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We introduce a relation between equiliblium points for some differential inclusion and
solutions of a variational inequality. At first we show convergence theorems of solutions for
some differential inclusions.

1. Convergence Theorem for Differential Inclusiohs

Let $X$ be a Hilbert space with an inner product $(, )$ , let $K\subset X$ be a non-empty closed
convex subset $ofX$, let $A$ be a set-valued maPping from $K$ to $2^{X}$ with convex compact
set-value, and let $x()$ : $[O,\infty$) $arrow X$ We consider a differential inclusion $DI(A,K)$ for $A$ and $K$

as follows:

$DI(A,K)$ : $\{\begin{array}{l}x(t)\in Kfora\psi t\in[0,\infty\dot{x}(t)\in-A(x(t))t\in(0,\infty)\end{array}$

Next we give some definitions.

定義 (Def) (1) $x()$ is called a trajectory ofDI$(\Lambda,K)$ , if a maPping $x()$ : $[0,\infty$) $arrow K$ is
absolutely continuous and satisfies $DI(A,K)$ .

(2) A point $x^{*}\in K$ is said to be an equilibrium point for $DI(A,K)$ if $0\in-A(x^{*})$ .

Let $\varphi$ : $Xarrow(-\infty,\infty$] be a proper lower $semi-continuous$ convex function. A $s$ubdifferential
$\partial\varphi$ : $Xarrow 2^{\chi}$ is deflned by

$\partial\varphi(x)=$ {$w\in X$ : $\varphi(y)\geq\varphi(x)+(w,y-x)$ for $a\varphi y\in X$}.
Then it is well-known that $x^{*}\in K$ is an equilibrium point of DI$(\partial\varphi,K)$ if and only if $x^{t}$ is a
minimum point of $\varphi$ , i.e., $\varphi(x^{*})=\min_{xeY}\varphi(x)$. It is also known that $\partial\varphi$ has a property of
demipositivity.

定韓 (Def.) A set-valued mapping $A$ : $Xarrow 2^{X}$ is said to be demipositive if (1),(2) and (3)
hold:

(1) $(v,x-y)\geq 0$ for all $x\in X,y\in A^{-1}(0)$ and $v\in A(x)$ .
(2) There exists $y_{0}\in A^{-1}(0)$ such that $O\in A(x)$ whenever $(v,x-y_{0})=0$ for all

$v\in A(x)$ .
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(3) For the $y_{0}$ in (2), if $x_{n}arrow x,$ $v_{n}\in A(x_{n}),$ $\{v_{n}\}$ is bounded and
$\lim_{narrow\infty}(v_{n},x_{n}-y_{0})=0$ , then $0\in A(x)$ .

(Remark) If $A$ satisfies (1) and (2), $A$ is calledfirmly positive.

Bruck showed the convergence theorems with respect to a demipositive mapping.

定理 (Theoreml) ([1] Bruck, 1974)
Suppose $A$ : $Xarrow 2^{X}$ is demipositive and that $x()$ : $[O,\infty$) $arrow X$ is an

absolutely continuous mapping satisfying

$\{\begin{array}{l}x(t)\in D(A)forallt\geq 0\dot{x}(t)\in-A(x(t))foralmostallt>0\Vert x(t)||\in L^{\infty}(0,\infty)\end{array}$

Then there exists $x^{*}= w-\lim_{tarrow\infty}x(t)$ and $x^{*}\in A^{-1}(0)$ .
定理 (Theorem2) $([1] B\iota uck,1974)$ Let $\varphi$ : $Xarrow(-\infty,\infty$] be a proper lower semi-continuous

convex even function with a minimum. Then there exists $a$ unique solution $x()$ : $[O,\infty$) $arrow X$,
which is absolutely continuous on $[\delta,\infty$) for all $\delta>0$, satisfying

$\{\begin{array}{l}x(t)\in D(\partial\varphi)altt>0\dot{x}(t)\in-\partial\varphi(x(t))t>0\end{array}$

and there exists $x^{*}=s- \lim_{tarrow\infty}x(t)$ such that $\varphi(x^{*})=\min_{x\in}x\varphi(x)$ .

We shall introduce the sufficient conditions of $demi\mu sitivity$ .
定理 $(Theo\gamma em3)([1]Bruck,1974)$ A $s$et-valued mapping $A$ : $Xarrow 2^{X}$ is demipositive when

the following one of $(a)-(e)$ holds:
(a) $A$ is a subdifferential $\partial\varphi$ of a proper lower semi-continuous convex function

$\varphi$ : $Xarrow[-\Phi\infty$ ) with a minimum in $X$.
(b) $A$ is $I-T$, where $I$ is an identity function and $T$ is a non-expansive mapping with a

fixed point.
(c) A is maximal monotone, odd and firmly positive.
(d) $A$ is maximal monotone and $in\mathcal{U}^{-l}(0)\neq\emptyset$ .
(e) $A$ is maximal monotone, firmly positive and weakly closed.

(Remark) (1) $A$ : $Xarrow 2^{\chi}$ is called monotone if $(u-v,x-y)\geq 0$ for any $x,y\in D(\Lambda)$ and
$u\in A(x),v\in A(y)$ .

