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Extensions of (weakly) null-additive,
monotone set functions
from rings to generated algebras*
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Abstract. This paper shows that the greatest and least monotone extensions
of a null-additive [resp. weakly null-additive], monotone set function from a
ring of subsets to the algebra generated by the ring are null-additive [resp.
weakly null-additive]. In addition, the paper characterizes all the (weakly)
null-additive, monotone extensions.

1 Introduction

The existence of a null-additive, monotone extension of a null-additive, monotone set
function from a ring of subsets to the algebra generated by the ring has been shown
by Pap [3] and Wu and Sun [6]; Pap considered extensions in two cases, but Wu and
Sun pointed out that there was an error in the second case and Pap’s extension in
the first case essentially applies to the second one, and showed that their extension
of a weakly null-additive, monotone set function is weakly null-additive. This paper
points out that their extension is the greatest monotone extension, and shows that
the least monotone extension of a null-additive [resp. weakly null-additive], monotone
set function also is null-additive [resp. weakly null-additive]. Furthermore, the paper
characterizes all the (weakly) null-additive, monotone extensions.

The paper is organized as follows. Section 2 provides definitions and properties
of basic concepts. Section 3 shows the above-mentioned results. We omit the proofs
of the results; for the proofs, see [2]. Section 4 gives several examples of (weakly)
null-additive, monotone extensions.

Throughout the paper, T is a positive extended real number, i.e., 0 < T < o0, and
the closed interval [0, T] of the real line is considered as the codomain of functions. In
addition, we assume sup® = 0 and inf @ = T. The difference and symmetric difference
of sets A and B are denoted by A\ B and AA B, respectively.

*This work is partially supported by a grant from the Ministry of Education, Culture, Sports,
Science and Technology, the 21st Century COE Program “Creation of Agent-Based Social Systems
Sciences.”
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2 Preliminaries

Definition 1. Let (U,Y) be an upper semilattice with ordering =<, and
p:U —[0,T].

(i) p is said to be monotone if u(R) < u(S) whenever R, S€ U and R < S.

(ii) [5] p is said to be null-additive if w(R Y N) = u(R) whenever R, N € U and
u(N) =0.

(iii) [5] p is said to be weakly null-additive if u(N; Y Ny) = 0 whenever Ny, N, € U
and u(N1) = p(N2) = 0.
As is well-known, null-additivity implies weak null-additivity.

Throughout the paper, X is a nonempty set and R is a ring of subsets of X. A set
function is a function y : R — [0, T] such that u(@) = 0, where T is a standard upper
bound of the possible values of u; for example, if u is regarded as a generalization of
ordinary measures, then T = oo, and, if x is regarded as a generalization of probability
measures, then T = 1. We denote the family of null sets with respect to 1 by N, that
is, Ny = {N | p(N) = 0}.

The following lemmas are immediate consequences of Definition 1.

Lemma 1. [5] Let p be a monotone set function on a ring R. The following condi-
tions are equivalent to each other.

(a) p is null-additive.
(b) p(RAN) = u(R) whenever R € R and N € N,.

(¢) u(R\ N) = u(R) whenever R€ R and N € N,,.

Lemma 2. Let p be a monotone set function on a ring R. Then u is weakly null-
additive iff N, is an ideal of R.

If a monotone set function x on R is null-additive, then, since N, is an ideal of R
by Lemma 2, we can consider the quotient ring

R/N, = {RON, | RE€ R},

where RAN, = {RAN | N € N,}, and due to Lemma 1 we can define a monotone,
extended-real-valued function M on R/N, by

M(RANM) = u(R);

note that M(N,) = u(@) = 0 and that M(RAN,) > 0 whenever RAN, # N,.
Conversely, if AV is an ideal of R, and if M is a monotone, extended-real-valued function
defined on R/N such that M(N) = 0, then we can define a null-additive, monotone

set function u on R by
u(R) = M(RAN).

Moreover, if M(RAN) > 0 whenever RAN # N, then it holds that NV, = N.
For any ring R of subsets of X, let A(R) be the algebra on a set X generated by
R, that is, A(R) = {A | A is an algebra on X containing R}.
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Proposition 1. [4] The algebra A(R) generated by a ring R on a set X is given by
A(R) =RUCR, where (R := {X\ R| Re R}.

As is well known, the following lemmas hold.
Lemma 3. The following five conditions are equivalent to each other:
(a) X e R,
(b) R is an algebra,
(c) A(R) =R,
(d) CR =R,
(e) RNCR #0.
Lemma 4. (i) fR€R and A€ A(R), then RNA€R and R\A€R.
(ii) IfC € CR and A € A(R), then CU A € CR.
(i) IfC, D eCR, thenCND e CR.
(iv) IfC €eCR and R€ R, then C\ R € CR.
(v) If A€ A(R) and C €CR, then A\ C € R.

