lemma 4.1. Applying (D,)*"%? — D*~%? ¢ B(LL(L2)) and Lemma 3.3, we
see that

1{D=)* %2 (£90ch)llLyrzy < 1£lz2g) gl 2y 1 D220, h“Lw(Lg.)

+C|| D™ 3/2(f.9)"u’(1, )||8 hll 2z
+C || f90zh |l Ly 22y

where 1/p = (1—6)/2+6/c0,1/r = (1-6)/cc+6/2,1/p+1/p=18nd 1/r+1/F =1/2
together with 1 = (1 —8)u/2 +6(s —1/2 — u/2). Using Lemma 3.4, we have

Hazh||L§(L§.) < (sup e—).2”Dp/2+i)\(s—1/2-#)f—lsgn th”Lﬂ(L“’))l—o
x(sup el -2 "Ds—1/2—p/2+u\(a-—1/2—p)]: sgn gfh”Lm(L ))
C||(Dz)"h“z.g(m;)“(Dx)’_s/zaxh“t,ge(z,;.)a (4.5)

IA
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where we made use of
|| D22 Dy (F  sgn EF)lsaesey < CNY,
HD§”3/2_”/2(D$>_(8—3/2)HB(L;O(HT)) < C()\)N
with NV sufficiently large. By the similar argument to derive (4.5), we have
”D::_s/z(fg)“y:(l,;)
< CUDZ*2f|| zor-» gz N9llzzasey + 1 f 2 | D2~ gl aoris- )
< CID* Fllaazll(Day 200 flliz2 iz ol 2o
+C|ifllzzzsey I{D=)* 9“%3(1,%0)H(Dx)"s/'z@ac9||},?(z,2,)- (4.6)
Also, we can show that '
If90:hllazy < flzcesellglizzese)l|0zhll Lo a2,
<

CI(D2)* flacusey (D)9l L2 (zse) (D2 =28z hl| 1o ray-  (4.7)

Combining (4.5)-(4.7), we obtain (4.1). To prove (4.2), we apply the Leibniz’ rule for
fractional order derivatives. We have

1D (f90eh) Iy ey < N F9D*20ehll s a2y + TIDZ*2(f9) 2t/ l10zhll Lgorzre)
By Holder’s inequality and Sobolev’s embedding, I; is estimated as
L < T2 flleas gl I D23 ?0:h] Lo wa)
< OTY?| fll e 21y 9l 2o (D= * /28, || Lo 13, -
As for I, Leibniz’ rule and Sobolev’s embedding yield
I, < CTI\fllLgeaz—y gl Lo iz 1Pl Low (arz2)-
Hence, we obtain (4.2). O -

Proof of Lemma 4.2. By the H2~!-boundedness of K,,, we see that
1R (o, s mey < CoTllunllzgecas + 1Qu(e wo)llpmz-1y-

To estimate ||Q, (¢, )| L.z it suffices to consider

“(Dzy_l']v(Dz}_zaznu * BV(“V)B:WI/ * ﬁu”L;.(Lg)
CIl(D,)’_:‘azB,,(u,,)agn,, * "Iu”L.},(Lg)
C’I|Bu(uu)33m * ﬁuHL}.(Lg)
CT1/2HB,,(U,,)T],, * 83771'"145(5})
CT" 2w || Lo sy w2z Il Lo 23
CTI/zmuvm?’r

The proof of (4.4) likewise follows. We note that v# + /# arises from the estimates of
K, - K., J,—J, and (7, — n)* which cause the slight loss of regularity. O

IANIAN IA N IA
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5 A priori estimate in Yy and convergence of u,

To obtain the a priori estimate of u, for v € (0, 1], we use the following integral represen-
tations:

W, = U®) T~ iGK,(B,(w) — B,(p))n * 2T,
~iGR,(p,u), (5.1)
u, = U(t)up — iGN (u,,0zu,), (5.2)

where U(t) = exp(itA82/2), GF = [{ U(t — 7)F(r)dr and W, = K, (0zd0 + J.7, * @)
with @y = (uo, %o)?. The construction of the approximating solution u, in Y7 is simple.
In fact, by applying Lemma 3.1, 3.2 to (5.2) and in virtue of the regularization due to 7, *
together with Lemma 3.3, the nonlinear term is, for instance, estimated as

”D::_S/zazN(uV; 51”71; * UV)HL},(L%)

< CV"NTW(J.H;g?f I{Da)*0Lun sz zgey) v llZge ars)-

Thus, by taking T > 0 sufficiently small, the contraction mapping priciple successfully
works in Yr. The local solution u, is continuated as long as ||u,(t)| ;s is finite. Note that
llllyy is continuous with respect to T'.

