A subsolution for TU games

兵庫県立大学・経営学部 菊田 健作 (Kensaku Kikuta)

School of Business Administration University of Hyogo

1. Introduction and Preliminaries

In this paper we consider a subset of the imputation set for cooperative TU games, and examine its properties.

An n-person cooperative game with side payments (abbreviated as a game) is an ordered pair (N, v), where $N = \{1, 2, ..., n\}$ is the set of players and v, called the characteristic function, is a real-valued function on the power set of N, satisfying $v(\emptyset) = 0$. For simplicity we express a game (N, v) as v. A subset of N is called a coalition. For any set Z, |Z| denotes the cardinality of Z. For $S \subseteq N$ and $x \in \mathbb{R}^N$, we define $x(S) = \sum_{i \in S} x_i$ (if $S \neq \emptyset$) and $x \in \mathbb{R}^N$ and $x \in \mathbb{R}^N$ that satisfies

$$x(N) = v(N). (1.1)$$

We denote by $\mathcal{PI} \equiv \mathcal{PI}(v)$ the set of all pre-imputations for a game v. A pre-imputation $x \in \mathcal{PI}$ is said to be *individually rational* if

$$x_i \ge v(i), \quad \forall i \in N.$$
 (1.2)

An individually rational pre-imputation is called an *imputation*. We denote by $\mathcal{I} \equiv \mathcal{I}(v)$ the set of all imputations for a game v, which we call the imputation set. A pre-imputation $x \in \mathcal{PI}$ is said to be *reasonable* if

$$x_i \le u_i, \quad \forall i \in N, \tag{1.3}$$

where $u_i \equiv u_i(v) \equiv \max_{i \in S} \{v(S) - v(S \setminus \{i\})\}$ for all $i \in N$. We denote by $\mathcal{R} \equiv \mathcal{R}(v)$ the set of all reasonable pre-imputations for a game v. For $x, y \in \mathcal{I}$ and for a coalition $S \subset N$, we say that x dominates y via S, denoted by $x \succ_S y$, if

$$\begin{cases} (i) \ x_i > y_i, & \forall i \in S, \\ (ii) \ x(S) \le v(S). \end{cases}$$
 (1.4)

For $x, y \in \mathcal{I}$, we say that x dominates y, denoted by $x \succ y$, if there is an S such that x

¹For simplicity, we write $v(\{i\}), v(\{i,j\})$ as v(i), v(ij).

dominates y via S. For $\mathcal{X} \subseteq \mathcal{I}$, we denote by Dom \mathcal{X} the set of all imputations dominated by some element of \mathcal{X} . A set of imputations $\mathcal{X} \subseteq \mathcal{I}$ is called a *stable set* if it satisfies

$$\begin{cases} (i) \ \mathcal{X} \cap \mathrm{Dom} \mathcal{X} = \emptyset & \text{(internal stability)}, \\ (ii) \ \mathcal{X} \cup \mathrm{Dom} \mathcal{X} = \mathcal{I} & \text{(external stability)}. \end{cases}$$
 (1.5)

The core of a game v, denoted by $C \equiv C(v)$, is defined by

$$C = \mathcal{I} \setminus \text{Dom}\mathcal{I}. \tag{1.6}$$

2. A Subsolution

In this section we define a subset Q of the imputation set and examine properties of it. We assume that for every game in this section the imputation set is not empty, $\mathcal{I}(v) \neq \emptyset$, that is,

$$v(N) \ge \sum_{i \in N} v(i). \tag{2.1}$$

Definition. A set $Q \equiv Q(v) \subseteq \mathcal{I}$ is defined by

$$\mathcal{Q} \equiv \{x \in \mathcal{I} : \forall y \in \mathcal{I} \text{ s.t. } y \succ x, \quad \exists z \in \mathcal{I} \text{ s.t. } z \succ y \text{ and } z \not\succeq x.\}.$$

Remark. Let

$$Q' \equiv \{x \in \mathcal{I} : \forall y \in \mathcal{I} \text{ s.t. } y \succ x, \quad \exists z \in \mathcal{I} \text{ s.t. } z \succ y.\}.$$

If $C = \emptyset$ then $\mathcal{I} = \text{Dom } \mathcal{I}$. And so $Q' = \mathcal{I}$.

