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A subsolution for TU games
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1. Introduction and Preliminaries

In this paper we consider a subset of the imputation set for cooperative TU games, and examine
its properties. ‘

An n-person cooperative game with side payments (abbreviated as a game) is an ordered pair
(N,v), where N = {1,2,...,n} is the set of players and v, called the characteristic function, is
a real-valued function on the power set of N, satisfying v(@) = 0. For simplicity we express a
game (N,v) as v. A subset of N is called a coalition. For any set Z, |Z| denotes the cardinality
of Z. For S C N and z € R", we define 2(S) = 3 ,s2: (if S # 0) and = 0 (if S = 0). A
pre-imputation for a game v is a vector z € RY that satisfies

z(N) = v(N). (1.1)

We denote by PZ = PI(v) the set of all pre-imputations for a game v. A pre-imputation
x € PT is said to be individually rational if*

z; > v(i), Vie N. (1.2)

An individually rational pre-imputation is called an imputation. We denote by Z = Z(v) the
set of all imputations for a game v, which we call the imputation set. A pre-imputation x € PT
is said to be reasonable if

T; < Uy, Vi e N, (13)

where u; = u;(v) = maxes{v(S) — v(S\{i})} for all i € N. We denote by R = R(v) the set
of all reasonable pre-imputations for a game v. For 2,y € T and for a coalition S ¢ N , We say
that © dominates y via S, denoted by = > y, if

(i) T > Yi, Vie S,
(1.4)
(ii) (8) < v(S).

For z,y € Z, we say that 2 dominates y, denoted by z > y, if there is an S such that z

1For simplicity, we write v({i}), v({i,5}) as v(i), v(ij).
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dominates y via S. For X C Z, we denote by Dom A’ the set of all imputations dominated by
some element of X. A set of imputations X C 7 is called a stable set if it satisfies

(i) X NDomX =@ (internal stability) ,

(L5)
(ii) X UDomX =Z (external stability) .
The core of a game v, denoted by C = C(v), is defined by
C =7\ DomZ. (1.6)

2. A Subsolution

In this section we define a subset Q of the imputation set and examine properties of it. We
assume that for every game in this section the imputation set is not empty, Z(v) # 0, that is,

u(N) 2> (). (2.1)

ieN
Deflnition. A set Q = Q(v) C 7 is defined by

Q={zecI:VyeIst.y>x, Fz€Ist z>yandzy a2}

Remark. Let

Q={zel: VyeIst y=x, 3JzeIst z>y.}.
IfC=0thenZ=DomZ Andso @ =
Hereafter we fix a game (N, v).

Proposition 2.1. For a game v, let X be a stable set. Then X C Q.

Proof: Let £ € X and suppose y >  where y € Z. By the internal stability, we have y ¢ X,
and so by the external stability, there exists z € X such that z > y. By the internal stability,
zy¥ z. Hencez € Q. O

Proposition 2.2. For a game v, it holds Q C R.

Proof: Let x € Q and assume x ¢ R. There exists ¢ € N such that x; > u;. This implies
z; > v(N)—v(N\{i}), which implies 2(N\{i}) < v(N\{i}). Hence we can take y € T such that
y > x via N\ {i} and y; > u;. Since x € Q, there exists z € T such that z > y via a coalition
Sand z ¥ x. Ifi ¢ S then z > z via S, which is a contradiction. If 2(S\ 7) < v(S\ ¢) then
z > z via S\ {i}, which is a contradiction. So we must have i € S and 2(S\ {i}) > v(S\ {i}).
Then y; < 2z = 2(S) — 2(S\ {i}) < v(S) — v(S\ {i}) £ u;, which is a contradiction. O
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From this proposition we see that if v(SU {i}) = v(S) + v(i) for all S: i ¢ S and « € Q then
it must hold @; = v(z) since u; = v(4).

Proposition 2.3. For a game v, it holds C C @ C Z \ DomC.
Proof: By Proposition 2.1, we have C C Q. If x € DomC, then there exists y € C such that
y>xand y ¢ DomZ. Hencez € Q. [0

Proposition 2.4. For a game v, the core C is a stable set if and only if C = Q.
Proof: Assume that C is a stable set. By Proposition 2.3, we have C C Q. Let x € Q\ C.
Since C is a stable set, by the external stability there exists y € C such that y = x. But there
exists no imputation which dominates y because y is in the core. This is a contradiction. Hence
Q\C=40.

Conversely assume C = Q. Since C C X for any stable set X', we have C C X C C from
Proposition 2.1. Hence C is a unique stable set. J

Proposition 2.5. Suppose (N,v) is symmetric, that is, v depends on only the number of
members in a coalition. For every § C N, let v(s) = v(S) where s = |S|. Assume v(1) = 0.