For brief description, we define several norms as follows

Nl v ,= HU“L?(H;) + ||<Dz>s;3/23a2:u|!Lg°(L2,) + g;gﬁ I‘(Dz)“aiulng(LgP)
= |lullinitiar + lellsmootn + Nutllmazim.-

To ensure the convergence of the nonlinearity as v | 0, we require the Cauchy property
of {u,},e(0,1- Note that the proof fails when we consider llwy — o vy, since the estimate

N =m)w ) is < C(P+1)||u, ]| ys+s indicates the regularity loss. Therefore, we employ
the function space slightly weaker than Y7, i.e.,

lullzz = Nullzsesy + (D) "% *Full oz + max [|{Dx)" Bullz ey,
where s’ < s and u’ < p. The key proposition to obtain our main theorem is
Proposition 5.1 (a priori estimate) The following assertions hold.
(1) Let T, = sup{T"; lu.lly, < 2Cobo for 0 < 7 < T'}. Then, liminf, )z T, = Tp > 0,
(2) Let ||uollu: < 8o and T € (0, To) sufficiently small. Then, we have

Nuwllyr < 2Cob, (5.3)
lww — upllzy < Co(V? + V"P)(1 + 4Codo)3, (5.4)

where Cy and C, do not depend on v € (0, 1] but C, may diverge as ¢ — uo in H;.

To prove Proposition 5.1, we need two lemmas. The first one indicates that the
estimates of u, is replaced by those of ,.
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Lemma 5.2 Let s > s’ > 3/2 and v,V > 0 sufficiently small. Then, we have

lwllige sy < CUWollLg a1y + lwllzgea)), (5.5)
(Dz)* 282w || Lo 13y < CI(D=)* 28 || 1o 2y + CoT ?lltw | 12y, (5.6)
llu, — UV’”L%(H;’)
< OBy =~ Bolligmy) + luw — wllieaz) + Co? + v ) wllyy,  (5.7)
1{D2)*~3/28%(u, ~ Uy )| Leo(z2)
< Ol(D2)320:(W, — W)l ez + CoT |l — Uy || Lo ey
+C, (v + V) |w llyr, (5.8)

where 3 is a small positive constant.

Proof of Lemma 5.2. Since @, = K, (8, %, + J,n, * @,), we see that
(D)8 1, = Ko (D) 3R, + [(D:)° 871, K, )8, W + (D2) 'K, I, * @y (5.9)
Let K, = K, (z, i~18,) be the pseudo-differential operator of the symbol:

5 _ [ exp((vE)0; Ny(p, By * 0) 0 |
Az e = ( 0 exp((v€)0; *No(w, 0amy * 9)) ) '

Note that K, plays a role like the invei'se of K,. Then, from (5.9), it follows that

(D) ¥7, = K/(D,)&¥ ', - (KK, - ){D,)Y¥R,
_KV([(D-T)aai”l, Kulaz—u-)u + <Dm>oai-—1KvJu7lu * TL’,,) (510)

Taking 0 = s —1 and j = 1 in (5.10) and applying Lemma 3.5-3.3 together with
(D,)?,K,] € B(L%; H;(1~9)) uniformly in v € (0, 1], we have

lellzp@sn < ClWullig@sty + CorPllunllig e + Cliwll oo a2y
( )

Taking v > 0 so small that C,v” < 1/4 and applying Il zgoqme-1y < ellwllogeas +
Celluy |l Lge(22), we obtain (5.5). To prove (5.6), we let o = s — 3/2 and 7 = 2 in (5.10).
Then, it follows that
IKD=)*~*282u Lo azy < CIND=)*"*28:W, || zz) + Cot® (D2} 282w || Loz
+Cp(ell(Da)* 282w || Loy + Celluwllee(izy)-

Teking v,e > 0 small and applying lJu,|lze(z2) < T unllLge ey < CTY2|lwy || Lgean),
we obtain (5.6). The estimates (5.7) and (5 8) follow from the description:

(D,)”@;(WU —-Wy) = KV(DI)GB;—I(WU - 7‘T”u’) - (K,,K., - I)(nyai(—’l?,, - ﬂ),,/)
K, [(D.)° &, K0, (T, ~ @)
—Kll(Dt)aai-l(Kv - KU’)(axTzu + Jvnu * ﬁu)
K (D) 8 Ky (I, * Ty — Iy B ).



38

Note that the coefficient v? + v/® appears in the estimates of K,-K,, J,—J, and
(M — M )*. O

The second lemma shows that one can make ||u, — ©|lmazim and [t llsmooth (appearing
in the nonlinear estimates) small enough by taking ¢ close to uo and T > 0 small.