Hereafter we fix a game (N, v).

Proposition 2.1. For a game v, let \mathcal{X} be a stable set. Then $\mathcal{X} \subseteq \mathcal{Q}$.

Proof: Let $x \in \mathcal{X}$ and suppose $y \succ x$ where $y \in \mathcal{I}$. By the internal stability, we have $y \notin \mathcal{X}$, and so by the external stability, there exists $z \in \mathcal{X}$ such that $z \succ y$. By the internal stability, $z \not\succ x$. Hence $x \in \mathcal{Q}$. \square

Proposition 2.2. For a game v, it holds $Q \subseteq \mathcal{R}$.

Proof: Let $x \in \mathcal{Q}$ and assume $x \notin \mathcal{R}$. There exists $i \in N$ such that $x_i > u_i$. This implies $x_i > v(N) - v(N \setminus \{i\})$, which implies $x(N \setminus \{i\}) < v(N \setminus \{i\})$. Hence we can take $y \in \mathcal{I}$ such that $y \succ x$ via $N \setminus \{i\}$ and $y_i \ge u_i$. Since $x \in \mathcal{Q}$, there exists $z \in \mathcal{I}$ such that $z \succ y$ via a coalition S and $z \not\succ x$. If $i \notin S$ then $z \succ x$ via S, which is a contradiction. If $z(S \setminus i) \le v(S \setminus i)$ then $z \succ x$ via $S \setminus \{i\}$, which is a contradiction. So we must have $i \in S$ and $z(S \setminus \{i\}) > v(S \setminus \{i\})$. Then $y_i < z_i = z(S) - z(S \setminus \{i\}) < v(S) - v(S \setminus \{i\}) \le u_i$, which is a contradiction. \square

From this proposition we see that if $v(S \cup \{i\}) = v(S) + v(i)$ for all $S : i \notin S$ and $x \in Q$ then it must hold $x_i = v(i)$ since $u_i = v(i)$.

Proposition 2.3. For a game v, it holds $C \subseteq Q \subseteq \mathcal{I} \setminus \text{Dom} C$.

Proof: By Proposition 2.1, we have $C \subseteq Q$. If $x \in \text{Dom}C$, then there exists $y \in C$ such that $y \succ x$ and $y \notin \text{Dom}\mathcal{I}$. Hence $x \in Q$.

Proposition 2.4. For a game v, the core \mathcal{C} is a stable set if and only if $\mathcal{C} = \mathcal{Q}$.

Proof: Assume that \mathcal{C} is a stable set. By Proposition 2.3, we have $\mathcal{C} \subseteq \mathcal{Q}$. Let $x \in \mathcal{Q} \setminus \mathcal{C}$. Since \mathcal{C} is a stable set, by the external stability there exists $y \in \mathcal{C}$ such that $y \succ x$. But there exists no imputation which dominates y because y is in the core. This is a contradiction. Hence $\mathcal{Q} \setminus \mathcal{C} = \emptyset$.

Conversely assume C = Q. Since $C \subseteq \mathcal{X}$ for any stable set \mathcal{X} , we have $C \subseteq \mathcal{X} \subseteq C$ from Proposition 2.1. Hence C is a unique stable set. \square

Proposition 2.5. Suppose (N, v) is symmetric, that is, v depends on only the number of members in a coalition. For every $S \subseteq N$, let v(s) = v(S) where s = |S|. Assume v(1) = 0. Then

$$x^* \equiv (\frac{v(n)}{n}, \ldots, \frac{v(n)}{n}) \in \mathcal{Q}.$$

Proof: Suppose $y \succ x^*$ via S and $y \not\succ x^*$ via every T such that $T \subset S, T \neq S$. Then

$$y_j > \frac{v(n)}{n}, \forall j \in S, \quad y(S) \le v(S), \text{ and } y(T) > v(T), \forall T \subset S, T \ne S.$$