Then ( )
Tt = (1—2)—,...,1—(71—) € Q.
n n
Proof: Suppose y > «* via S and y % x* via every T such that 7'C S, T # S. Then
1> 22 Vi s, y(S)<u(S), and y(T) > u(T).VT C S,T# S
Then 19|
v(n) =y(N) = y(N\ 5) +y(5) > y(N \ 5) + —v(n).

This implies "——}ﬂv(n) > y(N'\ S), and so there exists 7 € N \ S such that y; < %") For some
jo € S, 1let S® = (S\ {jo}) U{:}. Define z € PI by

vi+e  j€S8°=(S\{i})u{ik

he A

~j =

x5 jeN\S.
Then y(S5%) < y(S) < v(S) = v(8°), and so for sufficiently small € > 0, we have

2(8°) = y(8°) + €| < v(S°), 2 >y; V)€ S
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Hence z > y via S° and 2 # * since z; = y; + ¢ < @ and z(T') = y(T') +€|T| > y(T) > v(T)
for every T C S%\ {jo}. It remains to see that it is possible to find € > 0 and § > 0 such that
z € I and 2(S°) < v(S°). 2(N) = v(n) if and only if

v\ ) ~ o) 4 g0 < 20 50— 0, 22)

0<d< ﬂ:—) if and only if |

) S0 - y(S°

z(S%) < v(8°) if and only if

v(S°) —y(5°)
€< —W (2.4)
Since z*(S) < y(S) < v(S) = v(S%), we have ﬂnﬂ < %gﬁ—) Hence there exist € and § which
satisfy (2.2) — (24). 0O

Proposition 2.5 implies that @ # @ when v is symmetric.
Definition. (Roth (1976)) A set Y C T is called a subsolution if
(9)Y € T\ Dom), (internal stability)

(¢)Y = T\ Dom(Z \ Dom)).

Proposition 2.6. Let ) be a subsolution. Then Y C Q.

Proof: Let Y be a subsolution and suppose 2 € Y. For any y € Z such that y > z, it holds
y ¢ Y since ) is internally stable. So y ¢ Z \ Dom(Z \ DomY) by the definition of subsolution.
Hence y € Dom(Z \ DomY). This implies that there exists z € Z \ Dom) such that z > Y.
Since ¢ ¢ Dom(Z \ DomY), it holds that z ¥ 2. Hencez € Q. O

The next example says that the set Q is different from the union of all stable sets. A remaining
problem is whether the set Q coincides or not with the union of all stable sets when there exists
a stable set.

Example 2.1. The 10-Person Game (Lucas (1969)). Let us consider the 10-person game:
v(N) = 5,v(13579) = 4, v(3579) = v(1579) = v(1379) = 3,
v(1479) = v(3679) = v(2579) = 2,v(357) = v(157) = v(137) = 2,
v(359) = v(159) = v(139) = 2,v(12) = v(34) = v(56) = v(78) = v(90) = 1,
v(i)=0 VieN
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and, for other S, v(S) = 0. Let
B={zeZ:2(12) = x(34) = x(56) = z(78) = z(90) = 1, x; >0,Yi € N}.

It is easy to check that the core C of this game is :
C ={z € B:z(13579) > 4}.
Define the following subsets of B :

Si={reB:rs=25s=12,<1,2(79) < 1},
Ey = {(E EB:x5=1,= Ly < 1,.’13(79) < 1},
& ={zeB:xy=x3=1,25 < 1,z(79) < 1},
E=EUEUE,,

Fss={z €B:2(35) =1z, <1,2(79) > 1} \ C,

Fs1 = {Q‘ €B: .’B(15) =1lx3< 1,17(79) > 1}\C,

Fia = {.’L‘ €B: z(13) = 1,25 < 1,37(79) > 1} \C,
Fr={x€B:x;=1,29 < 1,2(359) > 2,2(159) > 2,2(139) > 2} \ C,
Fo={rv€B:xy=1ar <1,2(357) > 2,2(157) > 2,x(137) > 2} \ C,

Fro={ze€B:z;=x9=1}\C,
.7:135={.'B€BZ.'171 =a:3=:r5=1}\C,
F =Fi13U Fa5 UF51 UF7 U Fo U Frg U Fiss.
It is well-known that
I\B, B\(CUEUXr), ¢C, & F
constitute a partition of Z. It is known that

I\(CUEUF)c DomC,

from which and from Proposition 2.3, we have Q C CUE U F. It is known that the set CU F
is a subsolution, and so CUF C Q. Let’s see £ C Q. Assume z € &;. If y>xctheny¢ CUF
since €N Dom(CUF) = 0. Soy € £U DomC. Suppose y € DomC. Then there exists
z € C such that z » y, but 2 ¥ z since £N DomC = 0. Hence z € Q. Suppose y € €. Then
¥ € &(C Domé;s). There exists z € & such that z > y, but 2 ¥ x since £ N Dom(&UE;) = 0.
Hence z € Q. So & C Q. By permutation, we see E3U & C Q. Consequently we have that
Q =CUEUF. Note that the set C U F is a subsolution and it is the supercore?.