Lemma 5.3 There exist 5> 0 and 6 € (0,1) such that

fur ~ @llmazim < Cliuo = llag + C,TP(1 + iy, ), (5.11)
Newllsmootn < Clluo — @l my
+C(luy — Pllmazim + lluw — @lmatimlulyy) (1 + e llyy)?
+C,TP(1 + fluflyy)®. (5.12)

Proof of Lemma 5.3. From the integral equation (5.2), it follows that
muu - (pulmazim S mU(t)uO - ‘pll‘mazim + mGN(UU, azuu)mma:cim
= L+ (5.13)
Note that, by Lemma 3.2,
I < JU) (o = @)lmazim + NU () — Plmazim
< Clluo = ollnz + CT ||l ng, (5.14)

where o > 0 is sufficiently large. As for the estimate of Iz, we only consider the case
N (u,, 8:mp * u,) = (8zmy * u,)® and j = 1 in the definition of || - ||mazim- Lemma 3.2, 3.3
and 4.1 yield

I CTIMH(DI :_3/2(6:711/ * uu)2(6:77v * uV)“L:lz(Lg')

<
< CTY*|u,|l3,. (5.15)

Combining (5.13)—(5.15), we obtain (5.11). To prove (5 12), we use (5.1). Then, Lemma
3.1 yields

”(Dm)s—s/?azwl/”L?(L}) < '”(D::)ks/zamU(t)wv,O“Lg°(L§)
+C||(De) K, (B, (w,) — Bo(9))82m * Wl a2
+C|| R, (o, w) lzaqaz-1y
= L+1L+ 1 (5.16)

Note that, to get I}, we apply Lemma 3.1 (3.1) in the following way:

- T
D=y 8,GRolizayy S [ (D)~ 20.U()U(~#) Ry ez dt
< C|(D:)*~**DY 2ﬁu”LlT(Lg)-
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Let g, = K, (0, + Jum, * @) with g = (¢, p)". Then, Lemma 3.1 (3.1) gives

I (Dz)*~%20,U(t)(W,,0 ~ Golllgerzy + “(Dx>s_3/2axU(t)‘ﬁu“Lg"(L§.)
Cllwby,0 — Foll gs-10 + C,T'/?
Hz + C,TY2.
We next consider the estimate of I;. By Lemma 3.5 and 4.1,
CI(Dz)*~*(B.(uy) — By (9))m * BullLy(z2)
CIIDE*/2(B,(w,) — Bu(9))1 * 62t 122,
+C||({D2)"%% — D) (B, (u) — Bu(9)) * B2 || 323y
Clllww = Pllmasim + s = Plimazimltes — Pllamoon) (1 + vy ),
where we used (D)~ — D3~*2 € B(LL(L%)) and [|02uyllzee(z2) < Nttwllamootn. Since
luw — elsmooth < s lsmooth + CoTY/2, we have

Iz." < C(llu., - llmazim + Jlu, — ‘menaximmuvm:;goth)(l + II“VmYT)2

IAIN A

Clluo — ¢l

IN A

IA

+C¢T1/2(1 + |uu.,|||yr)2. (517)
As for I3, we apply Lemma 4.2 and observe that
I < CT(+ fuly,)’ (5.18)

Combining (5.16)-(5.18) and Lemma 5.2(5.6), we obtain (5.12). O
We are ready for the proof of Pfop'osition 5.1.

Proof of Proposition 5.1. Applying Lemma 3.1, 4.1 and 4.2 to (5.1), we see that
1@l Lo aaz-ry + ||<Dz)"_3/2az7l7u||Lgo(Lg.)

< CHUOHH; + C(muv - ‘Pmmazim + flu, — ‘P|l|fmimﬂluulll§;a)(1 + muva'r)2
+C,TP(1 + Jullvr)®. ‘

By Lemma 5.2,

II Uy |I initial + muu “l smooth

< Clluollag + Clllws = @lhmazim + e = Plomacim luulliz’) (1 + et vy )?
+C,TP (1 + Juullyy )® (5.19)
Also, applying Lemma 3.2 and 4.1 to (5.2), we have
Heolmazim < Clluollas + CTY4fu,lly, (5.20)

From (5.19)—(5.20), it follows that

lullyy < Cobo
+C(uw — Pllmazim + . — ‘P'l?nazimwuvw%f;o)(l + "uV'Yr)z
+C¢Tﬂ(1 + muum}’r)a- (5.21)
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Taking T 1 T, in (5.21) if T, < oo, we have