Then

$$v(n) = y(N) = y(N \setminus S) + y(S) > y(N \setminus S) + \frac{|S|}{n}v(n).$$

This implies $\frac{n-|S|}{n}v(n) > y(N \setminus S)$, and so there exists $i \in N \setminus S$ such that $y_i < \frac{v(n)}{n}$. For some $j_0 \in S$, let $S^0 = (S \setminus \{j_0\}) \cup \{i\}$. Define $z \in \mathcal{PI}$ by

$$z_{j} = \begin{cases} y_{j} + \epsilon, & j \in S^{0} = (S \setminus \{j_{0}\}) \cup \{i\}; \\ \frac{v(n)}{n} - \delta, & j \in N \setminus S^{0}. \end{cases}$$

Then $y(S^0) < y(S) \le v(S) = v(S^0)$, and so for sufficiently small $\epsilon > 0$, we have

$$z(S^0) = y(S^0) + \epsilon |S^0| \le v(S^0), \quad z_j > y_j, \forall j \in S^0.$$

Hence $z \succ y$ via S^0 , and $z \not\succ x^*$ since $z_i = y_i + \epsilon \le \frac{v(n)}{n}$ and $z(T) = y(T) + \epsilon |T| > y(T) > v(T)$ for every $T \subset S^0 \setminus \{j_0\}$. It remains to see that it is possible to find $\epsilon > 0$ and $\delta > 0$ such that $z \in \mathcal{I}$ and $z(S^0) \le v(S^0)$. z(N) = v(n) if and only if

$$y(S^0 \setminus \{i\}) - \frac{|S^0| - 1}{n}v(n) + \epsilon|S^0| = \frac{v(n)}{n} - y_i + \delta(n - |S^0|). \tag{2.2}$$

 $0 < \delta \le \frac{v(n)}{n}$ if and only if

$$\frac{v(n)}{n} - \frac{y(S^0)}{|S^0|} < \epsilon \le \frac{v(n) - y(S^0)}{|S^0|}.$$
 (2.3)

 $z(S^0) \le v(S^0)$ if and only if

$$\epsilon \le \frac{v(S^0) - y(S^0)}{|S^0|}.\tag{2.4}$$

Since $x^*(S) < y(S) \le v(S) = v(S^0)$, we have $\frac{v(n)}{n} < \frac{v(S^0)}{|S^0|}$. Hence there exist ϵ and δ which satisfy (2.2) - (2.4). \square

Proposition 2.5 implies that $Q \neq \emptyset$ when v is symmetric.

Definition. (Roth (1976)) A set $\mathcal{Y} \subseteq \mathcal{I}$ is called a *subsolution* if

$$\left\{ egin{aligned} (i)\mathcal{Y} \subseteq \mathcal{I} \setminus \mathrm{Dom}\mathcal{Y}, & ext{(internal stability)} \ (ii)\mathcal{Y} = \mathcal{I} \setminus \mathrm{Dom}(\mathcal{I} \setminus \mathrm{Dom}\mathcal{Y}). \end{aligned}
ight.$$

Proposition 2.6. Let \mathcal{Y} be a subsolution. Then $\mathcal{Y} \subseteq \mathcal{Q}$.

Proof: Let \mathcal{Y} be a subsolution and suppose $x \in \mathcal{Y}$. For any $y \in \mathcal{I}$ such that $y \succ x$, it holds $y \notin \mathcal{Y}$ since \mathcal{Y} is internally stable. So $y \notin \mathcal{I} \setminus \text{Dom}(\mathcal{I} \setminus \text{Dom}\mathcal{Y})$ by the definition of subsolution. Hence $y \in \text{Dom}(\mathcal{I} \setminus \text{Dom}\mathcal{Y})$. This implies that there exists $z \in \mathcal{I} \setminus \text{Dom}\mathcal{Y}$ such that $z \succ y$. Since $x \notin \text{Dom}(\mathcal{I} \setminus \text{Dom}\mathcal{Y})$, it holds that $z \not\succ x$. Hence $x \in \mathcal{Q}$. \square

The next example says that the set Q is different from the union of all stable sets. A remaining problem is whether the set Q coincides or not with the union of all stable sets when there exists a stable set.

