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概要

Aesthetics feature fascinates mathematician. Since ancient times, the Golden Ratio $(\phi)$ has been
keepinng to give a profound influence in various fields. We will show typical dynamic programming
problems: Allocation problem, Linear-Quadratic control problem and Multi-variate stopping prob-
lem. For these problems, there appears the Golden Ratio in the solution of Bellman equation. This
paper also considers a minimization problem of quadratic functions over an infinite horizon. We
show that the Golden trajectory is optimal in the optimization. The Golden optimal trajectory is
obtained through the corresponding Bellman equation, which in turn admits the Golden optimal
policy. For Multi-variate stopping problem with three players on the unit interval $[0,1]$ , its related
expected value could be obtained as $\phi^{-1}$ .

KEYWORDS: Golden Ratio, Dynamic Programming, Allocation Problem, LQ Control Problem,

Monotone Stopping Problem. Primary $90C39$ ; Secondary llA99.

1 lntroduction.

The Golden Ratio $(\phi=1.61803\cdots)$ has been a profound influence since ancient times such as the

Parthenon at Athens. The shape of the Golden Ratio is supposed to be interesting in a graphic forms for

their sculptures and paintings. The beauty appears even in the ingredient of nature creatures. The most
influential mathematics textbook by Euclid of Alexandria defines the proportion. These information
presents a broad sampling of $\phi$-related topics in an engaging and easy-to-understand format.

The Fibonacci sequence (1,1,2;3,5,8,13, $\cdots$ ) is closely related to the Golden Ratio, which is a limiting

ratio of its two adjacent numbers. It is also known that the diagonal summation produces the Fibonacci
sequence in the Pascal’s triangle. These repeated procedure or iteration have something in common.

The principle of Dynamic Programming is said to ‘divide and conquer.’ In fact, if it is not poesible

to work out directly, divide up a problem into smaller ones. The basic idea is aiming to provide the
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original problem an effective family of sub-problems. The Bellman’s curse of dimensionality conquers

the computational explosion with the problem dimension through the use of parametric representations.

The more it’s in a complex, the more it is divided. When a problem is in a multi-stage decision form,

we should consider the problem repeatedly. If this reduction procedure gives a self-similar one, the

methodology turns out to be effective. The Golden Ratio is created repeatedly by its own in a quite

same form. A recurrence relation is ubiquitous. Let us say that a beautiful continued fraction represents

the Golden number. It is interesting that this quite introductory problem of Dynamic programming

produces the basic mathematlcal aspects.

In the following sections, we treat typical dynamic programming problems; Allocation problem and
Linear-Quadratic Control problem. However problems are in a simple fashion, it figures out the essence
of Dynamic Programming.

Let us consider a typical type of criterion in a deterministic optimization. We minimize the next
quadratic criteria:

(1.1) $I(x)= \sum_{n=0}^{\infty}[x_{n}^{2}+(x_{n}-x_{n+1})^{2}]$ ,

and

(1.2) $J(x)= \sum_{n=0}^{\infty}[(x_{\mathfrak{n}}-x_{n+1})^{2}+x_{n+1}^{2}]$ .

Let $R^{\infty}$ be the set of all sequences of real values :

$R^{\infty}=\{x=(x_{0},x_{1}, \ldots,x_{n}, \ldots)|x_{n}\in R^{1}n=0,1, \ldots\}$.

First we take the quadratic criterion (1.1).

Now we consider a mathematical programming problem for any given initial value $c$ :

$\underline{MP_{1}(c)}$: minimize $I(x)$ subject to (i) $x\in R^{\infty}$ , (ii) $x_{0}=c$ .

Let us evaluate a few special trajectories:

Example 1 First all but on and $aRer$ nothing $y=\{c,$ $0,0$, ..., $0$ , ... $\}$ yields $I(y)=2c^{2}$ .

Example 2 Always all constant $z=\{c,$ $c$ , ..., $c$ , .. . $\}$ yields $I(z)=\infty$ .

Example 3 A proportional (geometrical) $w=\{c,$ $\rho c$ , ..., $\rho^{n}c$ , ... $\}$ yields

$I(w)=\backslash$ $\{c^{2}+(1-\rho)^{2}c^{2}\}(1+\rho^{2}+\cdots+\rho^{2n}+\cdots)$

(13)
$=$ $\frac{1+(1-\rho)^{2}}{1-\rho^{2}}c^{2}$ $(0<\rho<1)$ .