(2) $A$ is called maximal monotone if it is not properly contained in any other monotone
subset $ofX$.

(3) $A$ is said to be weakly closed if $x_{n}arrow x,$ $v_{n}arrow v,$ $v_{n}\in A(x_{n})$ and then $v\in A(x)$ .
There are many re$s$ults of approximations of equilibrium point$s$ for Maximal operators ([21,

[3], etc.)

2. SoIutions of Variational Inequality and Equilibrium Points of Differential
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Variational Inequality

Let $F$ : $Karrow 2^{X}$ be a upper semi-continuous set-valued mapping such that $F(x)$ is a
non-empty convex compact subset of $X$ for any $x\in X$, where $F$ is said to be upper
semi-continuous if for any open $s$ et $U$ containing $F(x_{0})$ there exists a neighborhood $V$ of $x_{0}$

such that $F(V)\subset U$, where $F(V)= \bigcup_{x\in V}F(x)$ . We give some definitions for solutions of
variational inequalities for $F$ and $K$.

定義 (Def) [4] (1) $x^{*}\in K$ is called a solution of Stampacchia variational inequality $SVI(F,K)$

if there exist$s\xi‘\in F(x^{*})$ such that $(\xi‘,y-x^{*})\geq 0$ for all $y\in K$.
定義 (Def.) (2) $\in K$ is called a $s$olution of Strong Minty variational inequality

SMVI$(F,K)$ iffor all $y\in K,$ $(\eta,y-x^{*})\geq 0$ for all $\eta\in F(y)$ .
定義 (Def) (3) $x^{s}\in K$ Is called a solution of Weak Minty variational inequality Wクレ\sim う (F-, $K$)

if for any $y\in K$ there exist$s\eta_{0}\in F(\gamma)$ such that $(\eta_{0},y-x^{*})\geq 0$ .

$F$ is said to be pseudomonotone if for all $x,y\in K$ there exists $u\in F(x)$ such that
$(u,y-x)\geq 0$ then $(v,y-x)\geq 0$ for all $v\in F(y)$ . If $F$ is pseudomonotone, the set of
solutions of $SVI(F,K)$ coincides with the set of solutions of SMVI$(F,K),$ $\psi^{1}MV1(F,K)$. Results
with respect to the convergence theorems of variational inequalities are shown in many
approaches ([51, [6], [7]).

Let $T_{K}(x)=\{v\in X : x+\alpha_{n}v_{n}\in K,\alpha_{n}>0,a_{n}arrow 0,v_{n}arrow v(narrow\infty)\}$ and let
$N_{K}(x)=$ {$\nu\in X$ : $(y,v)\leq 0$for any $v\in T_{K}(x)$ }. $T_{K}(x)$ is called a tangent cone and $N_{K}(x)$ is
called a normal cone. The following differential inclusion is said to be a differential variational
inequality $DVI(F,K)$ .

$DVI(F,K)$ : $\{\begin{array}{l}x(t)\in Kfort\in[0,\infty\dot{x}(t)\in-(F+N_{K})(x(t))a.e.t\in[0,\infty\end{array}$

And we call the following differential inclusion a projected differential inclusion $PDI(F,K)$ .
$PDI(F,K)$ : $\{\begin{array}{l}x(t)\in Kfort\in[0,\infty\dot{x}(t)\in Pr_{Ka)}(-P)(x(f))a.e.t\in[0,\infty\end{array}$

where $Pr_{K(r)}$ is a Projection onto $T_{K}(x(t))$ . It is shown that $x(t)$ is a solution of $DVI(F,K)$ if and
only $ifx(t)$ is a solution of PDI$(F,K)$ .

G.P.Crespi and M.Rocca showed the following theorems ([8]).

定理 (Theorem (G.P.Crespi and M.Rocca,2004)) Let $X^{*}\in K$ be an equilibrium point of
$D\nabla I(F,K)$ and assume that $F$ is pseudomonotone. Then every solution $x(t)$ of $DVI(F,K)$

satisfies that
$||x(t)-x^{s}||\leq||x(s)-x^{*}\Vert$ for $t\geq s$ .

We shall introduce the relation between equilibrium point$s$ of $DVI(F,K)$ and solutions of
$SVI(F,K)$ .
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定理 (Theorem) Let $K\subset X$ be a closed convex subset, and let $F$ : $Xarrow 2^{X}$ be an uPper
semi-continuous mapping with non-empty convex and compact values. Assume $F$ is
pseudomonotone. Then, the following (a) and (b) are equivalent:
(a) $x^{*}\in K$ is an equilibrium point of $DVI(F,K)$ . (b) $x^{*}\in K$ is a solution of $SVI(F,K)$ .

There are many results of convergence theorems to solutions of $SVI(F,K)$ by using iterative
schemes and also given many results of approximating solutions. We try to study the
approximation theory and the iterative methods in order to find an equilibrium point of
$DI(F,K)$ with respect to the fixed point theory with good compositions of operator $F$ of a large
clas $s$ of $s$et-valued mappings.([9])
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