Example 2.1. The 10-Person Game (Lucas (1969)). Let us consider the 10-person game:

$$v(N) = 5, v(13579) = 4, v(3579) = v(1579) = v(1379) = 3,$$

 $v(1479) = v(3679) = v(2579) = 2, v(357) = v(157) = v(137) = 2,$
 $v(359) = v(159) = v(139) = 2, v(12) = v(34) = v(56) = v(78) = v(90) = 1,$
 $v(i) = 0 \quad \forall i \in N$

and, for other S, v(S) = 0. Let

$$\mathcal{B} = \{ x \in \mathcal{I} : x(12) = x(34) = x(56) = x(78) = x(90) = 1, \quad x_i \ge 0, \forall i \in \mathbb{N} \}.$$

It is easy to check that the core C of this game is:

$$\mathcal{C} = \{ x \in \mathcal{B} : x(13579) \ge 4 \}.$$

Define the following subsets of \mathcal{B} :

$$\mathcal{E}_{1} = \{x \in \mathcal{B} : x_{3} = x_{5} = 1, x_{1} < 1, x(79) < 1\},$$

$$\mathcal{E}_{3} = \{x \in \mathcal{B} : x_{5} = x_{1} = 1, x_{3} < 1, x(79) < 1\},$$

$$\mathcal{E}_{5} = \{x \in \mathcal{B} : x_{1} = x_{3} = 1, x_{5} < 1, x(79) < 1\},$$

$$\mathcal{E} = \mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \mathcal{E}_{3},$$

$$\mathcal{F}_{35} = \{x \in \mathcal{B} : x(35) = 1, x_{1} < 1, x(79) \ge 1\} \setminus \mathcal{C},$$

$$\mathcal{F}_{51} = \{x \in \mathcal{B} : x(15) = 1, x_{3} < 1, x(79) \ge 1\} \setminus \mathcal{C},$$

$$\mathcal{F}_{13} = \{x \in \mathcal{B} : x(13) = 1, x_{5} < 1, x(79) \ge 1\} \setminus \mathcal{C},$$

$$\mathcal{F}_{7} = \{x \in \mathcal{B} : x_{7} = 1, x_{9} < 1, x(359) \ge 2, x(159) \ge 2, x(139) \ge 2\} \setminus \mathcal{C},$$

$$\mathcal{F}_{9} = \{x \in \mathcal{B} : x_{9} = 1, x_{7} < 1, x(357) \ge 2, x(157) \ge 2, x(137) \ge 2\} \setminus \mathcal{C},$$

$$\mathcal{F}_{79} = \{x \in \mathcal{B} : x_{7} = x_{9} = 1\} \setminus \mathcal{C},$$

$$\mathcal{F}_{135} = \{x \in \mathcal{B} : x_{1} = x_{3} = x_{5} = 1\} \setminus \mathcal{C},$$

$$\mathcal{F}_{135} = \{x \in \mathcal{B} : x_{1} = x_{3} = x_{5} = 1\} \setminus \mathcal{C},$$

$$\mathcal{F} = \mathcal{F}_{13} \cup \mathcal{F}_{35} \cup \mathcal{F}_{51} \cup \mathcal{F}_{7} \cup \mathcal{F}_{9} \cup \mathcal{F}_{79} \cup \mathcal{F}_{135}.$$

It is well-known that

$$\mathcal{I} \setminus \mathcal{B}$$
, $\mathcal{B} \setminus (\mathcal{C} \cup \mathcal{E} \cup \mathcal{F})$, \mathcal{C} , \mathcal{E} , \mathcal{F}

constitute a partition of \mathcal{I} . It is known that

$$\mathcal{I} \setminus (\mathcal{C} \cup \mathcal{E} \cup \mathcal{F}) \subset \text{Dom } \mathcal{C}$$