Since
$\min_{0\leq\rho<1}\frac{1+(1-\rho)^{2}}{1-\rho^{2}}$

is attained at $\hat{\rho}=2-\phi$, we have the minimum value

$\frac{1+\{1-(2-\phi)\}^{2}}{1-(2-\phi)^{2}}=\phi$ .
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Example 4 The propotional $\hat{u}=\{c, (2-\phi)c, . .., (2-\phi)^{n}c, . ..\}$ , with ratio $(2-\phi)$ , yields

(14) $I(\hat{u})=\phi c^{2}$ .

Thus $\hat{u}=(\hat{u}_{n})$. gives a Golden optimal trajectory, because $\hat{u}_{n+1}$ is always a Golden section point of
interval $[0,\hat{u}_{n}]$ .

Next let us now consider a control process with an additive transition $T(x, u)=x+u$.

minimize $\sum_{n=0}^{\infty}(x_{\mathfrak{n}}^{2}+u_{n}^{2})$

subject to (i) $x_{n+1}=x_{n}+u_{n}$ , $n\geq 0$

(ii) -\infty \infty <un<o科

(iii) $x_{0}=c$ .
Then the value function $v$ satisfies Bellman equation:

(1.5) $v(x)= \min_{-\infty<u<\infty}[x^{2}+u^{2}+v(x+u)]$ .

Eq. (1.5) has a quadratic fom $v(x)=\phi x^{2}$ .
Second we take the following quadratic criterion

$J(x)= \sum_{n=0}^{\infty}[(x_{n}-x_{n+1})^{2}+x_{n+1}^{2}]$ .

We consider a problem of form:

$\underline{MP_{2}(c):}$ minimize $J(x)$ subject to (i) $x\in R^{\infty}$ , $(ii)x_{0}=c$.

Since $J(x)=I(x)-c^{2}$ , the minimum value is $J(\hat{u})=(\phi-1)c^{2}$ at the Golden trajectory

$\hat{u}=\{c,$ $\mu c$ , ..., $\mu^{\mathfrak{n}}c$, .. . $\}$ ; $\mu=2-\phi$ .

In fact, a proportional $w=\{c,$ $\mu$ , .. ., $\rho^{n}c$, ... $\}$ yields

$J(w)$

$= \frac{\{\rho^{2}c^{2}+(1-\rho^{2}+(1-\rho)^{2}}{1-\rho^{2}}c^{2}(0<\rho<1)=\rho)^{2}c^{2}$

}
$(1+\rho^{2}+\cdots.+\rho^{2n}+\cdots)$

Figure 1 in the Appendix shows that

$x^{2}+(1-x)^{2}$
$\min_{0\leq x<1}\overline{1-x^{2}}$

is attained at $\hat{x}=2-\phi$ with the minimum value

$\frac{(2-\phi)^{2}+\{1-(2-\phi)\}^{2}}{1-(2-\phi)^{2}}=\phi-1$ .
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2 An lllustrative Graph.

Let us now describe a graph which has dual Golden extremum points in the previous section. The
graph is $x=f(u)= \frac{u^{2}+(1-u)^{2}}{1-u^{2}}$ See Figure 1 in Appendix. For this function, it is seen that two
equalities:

(2.1) $\min_{0<u<1}f(u)=\min_{0<u<1}\frac{u^{2}+(1-u)^{2}}{1-u^{2}}=-1+\phi$

and $1^{\max_{<u<\infty}f(u)}= \max_{1<u<\infty}\frac{u^{2}+(1-u)^{2}}{1-u^{2}}=-\phi$ hold. Equivalently, the latter equality is that

(2.2) $\min_{1<u<\infty}\{-f(u)\}=\min_{1<u<\infty}\frac{u^{2}+(1-u)^{2}}{u^{2}-1}=\phi$

The minimum in (2.1) attains iff $\hat{u}=2-\phi$ , and the minimum in (2.2) attains iff $u^{*}=1+\phi$ . Thus we
have the inequality

$f(u)\geq-1+\phi$ on $(-1,1)$ and $f(u)\leq-\phi$ on $(-\infty, -1)U(1, \infty)$ .

Refer to the shape for this graph in the Figure 1 of Appendix.

3 Dynamic Programming of the discrete-time system.

The conceptual cluster of Dynamic Programming are investigated throughout the mathematics. Not
only the analytical aspect of optimization method, but also the investigate problem with a repeated
structure. To give a useful explanation and an interesting implication, we show some explicitly solvable
problems.