2Co60 < Cobo
+C (I = Pllmazim + 1ty = Plltnagim (2Cado)' ) - (1 + 2Cobo)?
+C,TP(1 + 2Codo)°. (5.22)

Assume here that liminf, o7, = 0. Then, this is the contradiction. Indeed, by taking
¢ sufficiently close to up in HZ, Lemma 5.3 and (5.22) yield 2Codp < 3/2Codo. Hence,
T, > Tp > 0 and (5.3) follows. We next prove (5.4). By the integral equation (5.1) and
Lemma 3.1, we see that

I{D2)*~326:(W,, — B )11,
< CI{D* "} (K, ~ Ku)(By(w) — Bu(9))n % B2, lILyz)
+CI(Dz)* 3K (Bu(uy) — Bur(wur) ) * 82T |l Laa2)
+C“<Dz)s,_3/2KV’ (Bu(p) — Bu(0))n * a:ﬂ)u”L}(L%)
+C|(D2Y 2Ky (Bu (wr) — Bur () ( — M) * 820\l Ly 22,
+C|(D2) K,y (Bu (un) — B () * 83(T 0 — Bl 13z,
HIRy () = Bor(0,w)l g a—2)-

Note that the estimates of integral kernels give

”(Dw)alusn(Kv - KV')ﬂ|L’=’(L§~) < C‘p(Vﬂ + V,ﬁ)”<Dz)s_3/2.ﬂlL§(L§~),
e = nw) * flzzagy < COP + V) D) Fllizas)-

Then, we have

1{D2)*=320,(W., — W)Lz,

S C(muu' - ‘Pmma:n’m + muvm.smooth + CcpTﬁ)
X (Neollyr + uwfye ) luw — vorll 2r
+Co (VP +VP) 1 + iy + fluwrllve)®

By Lemma 3.1 (3.3), it is also possible to derive

”mu - -'w)v’“L?(Hi'"’) < C(“Iu,,: - wmmam'm + muvmamooth + C‘PTB)

X(Nuullyr + e By )lus = uorllzr
+Cp(V” + V) (1 + Nullyr + Nuwllyr ).

Thus, Lemma 5.2 gives

oy = vl e arzy + I1(D2)* 202 (uy — w) |z

< C’(l!lw - ‘Pmmazim + muvmamooth + CsoTﬁ)CO‘sOmuv - Uy “IZT
+C, (U + V®)(1 + 4Cobo)*. (5.23)
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Applying Lemma 3.2 to the integral equation (5.2), we can show that
max (D) & (uy — w2y < CTP(4C000)%luw — wurllzz
+C (V% + ") (4Codo)°. (5.24)
Then, (5.23), (5.24) and Lemma 5.3 yield (5.4). O

We now prove our main theorem.

Proof of Theorem 1.1. By Proposition 5.1(5.3), we can take a convergent subsequence
of {u,}ve(o,1) such that

li,rl% uy =u  weakly-* in LP(H?),
y;l%w,)’*/?aguu, (Dg)*~%%8%u  weakly-* in LX(L2),
lilrl%(D,)“G,Zu,,: = (D;)*du weakly-* in LZ(LF),

where we identify LP(H?) (resp. LP(L%) and L2(LE)) with (LL(H;?))* (resp. (L3(L}))*

and (L2(L%))*). From Proposition 5.1(5.4), it follows that N (u., 7 * Bzu,,r) tends to
N (u,8;u) in LE(L2) and so u satisfies the integral equation:

u=U(t)uo — iGN (u, Oyu) in LLL2. (5.25)
We next show the éontlnulty in time of u as an H? valued function. In (5.25), it is easy
to see that U(t)uo € C([0, T); H2?). As for GN (u, 8zu) GN (t), we observe that
GN(t+h)—GN(t) = U(t+h) /t U(=1)N(r)dr

t
+U(t+h) —U®) [ UnN(r)dr
= Gy(h) + Gz(h). (5.26)
Let I = [t,t+ h]if h > 0 and I = [t + h,t] if h < 0. Note that, by the dual estimate of

IDY2U ()$ll 1oz < Cll@llzz, we have || D;/? [;U(=T)N(r)dr|lrz < ClINlryzp)- Then,
Lebesgue’s convergence theorem yields

ID;8:Gi(W)llz < CIIDT*0: Ny

— 0 ash—0.

Since ||D218; f; U(—7)N(7)dr||12 < oo by Lemma 3.1 (3.3), the strong continuity of the
Schrodinger group yields limy,_o D2~18,G2(h) = 0 in L2. Hence, u € C([0,T]; H;). The
uniqueness and Lipschitz’ dependence on the initial data follow from the routine work. O
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