It follows from (i) that R is an ideal in A(R), and from (ii) and (iii) that CR is a
filter in A(R). '

3 (Weakly) null-additive extensions

In this section, y is assumed to be a monotone set function from a ring R of subsets
of a set X into [0, T).

Definition 2. (i) The set function u* on A(R) is defined by
Ww(A)=mf{uR)|ACRER} (1)
for A e A(R).
(ii) The set function p, on A(R) is defined by
p(A) =sup{u(R) | RER, RC A} )
for A € A(R).
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Since inf @ = T, it follows that

v fmA) fAer,
“(A)“{T if A€ AR)\R. ®)

The set function u* is a monotone extension of p, i.e., it is an extension of u and
is monotone [3], [6], and obviously so is p,; hence, if R is an algebra, u* = y, = p. In
addition, for any monotone extension 7 on A(R) of p, it follows that u, < I < p*.
Therefore, u* and . are respectively the greatest and least monotone extensions of y,
and obviously, if u. = p*, then the monotone extension of u is unique.

Pap (3], Wu and Sun [6] have shown that the greatest monotone extension y*
preserves the null-additivity and weak null-additivity of u.

Theorem 1. For every monotone set function u on R, the following hold:
(1) [3], [6] If p is null-additive, then so is u*.
(ii) [6] If p is weakly null-additive, then so is y*.

The following is one of our main theorems of this paper, which shows that the least
monotone extension u. also preserves the null-additivity and weak null-additivity of
B '

Theorem 2. For every monotone set function pu on R, the following hold:
(i) If p is null-additive, then so is p..
(if) If p is weakly null-additive, then so is p,.
Proof. See [2]. O

Remark 1. The outer and inner set functions [1] induced by p are the set functions
p* and g, on 2% defined by Eqgs. (1) and (2) for A € 2X, respectively. If p is a null-
additive [resp. weakly null-additive] monotone set function on a ring R, then, while
the outer and inner set functions x* and 4. induced by p are null-additive [resp. weakly
null-additive] on A(R) by Theorems 1 and 2, they are not necessarily null-additive or
weakly null-additive on 2X. This fact is shown by the following example.

Consider the real line R as the whole set X. Let R be the ring generated by the
family T = {(a,b] | —00 < a < b < oo} of all bounded left half-open intervals, i.e.,
R =[{Ro | Ro is a ring on R containing Z}. Define x: R — [0, o0] by

oo if {0,1} C R,

R ,
A(R) otherwise, (RER)

w(R) = {
where A is the Lebesgue measure on R. Obviously u is moﬁotone, and, since y vanishes
only at the empty set, u is null-additive. However, neither the outer set function u*
nor the inner set function u. is weakly null-additive. Indeed, p*({0}) = p*({1}) =0
and p*({0,1}) = oo, and besides, 1.(Q) = p.(R\ Q) = 0 and u.(R) = oo, where Q is

the set of rational numbers. Note that this implies that the restrictions of u* and u,
to the o-ring generated by R are not weakly null-additive.



75

If 7 is a monotone extension of a monotone set function i on a ring R to the
algebra A(R), then obviously N, = N,. C Nz C N, ; note that N, NR = NzNR =
Ny NR = N,. Now, we show our second main theorem.

Theorem 3. Let Ti be a monotone extension of a monotone set function u on R to

A(R), and N, G Nj.
(i) If @ is null-additive, then i = ..
(ii) If @ is weakly null-additive, then Nz = N,_ .
Proof. See [2]. O
As a direct consequence of the above theorem, we can obtain the following theo-
rem, which characterizes the (weakly) null-additive monotone extensions. Note that

condition (b) of (i) follows from the remark just below Lemma 2. In either case (i) or
(i), p. satisfies condition (a) and p* satisfies condition (b).

Theorem 4. Assume X ¢ R.

(i) Let p be a null-additive, monotone set function on R. Then 7 18 a null-additive,
monotone extension of u on A(R) if and only if (a) or (b) below holds:
(8) Z = p.

(b) There exists a monotone function Mg defined on (CR)/N, = {CAN, |
C € CR} such that

oo fua) fAER,
Fd) = {MC(AA.N',,) if A€lR,

and that Mg satisfies both of the following conditions:
(b-1) Mg(CAN,) = pa(C) for all C € CR,
(b-2) Mg(CAWN,,) > 0 for all C € CR.