from which and from Proposition 2.3, we have $Q \subseteq \mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$. It is known that the set $\mathcal{C} \cup \mathcal{F}$ is a subsolution, and so $\mathcal{C} \cup \mathcal{F} \subseteq Q$. Let's see $\mathcal{E} \subset Q$. Assume $x \in \mathcal{E}_1$. If $y \succ x$ then $y \notin \mathcal{C} \cup \mathcal{F}$ since $\mathcal{E} \cap \text{Dom}(\mathcal{C} \cup \mathcal{F}) = \emptyset$. So $y \in \mathcal{E} \cup \text{Dom}\mathcal{C}$. Suppose $y \in \text{Dom}\mathcal{C}$. Then there exists $z \in \mathcal{C}$ such that $z \succ y$, but $z \not\succ x$ since $\mathcal{E} \cap \text{Dom}\mathcal{C} = \emptyset$. Hence $x \in Q$. Suppose $y \in \mathcal{E}$. Then $y \in \mathcal{E}_3(\subset \text{Dom}\mathcal{E}_5)$. There exists $z \in \mathcal{E}_5$ such that $z \succ y$, but $z \not\succ x$ since $\mathcal{E}_1 \cap \text{Dom}(\mathcal{E}_1 \cup \mathcal{E}_5) = \emptyset$. Hence $x \in Q$. So $\mathcal{E}_1 \subset Q$. By permutation, we see $\mathcal{E}_3 \cup \mathcal{E}_5 \subset Q$. Consequently we have that $Q = \mathcal{C} \cup \mathcal{E} \cup \mathcal{F}$. Note that the set $\mathcal{C} \cup \mathcal{F}$ is a subsolution and it is the supercore².

²See Roth (1976), esp. p.48.

The next example says that the set Q is not always a convex set.

Example 2.2. (Lucas 1969) Let n = 8 and

$$v(N) = 4, v(1467) = 2, v(12) = v(34) = v(56) = v(78) = 1$$

and v(S) = 0 for all other S. Let

$$\mathcal{B} = \{ x \in \mathcal{I} : x(12) = x(34) = x(56) = x(78) = 1 \}.$$

For i = 1, 4, 6, 7, let

$$\mathcal{F}_i = \mathcal{B} \cap \{x \in \mathcal{I} : x_i = 1\}.$$

The core is

$$C = \{ x \in \mathcal{B} : x(1467) \ge 2 \}.$$

It is known that

$$\mathcal{K} = \mathcal{C} \cup \mathcal{F}_1 \cup \mathcal{F}_4 \cup \mathcal{F}_6 \cup \mathcal{F}_7$$

is a unique solution which is nonconvex. Let's see Q = K. It is known that $\mathcal{I} \setminus \mathcal{B} \subseteq \text{Dom } \mathcal{C}$, which implies $Q \subseteq \mathcal{B}$. Let $x \in \mathcal{B} \setminus K$. Then x(1467) < 2 and $x_i < 1$ for i = 1, 4, 6, 7. Define $y \in \mathcal{B}$ by

$$x_i < y_i < 1$$
, for $i = 1, 4, 6, 7, y(1467) = 2$, and $y(i, i + 1) = 1$, for $i = 1, 2, 3, 4$.

Then $y \succ x$ via $\{1, 4, 6, 7\}$ and $y \in C$. So $x \in \text{Dom}C$ and $x \notin Q$. Hence Q = K.

3. A Subsolution and the Nucleolus

In this section we examine an inclusion relation between the nucleolus and the Q.

Let v be a game. For $x \in \mathcal{I}(v)$ let $\theta(x)$ be the 2^n -vector whose components are the numbers $e(S,x), S \subseteq N$, arranged in nonincreasing order, i.e., $\theta(x)_i \geq \theta(x)_j$ whenever $1 \leq i \leq j \leq 2^n$. We say that $\theta(x)$ is lexicographically smaller than $\theta(y)$, denoted $\theta(x) <_L \theta(y)$, if and only if there is an index k such that $\theta(x)_i = \theta(y)_i$ for all i < k, and $\theta(x)_k < \theta(y)_k$. We write $\theta(x) \leq_L \theta(y)$ for not $\theta(y) <_L \theta(x)$. The nucleolus for v is the set \mathcal{N} of vectors in \mathcal{I} that minimizes θ in the lexicographic ordering, i.e.,

$$\mathcal{N} = \{ x \in \mathcal{I} : \theta(x) \leq_L \theta(y) \text{ for all } y \in \mathcal{I} \}.$$

It is known that the nucleolus is included in the core whenever the core is non-empty. So the nucleolus is included in the set Q by Proposition 2.3 whenever the core is non-empty. Since the nucleolus satisfies the symmetry, Proposition 2.5 implies that the nucleolus is included in the set Q when the game is symmetric.