First the general setting of Dynamic Programming problem are illustrated. It is composed as
$(S, A,r,T)$ . Let $S$ be a state space in the Euclidean space $R$ and $A=(A_{x}),A_{x}\subset R,$ $x\in S$ means
a feasible action space depending on a current state $x\in S$ . The immediate reward is a function of
$r=r(x, a,t),x\in S,$ $a\in A_{x},$ $t=0,1,2,$ $\cdots$ . And the terminal reward $K=K(x),$ $x\in S$ is given. The
transition law from the current $x$ to the new $y=m(x, a, t)$ by the action or decision $a\in A_{x}$ at a time $t$ .
If the transition law $m(x, a, t)$ does not depend $t$ , it is called a stationary $m(x, a,t)$ and we treat it in
this paper. Here we consider additive costs and the optimal value of $a_{t}$ will be depend on the decision
history. Assume its value at time $t$ denoted by $x_{t}$ , which enjoy the following properties:

(a) The value of $x_{t}$ is observable at time $t$ .
(b) The sequence $\{x_{t}\}$ follows a recurrence in time:

(3.1) $x_{t+1}=m(x_{t}, a_{t},t)$ .

It is termed that the function $y=m(x,\pi(x,t),t)$ means a move from the current $x$ to the next $y$

attsothe law of motion or the plant equation by adaptinga policya $=\pi(x,t)$ .
(c) The set of $a_{t}$ may adopt depends on $x_{t}$ and $t$ .
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(d) The cost function $C_{\pi}(x,t)$ starting a state $x$ at time-to-go $T_{t}=T-t$ to optimize over all policies
$\pi$ has the additive form;

(3.2) $C_{\pi}(x_{0}, t_{0})= \sum_{t=t_{0}}^{T-1}r$($x_{t}$ , at, $t$ ) $+K(x_{T})$

with $x_{0}=x_{t_{0}}$ and
$x_{t+1}=m(x_{t}, \pi(x_{t},t), t)$ , $at=\pi(x_{t}, t)$

where $T$ is a given finite planning horizon.

Let
$F(x,t)= \inf_{\pi}C_{\pi}(x,t)$ .

It is well known that the sequence $\{F(\cdot,t)\}$ satisfies the optimality equation(DP equation):

(3.3) $F(x, t+1)= \inf_{a\in x}[r(x,a,t)+F(m(x,a,T_{t}), t)]$

with the boundary $F(x,T)=K(x)$ where $T_{t}=T-t$ for $x\in S,$ $0\leq t<T$ .
All of these are referred from text books by Bertsekas [2], Whittle [15], Sniedovich [14], etc.

The relation between The Golden ratio formula and Fibonacci sequence is known as [4] etc. To produce

the Fibonacci sequence, it is a good example in a recursive programming [13]. Also the Fibonacci
sequence are related with continued ffaction. For the notation of continued fraction, we adopt ourself to
the $follow\dot{\bm{o}}g$ notations:

$b_{0}+ \frac{c_{1}}{b_{1}+\frac{c_{2}}{b_{2}+\frac{c_{3}}{b_{3}+\frac{c_{4}}{b_{4}+}}}}=b_{0}+\frac{c_{1}}{b_{1}+}\frac{c_{2}}{b_{2}+}\frac{c_{3}}{b_{3}+}\frac{c_{4}}{b_{4}+}\cdots$

.

Note that the Golden number satisfies $\phi^{2}=1+\phi$ . By using this relation repeatedly, $\phi=1+\frac{1}{\phi}=$

$1+ \frac{1}{1+\frac{1}{\phi}}=1+\frac{1}{1+}\frac{1}{\phi}=1+\frac{1}{1+}\frac{1}{1+}\frac{1}{\phi}=1+\frac{1}{1+}\frac{1}{1+}\frac{1}{1+}\cdots$

. Similarly the reciprocal (or sometimes called

as a dual Golden number) is denoted $\phi^{-1}=0.618\cdots=\phi-1=\frac{1}{\phi}=\frac{1}{1+}\frac{1}{\phi}=\frac{1}{1+}\frac{1}{1+}\frac{1}{\phi}=\frac{1}{1+}\frac{1}{1+}\frac{1}{1+}\cdots$

This reproductive property suggests our fundamental claim for the following typical example of Dy-

namic Programming. Before we solve the problem, let us induce a sequence $\{\phi_{n}\}$ as

(3.4) $\phi_{n+1}=1+\frac{1}{1+1/\phi_{n}}=1+\frac{1}{1+}\frac{1}{\phi_{n}}$ $(n\geq 1),$ $\phi_{1}=1$ .

