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1 Introduction

Here we reconsider the continuous arrival time secretary problem with un-
known number of rankable applicants firstly treated by Stewart(1981). Let
$X_{1},$ $X_{2},$

$\ldots,$
$X_{N}$ be continuous i.i. $d$ . random variables with values in $[0, T]$

and common c.d. $f$. $F$ , where $N$ is an integer-valued random variable inde-
pendent of $X_{k}’s$ . $X_{k}$ is thought of as the arrival time of the kth best applicant
and $N$ represents the total number of applicants. It is easy to see that, given
$N=n$, the arrival orders of $n$ applicant$s$ are equally likely. The objective of
the problem is to find a policy that maximizes the probability of selecting
the best applicant among $N$ all applicants. Stewart adopted a Bayesian
approach to this problem by assuming a prior distribution $p_{n}=P\{N=n\}$
on $N$ and examined the limiting case $(Marrow\infty)$ of the following uniform
prior, i.e.,

$p_{n}= \frac{1}{M}$ , $1\leq n\leq M$ (1)

In this note, we examine the optimal policy in the case of finite $M$ .
Bruss and Samuels(1987) also reconsidered the Stewart problem in greater

generality, but the exact solution of our problem is not included. For related
works, see Cowan and Zabczyk(1978), Bruss(1984, 1987, 1988), Bruss and
Samuels(1990) and Bruss and Rogers(1991).

2 Optimal Policy

For the following, it is convenient to introduce a change of time $Z_{k}=$

$F(X_{k}),$ $1\leq k\leq N$ such that $Z_{1},$ $Z_{2},$
$\ldots,$

$Z_{N}$ are i.i. $d$ . uniform on $[0,1]$ .
Let $N(1)=N$ and

$N(t)=\#\{Z_{k} : Z_{k}\leq t\}$ , $0\leq t\leq 1$

and focus our attention on the posterior distribution $P\{N=n|8_{t}\}$ where
fu denotes the $\sigma$-algebra generated by $\{N(s) : s\leq t\}$ . The posterior dis-
tribution depends on the prior $p_{n}$ , parameter $t$ and the observation $N(t)$

because of the i.i. $d$ . assumption of the arrival times.
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A straightforward application of Bayes formulae yields (see,e.g., Bruss
and Rogers (1991))

$P\{n|fl_{t}\}$ $=$ $\frac{(_{N(t)}n)t^{N(t)}(1-t)^{n-N(t)}p_{n}}{\sum_{m=N(t)}^{\infty}(Nm(t))t^{N(t)}(1-t)^{m-N(t)}p_{m}}$

$\frac{(_{N(t)}n)(1-t)^{n}p_{n}}{\sum_{m=N(t)}^{\infty}(Nm(t))(1-t)^{m}p_{m}}$ (2)

Let $(k,t)$ denote the state in which we are facing at time $1-t$ the kth
applicant who is relatively best, referred to as a candidate hereafter (note
that $t$ is not an elapsed time but represents the remaining time). Since, in
our case, a prior is given by (1), the posterior in state $(k, t)$ is updated, from
(2), to

$p(n|k,t)= \frac{(_{k}^{n})t^{n}}{C(k,t)}$ (3).

where $C(k,t)= \sum_{m=k}^{M}(_{k}^{m})t^{m}$ .
Let $P(k,t)$ be the probability of choosing the best if we select a current

candidate in state $(k, t)$ . Since, conditional on $N=n$, success probability is
$k/n$, we have

$P(k,t)$ $=$ $\sum_{n=k}^{M}\frac{k}{n}p(n|k,t)$

$\frac{1}{C(k,t)}\sum_{n=k}^{M}(\begin{array}{ll}n -1k -1\end{array})t^{n}$ (4)

On the other hand, let $Q(k, t)$ be the corresponding probability if we re-
ject the current applicant and then select the first candidate that appears.
Conditional on $N=n$, the success probability is known to be given by

fi $\sum_{j=k+1^{\frac{1}{j-1}}}^{n}$ for $n>k$ . Hence, unconditioning with respect to the poste-
rior distribution gives

$Q(k,t)$ $=$ $\sum_{n=k+1}^{M}(\frac{k}{n}\sum_{j=k+1}^{n}\frac{1}{j-1})p(n|k,t)$

$\frac{1}{C(k,t)}\sum_{n=k+1}^{M}(\sum_{j=k+1}^{n}\frac{1}{j-1})$

ノ

$n-1k-1)t^{n}$ (5)

Now let

$G=\{(k,t) : P(k,t)\geq Q(k,t)\}$ (6)

Hence, $G$ represents the set of states for which stopping immediately is
at least as good as continuing for exactly one more transition and then
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stopping. The policy that stops the first time the process enters a state
in $G$ is called the OLA (one-stage look-ahead) policy. It is well known
that, if $G$ is closed in a sense that, once $(k, t.)\in G$ , then $(k+j, s)\in G$

for $j\geq 1,$ $s<t$ , then the OLA policy is optimal (see Ross(1983)). Chow,
Robbins and Siegmund(1971) called this case monotone case. From (4) and
(5), $P(k, t)\geq Q(k, t)$ is equivalent to