2See Roth (1976), esp. p.48.
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The next example says that the set Q is not always a convex set.

Example 2.2. (Lucas 1969) Let n = 8 and
v(N) = 4,v(1467) = 2,v(12) = v(34) = v(56) = v(78) = 1
and v(S) = 0 for all other S. Let
B={zeT: x(12)=2(34) = 2(56) = z(78) = 1}.

Fori=1,4,6,7, let
fi=Bﬂ{er:x;= 1}.
The core is
C={xeB:x(1467) > 2}.
It is known that
' K=CUFRUF,UFUF

~is a unique solution which is nonconvex. Let’s see Q = K. It is known that Z\ B C Dom C,
which implies Q € B. Let £ € B\ K. Then z(1467) < 2 and z; < 1 for i = 1,4,6,7. Define
y € B by

x; <y <1, fori=1,4,6,7,9(1467) =2, and y(i,i+ 1) =1, fori=1,2,3,4.

Then y » x via {1,4,6,7} and y € C. So z € DomC and z ¢ Q. Hence Q = K.
3. A Subsolution and the Nucleolus

In this section we examine an inclusion relation between the nucleolus and the Q.

Let v be a game. For x € Z(v) let §(x) be the 2"-vector whose components are the numbers
e(8,z),S € N, arranged in nonincreasing order, i.e., 8(z); > 6(x); whenever 1 <i < j < 2".
We say that 0(x) is lexicographically smaller than 6(y), denoted 6(x) <r 6(y), if and only
if there is an index k such that 6(z); = 6(y); for all i < k, and 6(z)x < 6(y)r. We write
6(z) <r 6(y) for not 8(y) <. 6(x). The nucleolus for v is the set N of vectors in 7 that
minimizes 6 in the lexicographic ordering; i.e.,

N={zeT:6(x)<p0(y) for all y € T}.

It is known that the nucleolus is included in the core whenever the core is non-empty. So the
nucleolus is included in the set Q by Proposition 2.3 whenever the core is non-empty. Since
the nucleolus satisfies the symmetry, Proposition 2.5 implies that the nucleolus is included in
the set Q@ when the game is symmetric.
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Proposition 3.1. Assume v(S) = 0 for S such that |S| < n — 2. The nucleolus N is included
in the set Q.

Proof: If C # @ it holds N' C Q by Proposition 2.3 since it is known that A’ C C. Assume
that C = §. Let N = {z*}. Without loss of generality assume

e(N\{1},z*) =2 ... 2 e(N\ {n},z*).

Since z* ¢ C there exists y € T such that y » z* via N\ {i} for i € N. Then
e(N\{i},y) > e(N\ {1},27), Vj# 1

e(N\ (i) > e(N \ {i},y) 2 0.
Assume i > 2. Define z € T by

e(N\ {7}.9) +e J#L
e(N\{j},2) =
C(N\{]},'l") - (n - 1)67 Jj=1

so that e(N'\ {1},2*) — (n —1)e > 0 and (N \ {i},y) + € < e(N \ {i},z*). That is,

0<e< min{f(iv—%%%-’—:—v—)-,e(N\ {i},z*) —e(N\ {z},v)}.
We have z > y via N\ {1}. In order for 2 to dominate z*, it must dominate only via N\ {1}.
This is impossible because e(N \ {i},z) < e(N\ {i},z*). So z ¥ z*. :

Next assume ¢ = 1. Assume e(N \ {1},2*) > e(N \ {2}, z*). Since the nucleolus satisfies,
what is called, Property I3, we must have z} = v(1) = 0. Then e(N\{1},z*) > e(N\{1},y) 2 0,
which implies y; < 0 contradicting y € Z. Hence we have e(N \ {1},z*) = e(N \ {2},2*).
Exchange e(N \ {2},z*) with e(V \ {1},2*). Then it reduces to the case i =2. 0O

4. Remarks

For 3-person games, by Proposition 3.1, the nucleolus is included in the set @ and also the
reader could see that the set Q coincides with the union of all stable sets.

It is interesting to examine whether the nucleolus is included in the set Q or not for broader
classes of games.

38ee, for example, pp.328-332 of Owen (1995).
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