ノ 1 lso let $\{\hat{\phi}_{n}\}$ as

$\hat{\phi}_{n+1}=\frac{1}{1+}\frac{1}{1+}\hat{\phi}_{n}$ $(n\geq 1),\hat{\phi}_{1}=1$ ,

(3.5) i.e.
$\hat{\phi}_{\mathfrak{n}+\iota}^{-1}=\frac{1}{\hat{\phi}_{n+1}}=1+\frac{1}{1+\hat{\phi}_{n}}=1+\frac{1}{1+}\hat{\phi}_{n}$ $(n\geq 1)$ .
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The sequence $\{\phi_{n}\}$ of (3.4) satisfies

$\phi_{n+1}$

$=1+ \frac{\frac{1}{1+1}}{1+}\frac{}{1+}\frac{\frac{1}{1+1}}{1+}\frac{i_{1}}{1+}\frac{1}{\phi_{n-2}}=1+\frac{1}{1+,1}\frac{1}{\frac\phi_{1^{n-}},1+}$

Similarly $\{\hat{\phi}_{n}\}$ of (3.5) satisfies

$\frac{1}{\hat{\phi}_{n+1}}$
$=1+ \frac{1}{1+}\frac{1}{1+}\frac{1}{1+}\hat{\phi}_{n-1}$

$=1+ \frac{1}{1+}\frac{1}{1+}\frac{1}{1+}\frac{1}{1+}n-2$

Eom this definition, it is seen easily that

(3.6) $\lim_{narrow\infty}\phi_{n}=\phi=(\sqrt{5}+1)/2$

(3.7) $\lim_{n}\hat{\phi}_{n}=1/\phi=(\sqrt{5}-1)/2$

4 Linear-Quadratic Control problem.

The Linear Quadratic (LQ) control problem is to minimize the quadratic cost function over the linear

system. If the state of system $\{x_{t}\}$ moves on

(4.1) $x_{t+1}=x_{t}+a_{t},$ $t=0,1,2,$ $\cdots$

with $x_{0}=1$ by an input control $\{at,$ $-\infty<a_{t}<\infty\}$ . The cost incured 狛

(4.2) $\sum_{l=0}^{T-1}(x_{t}^{2}+a_{t}^{2})+x_{T}^{2}$ .

Then DP equation of LQ is

(4.3) $v_{t+1}(x)= \min_{a\in}\{r(a,x)+v_{t}(a+x)\}$

where
$r(a,x)=a^{2}+x^{2}$ ,
$a\in A_{l}=(-\infty, \infty),$ $x\in(-\infty, \infty)$

Theorem 4.1 The solution of (4.3) is given by

$\{\begin{array}{l}v_{0}(x)=\phi_{T}x^{2}v_{t}(x)=\phi_{T-t}x^{2},t=1,2,\cdots\end{array}$

using the Golden number related sequence $\{\phi_{n}\}$ by (3.4).

(Proof) The proof is immediately obtained by an elementary quadratic minimization and then the math-

ematical induction. $\square$
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5 AIIocation problem.

Allocation problem or sometime called as partition problem,is of the form

(5.1) $v_{t+1}(x)= \min_{a\in}\{r(a,x)+v_{t}(a)\}$

for $t=0,1,2,$ $\cdots T$, where
$r(a,x)=a^{2}+(x-a)^{2}$ ,
$a\in A_{x}=[0,x],x\in.(-\infty, \infty)$ .

$Th\infty rem$ S.1 The solution of (5.1) is given by using the dual golden number as

$\{\begin{array}{l}v_{0}(x)=\hat{\phi}_{T}x^{2}v_{t}(x)=\hat{\phi}_{T-t}x^{2},t=1,2,\cdots\end{array}$

(Proof) Using the Schwartz inequality, the following holds immediately: For given positive $\infty nstantsA$

and $B$ with a fixed $x$ ,
$\min_{0\leq a\leq ae}\{Aa^{2}+B(x.-a)^{2}\}=\frac{x^{2}}{1/A+1/B}$ .

So the proof could be done inductively. $\square$

Remark 1 : We note here that the number $\phi^{-1}=0.618\cdots$ of reciprocal of the Golden number is called
sometimes Dual Golden number. The above two problems are closely related.

Remark 2 : It is seen that the same quadratic function of the form; $v(x)=cx^{2}$ where $c$ is a constant,

becomes a solution if the DP equation is, for Allocation and LQ,

(5.2) $v_{t+1}(x)= \min_{a\in A_{g}}\{r(a,x)+2\int_{0}^{a}v_{t}(y)/ydy\}$

(5.3) $v_{t+1}(x)= \min_{a\in A_{*}}\{r(a, x)+2\int_{0}^{a+x}v_{t}(y)/ydy\}$

respectively. Refer to [9].