$\sum_{n=k}^{M}(\begin{array}{l}n-lk-1\end{array})t^{n}\geq\sum_{n=k+1}^{M}(\sum_{j=\dot{k}+1}^{n}\frac{1}{j-1})$

ノ

$n-1k-1)t^{n}$ (7)

Remark: Let $M$ tend to infinity in (7). If we use an identity (see Stew-
art(1981) or Bruss(1987)),

$\sum_{n=k+1}^{\infty}(\sum_{j=k+1}^{n}\frac{1}{j-1,\backslash })(\begin{array}{ll}n -1k -1\end{array})t^{k}(1-t)^{n-k}=- \log t$ ,

for $k=1,2,$ $\ldots$ , and $t\in(0,1)$ . then (7) can be reduced to

$( \frac{t}{1-t})^{k}\geq-(\frac{t}{1-t})^{k}\log(1-t)$

or equivalently $t\leq 1-e^{-1}$ and $G$ is expressed as

$G=\{(k,t)$ : $t\leq 1-e^{-1}$ , irrespective of $k\}$

Since $G$ is closed, $G$ gives an optimal stopping region. This is just the result
Stewart obtained.

We now return to finite $M$ and find the range of $t$ which satisfies the
inequality (7). Since both sides of (7) are continuous in $t$ , the solution to
this inequality is found by solving the equality. Before doing so, note that
(7) can be written as

$\sum_{n=k+1}^{M}f_{k,n}(t)\leq 1$ (8)

if we define

$f_{k,n}(t)=(b_{k,n}-1)(\begin{array}{ll}n -1k -1\end{array})t^{n-k}$, $k+1\leq n\leq M$

where $b_{k,n}= \sum_{j=k+1^{\frac{1}{j-1}}}^{n}$ . We also define, for a given $M$,

$s^{*}=s^{*}(M)= \min\{s\geq 1 : b_{s,M}\leq 1\}$
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Lemma 1 Let $F_{k}(t)= \sum_{n=k+1}^{M}f_{k,n}(t)$ . Then we have the following:

(i) $k\geq s^{*}$ ,
$F_{k}(t)\leq 0$ , for $0\leq t\leq 1$

(ii) $k\leq s^{*}-1$ ,
If $F_{k}(1)>1$ , then $F_{k}(t)=1$ has a unique root $t_{k}^{*}\in(0,1)$ such that

$F_{k}(t)\leq 1,0\leq t\leq t_{k}^{*}$ and $F_{k}(t)>1,t_{k}^{*}<t.\leq 1$ . If $F_{k}(1)\leq 1$ , then $F_{k}(t)\leq 1$

for $0\leq t\leq 1$ .

Proof. (i) Obvious from the definitim of $s^{*}$ . (ii) For given $k$ , there exists
an integer $r$ such that $b_{k,n}>1$ for $n>r$ and $b_{k,n}\leq 1$ for $n\leq r$ . Thus

$F_{k}(t)=. \sum_{n=r+1}^{M}$ ( $b_{k,n}$ 一 1) $(\begin{array}{l}n-1k-1\end{array})t^{n-k}-\sum_{n=k+1}^{r}$ ( $b_{k,n}$ 一 1)
ノ

$n-1k-1)t^{n-k}$

with both summations containing only non-negative coefficients. The mth
derivative of $F_{k}(t)$ is given by

$F_{k}^{(m)}(t)= \sum_{n=k+m}^{M}(b_{k,n}-1)(\begin{array}{ll}n -1k -1\end{array}) \frac{(n-k)!}{(n-k-m)!}t^{n-k-m}$ , $1\leq m\leq M-k$

First note that $F_{k}^{(r+1-k)}(t)>0$ for $0\leq t\leq 1$ . This implies that $F_{k}^{(r-k)}(t)$ is
increasing and has the following property due to $F_{k}^{(r-k)}(0)<0$ :

(a) If $F_{k}^{(r-k)}(1)\geq 0$ , then there exists a unique root $a\in(0,1)$ such
that $F_{k}^{(r-k)}(a)=0$ and $F_{k}^{(r-k)}(t)\leq 0$ , for $t\leq a$ whereas $F_{k}^{(r-k)}(t)>0$ , for
$a<t\leq 1$ .