Proposition 3.1. Assume v(S) = 0 for S such that $|S| \le n - 2$. The nucleolus \mathcal{N} is included in the set \mathcal{Q} .

Proof: If $C \neq \emptyset$ it holds $\mathcal{N} \subseteq \mathcal{Q}$ by Proposition 2.3 since it is known that $\mathcal{N} \subseteq \mathcal{C}$. Assume that $C = \emptyset$. Let $\mathcal{N} = \{x^*\}$. Without loss of generality assume

$$e(N \setminus \{1\}, x^*) \ge \ldots \ge e(N \setminus \{n\}, x^*).$$

Since $x^* \notin \mathcal{C}$ there exists $y \in \mathcal{I}$ such that $y \succ x^*$ via $N \setminus \{i\}$ for $i \in N$. Then

$$\begin{cases} e(N \setminus \{j\}, y) > e(N \setminus \{1\}, x^*), & \forall j \neq i; \\ e(N \setminus \{i\}, x^*) > e(N \setminus \{i\}, y) \ge 0. \end{cases}$$

Assume $i \geq 2$. Define $z \in \mathcal{I}$ by

$$e(N \setminus \{j\}, z) = \begin{cases} e(N \setminus \{j\}, y) + \epsilon, & j \neq 1; \\ e(N \setminus \{j\}, x^*) - (n-1)\epsilon, & j = 1, \end{cases}$$

so that $e(N \setminus \{1\}, x^*) - (n-1)\epsilon \ge 0$ and $e(N \setminus \{i\}, y) + \epsilon \le e(N \setminus \{i\}, x^*)$. That is,

$$0<\epsilon\leq \min\{\frac{e(N\setminus\{1\},x^*)}{n-1},e(N\setminus\{i\},x^*)-e(N\setminus\{i\},y)\}.$$

We have $z \succ y$ via $N \setminus \{1\}$. In order for z to dominate x^* , it must dominate only via $N \setminus \{1\}$. This is impossible because $e(N \setminus \{i\}, z) \le e(N \setminus \{i\}, x^*)$. So $z \not\succ x^*$.

Next assume i=1. Assume $e(N \setminus \{1\}, x^*) > e(N \setminus \{2\}, x^*)$. Since the nucleolus satisfies, what is called, Property I³, we must have $x_1^* = v(1) = 0$. Then $e(N \setminus \{1\}, x^*) > e(N \setminus \{1\}, y) \ge 0$, which implies $y_1 < 0$ contradicting $y \in \mathcal{I}$. Hence we have $e(N \setminus \{1\}, x^*) = e(N \setminus \{2\}, x^*)$. Exchange $e(N \setminus \{2\}, x^*)$ with $e(N \setminus \{1\}, x^*)$. Then it reduces to the case i=2. \square

4. Remarks

For 3-person games, by Proposition 3.1, the nucleolus is included in the set Q and also the reader could see that the set Q coincides with the union of all stable sets.

It is interesting to examine whether the nucleolus is included in the set Q or not for broader classes of games.

³See, for example, pp.328-332 of Owen (1995).

References

Lucas, W.F.: The proof that a game may not have a solution. Trans. American Mathematical Society, 137 (1969), pp.219-229.

Lucas, W.F.: Games with unique solutions that are nonconvex. Pacific Journal of Mathematics, 28 (1969), pp.599-602.

Milnor, J.W.: Reasonable outcomes for n-person games. RM-916, RAND Corporation, 1952.

Owen, G.: Game Theory. Academic P. 1995.

Roth, A.E.: Subsolutions and the supercore of cooperative games. *Mathematics of Operations Research* 1(1976), pp.43-49.