6 Monotone Stopping Game.
A monotone rule is introduced to sum up individual declarirations in a multi-variate Itopping problem

[16]. The rule is defined by a monotone logical function and is equivalent to the winning class of
Kadane [12]. There given p-dimensional random process $\{X_{n};n=1,2, \cdots\}$ and a stopping rule $\pi$ by

which the group decision determined from the declararion of $p$ players at each stage. The stoppIng rule
is p-variate $\{0,1\}$-valued monotone logical function. We consider two cases of rules with $p=3$ as follows:

(6.1) $\pi(x_{1}, x_{2},x_{3})=x_{1}+x_{2}$

and

(6.2) $\pi(x_{1},x_{2},x_{3})=x_{1}x_{2}+x_{1}x_{3}$ .
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X 1 $\pi(x_{1},x_{2},x_{3})=x_{1}+x_{2}$ for any $x_{3}$

$\otimes 2$ $\pi(x_{1},x_{2},x_{3})=x_{1}x_{2}+x_{1}x_{S}$

That is, in case of the case (6.1), if either of player 1 and 2 declares stop, then the system $stop_{8}$ neglecting
of $x_{S}$ . In case of (6.1), we have the system stops when either of player 1 and 2 declares stop accompanying
with player 1. Without loss of generality, we can asIume that each $X_{n}$ takes the uniformly distribution
on $[0,1]$ . Then equilibrium expected values for each player is given as

Table 1. The equilibrium expected value for each players.

In order to derive the value $\phi^{-1}=\frac{\sqrt{5}-1}{2}$ , we comsider an equilibrium stopping strategy of threshold
type in the form $\{X_{n}>a\}$ for some $a$ . Bellman type equation for this game version will be given as [16].

That is, each player declares “stop” or “continue” if the observed value exceeds some $a$ or not. The event
of the occurence is denoted by $D_{n}^{i}=$ {Player $i$ declares stop}. Two trivial cases are the whole event $\Omega$

and the empty event $\emptyset$ .
In generally a logical function is assumed “monotone” so its function can be written as

$\pi(x^{1}, \cdots x^{p})=x^{:}\cdot\pi(x^{1}, \cdots 1,\cdot x^{p})i..+\overline{x^{i}}\cdot\pi(x^{1}, \cdots 0,\cdot x^{p})i.$. $x^{:}\in\{0,1\}\forall i$

$wherex^{*}=1-x^{:}-$ . Corresponding to thiI expression,

$II(D^{1}, \cdots D^{p})=D^{i}\cdot\Pi(D^{1}, \cdots\Omega,\cdot D^{p})+\overline{D^{t}}\cdot\Pi(D^{1}:\cdot\cdot, \cdots\emptyset,\cdot\cdot D^{p})i$.

where $\overline{D^{1}}$ is the complement of the event $D^{:}$ . The general equation for the expected for player $i$ at the
step $n$ equalS as follows:

(6.3) $E[(X_{n}^{i}-v^{i})^{+}1_{\Pi(D_{n}^{1},\ldots,\Omega,\cdots D_{n}^{p})}]-E[|t=0$
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where $D_{n}^{i}=\{X_{n}^{i}\geq v^{i}\}$ and $(x)^{+}= \max\{x,0\},$ $(x)^{-}= \min\{x, 0\}$ . If we assume an independence case
between player’s random variable $X_{n}^{i}$ for each $i$ . The equation (6.3) becomes

(6.4) $\beta_{n}^{\Pi(i)}E[(X_{n}^{i}-v^{i})^{+}]-\alpha_{n}^{\Pi(i)}E[(X_{n}^{i}-v^{i})^{-}]=0$.

Our objective is to find an equilibrium strategy and values of players for a given monotone rule as the

rule (6.1) and (6.2). A sequence of expected value (a net gain) under the situation formulated in the

section is obtained as

(6.5) $v_{n+1}^{i}=v_{n}^{1}+\beta_{n}^{II(\dot{\iota})}E[(X_{n}^{i}-v_{n}^{i})^{+}]-\alpha_{n}^{n(i)}E[(X_{n}^{i}-v_{n}^{i})^{-}]$

for player $i=1,$ $\cdots$ , $p$ and $n$ denotes a time-to-go. The details refer to $Th\infty rem2.1$ in YKN [16]. Under

these derivation, now we are able to calculate the optimal (equilibrium) value $v^{i}= \lim_{n}v_{n}^{1}$ for player

$i=1,2,3$ for the rule (6.1) and (6.2) in the table.
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7. Apppendix. $x$

Figure 1. The curve $x=f(u)$ has dual golden extremum points with a marked $\star$.
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