(b) If $F_{k}^{(r-k)}(1)<0$ , then $F_{k}^{(r-k)}(t)<0$ , for $0\leq t\leq 1$ .
In case (a), $F_{k}^{(r-k)}(a)=0$ and $F_{k}^{(r+1-k)}(a)>0$ implies that $F_{k}^{(r-1-k)}(t)$

achieves its minimum at $a$ . Since $F_{k}^{(r-1-k)}(0)<0$ and $F_{k}^{(r-1-k)}(t)$ is in-
creasing for $t\geq a,$ $F_{k}^{(r-1-k)}(t)$ also has the above property. In case (b),
obviously $F_{k}^{(r-1-k)}(t)<0$ for $0\leq t\leq 1$ , and has the above property.
Thus we have shown that $F_{k}^{(r-1-k)}(t)$ has the same property as $F_{k}^{(r-k)}(t)$ .
This argument is repeated to show that $F_{k}^{(1)}(t)$ also has the same property.
Since $F_{k}(0)=0$ , if $F_{k}^{(1)}(t)$ satisfies the case (b), $F_{k}(t)$ is decreasing and so
$F_{k}(t)\leq 0$ . If $F_{k}^{(1)}(t)$ satisfies the case (a), $F_{k}(t)$ attains its minimum at $a$

and then increases. Hence, if $F_{k}(1)>1$ , then $F_{k}(t)=1$ has a unique root.
Thus the proof is complete.
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For convenience, define $t_{k}^{*}=1$ if $F_{k}(t)<1$ , for $0\leq t\leq 1$ . To show
that the set $G$ is closed, it suffices to show that the sequence $t_{k}^{*}’ s$ are non-
decreasing, i.e., $t_{1}^{*}\leq t_{2}^{*}\leq\cdots\leq t_{M}^{*}$ . To show this, we need the following
lemma.

Lemma 2 We have, for $2\leq k\leq M-1$ ,

$F_{k-1}(t)-F_{k}(t)=t\{1-F_{k}(t)\}+\{f_{k-1,M}(t)+tf_{k,M}(t)\}$

Proof. It is easy to see

$F_{k-1}(t)-F_{k}(t)=f_{k-1,M}(t)+ \sum_{n=k+1}^{M}\{f_{k-1,n-1}(t)-f_{k,n}(t)\}$ (9)

Rom the definition, we have

$f_{k-1,n-1}(t)\cdot-f_{k,n}(t)$

$=[\{(\begin{array}{ll}n -1k -1\end{array})-(\begin{array}{ll}n -2k -2\end{array})\}+\{$

ノ

$n-2k-\cdot 2)b_{k-1,n-1}-$

ノ

$n-1k-1I^{b_{k,n}}\}]t^{n-k}(10)$

Applying to (10) the following easily verifiable results .

$(\begin{array}{ll}n -1k -1\end{array})-(\begin{array}{ll}n -2k -2\end{array})=(\begin{array}{ll}n -2k -1\end{array})$

$(\begin{array}{l}n-2-2k\end{array})b_{k-1,n-1}-(\begin{array}{l}n-1k-1\end{array})b_{k,n}=-(\begin{array}{ll}n -2k -1\end{array})b_{k,n-1}$ ,

we have

$f_{k-1,n-1}(t)-f_{k,n}(t)$ $=$ $-(_{k-1}^{n-2}$

ノ
( $b_{k,n-1}$ 一 $1$ ) $t^{n-k}$

$=$ $-tf_{k,n-1}(t)$ (11)

Substituting (11) into (9) yields

$F_{k-1}(t)-F_{k}(t)$ $=$ $f_{k-1,M}(t)-t \sum_{n=k+1}^{M}f_{k,n-1}(t)$

$=$ $f_{k-1,M}(t)-t\{F_{k}(t)-1-f_{k,M}(t)\}$

$=$ $t\{1-F_{k}(t)\}+f_{k-1,M}(t)+tf_{k,M}(t)$ ,

which is the desired rsult.

Lemma 3 The sequence $\{t_{k}^{*}\}$ is non-decreasing in $k$ . That is,

$t_{1}^{*}\leq t_{2}^{*}\leq.$ $..\leq t_{M}^{*}$
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Proof. Since $t_{k}^{*}=1$ for $k\geq s^{*}$ , we only show $t_{k-1}^{*}\leq t_{k}^{*}$ for $k\leq s^{*}-1$ . from
Lemma 2, to show this, it suffices to show that

$F_{k-1}(t)\geq F_{k}(t)$ , $0\leq.t\leq t_{k}^{*}$ (12)

Since$\cdot$

$1\geq F_{k}(t)$ for $0\leq t\leq t_{k}^{*},$ (12) is immediate from Lemma 2 because
$f_{k,M}(t)\geq 0,$ $f_{k-1,M}(t)\geq 0$ for $k\leq s^{*}-1$ .

We can now summarize our main result.

Theorem 4 The optimal policy of the problem is to choose a candidate
in state $(k, t)$ if $t\leq t_{k}^{*}$ , where $t_{k}^{*}$ is the unique root of the equation $F_{k}(t)=1$

if $F_{k}(1)\geq 1$ , otherwise $t$
“ is defined as 1.
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