(ii) Let p be a weakly null-additive, monotone set Junction on R. Then T is a weakly
null-additive, monotone extension of u on A(R) if and only if there ezists a
monotone function ug defined on CR such that

R = {uc(A) FAeCR,
and that ug satisfies
pe(C) = p(C) forallC eCR

and one of the following two conditions:

(8) {N €lR | ug(N) =0} =N, \ N,
(b) {N €CR | g(N) = 0} = 0.
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4 Examples

Let p be a monotone set function on a ring R. Then for any nondecreasing function
@ : [0, T] — [0, T] satisfying ¢(r) > r for all r € [0, T], the set function 7, defined
below is a monotone extension of x on A(R): ’

- _ Ju(4) ifAeR,
Pel4) = {<p(u-(A)) if A€ AR)\R. “

If p is weakly null-additive, then so is 7,. If s, # p*, then there is an monotone
extension 7, different from yu, and p*; there is C € CR such that p.(C) < pu*(C),
and there is ¢ : [0, T] — [0, T] such that ¢(r) > r for all » € [0, T] and p.(C) <
(e (C)) < p*(C).

As mentioned before, if 7z is a monotone extension of a monotone set function u
on R to A(R), then N, = Nu» C Nz C N,,. Regardless whether u is (weakly)
null-additive or not, the following cases can occur:

Case I. Ny = Np=N,,,

Case Il. Npe =Nz G N,
Case III. Mo G Nz=N,,,
Case IV. M. SN G N,.,.

By Theorem 3, if 7z is weakly null-additive, then Case IV does not hold.

In what follows, consider the set N of positive integers as the whole set X, and let
R be the ring of finite subsets of N. Then CR is the family of cofinite subsets of N, and
A(R) = RUCR. For a function f : N — [0, T], we write Ny = {n € N | f(n) = 0}
and Ty ={neN| f(n)=T}

Example 1. Consider a function f : N — [0, T}, and let u be the set function on R
defined by
uR) =\ fn) (Rewm),

nE€ER

where \/ stands for supremum. Then, by definition, y is monotone and null#additive,
and N, = {N € R| N C Ny} = 2" N R. The least monotone extension , is given

as
m(4) = \/ f(n)

neA
for A € A(R), and it follows that
Nu,={Ne€e AR)|NCN;}=N,U{NelR|NcCNs}. (5)

(The greatest monotone extension y* is given by Eq. (3).)
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We consider the following three cases:

1. Let T be infinite or V/,cn7, f(n) = T. Then p, = y* and hence the monotone
extension of 4 is unique. Hence Case I holds, and all the conditions in Theorem 4,
(a), (b) of (i) and (a), (b) of (ii), are satisfied.

2. Let Ty be finite and V/,enr, f(n) < T. Then, since N\ T; € (R and

mMN\Tp) = \/ f(n)<T=pN\Ty),
neN\Ty )

it follows that . # p*. Now, let N\ N; be infinite, i.e., Ny be not cofinite. Then
it follows from Eq. (5) that N, = N,. =N, ; Case I holds again.

2-1. Every 7, defined by Eq. (4) is null-additive and satisfies (b) in Theorem 4
(i).

2-2. Every monotone extension 7i of x is weakly null-additive and satisfies (a)
and (b) in Theorem 4 (ii).

3. Let Ny be cofinite; this implies that T is finite and Vaemr, f(n) < T. Then,
since Ny € CR and hence Ny € N, \ N, it follows that N, = Ny G N,..

3-1. If ¢(0) > 0, then £, is null-additive and satisfies (i) (b) and (ii) (b) in
Theorem 4; in this case, Case II holds.

3-2. If 9(0) = 0 and 7, # p., then I, is not null-additive but weakly null-
additive, and satisfies (ii) (a) in Theorem 4; in this case, Case III holds.

3-3. Let v € Ny and
T ifve AeCR,

() = {u.(A) otherwise (©)

for A € A(R). Then F, is a monotone extension of u, and it follows that
Nu=Np GNg, =N, U{N € R | N C N;\ {v}} & N,.. Hence
Case IV holds. This 7, is not weakly null-additive; %,(N;) = T > 0 while
Ay({v}) = u.({v}) = u({v}) = 0 and 7,(Ny \ {v}) = pu(Ny \ {v}) = 0.

Remark 2. In a similar way to the above example, we can construct an example of
monotone extensions of a weakly null-additive, monotone set function. For instance,
in the same setting as Example 1 with the additional condition T > 1, assume there
are ng, n1 € N such that f(ng) = 0 and f(n:) > 1, and define the set function  on R
by

1 lf R = {nl},

H(R) = V f(n) otherwise, (R €R).
neR

Then u is a weakly null-additive, monotone set function. By assumption, u is not null-

additive; u({n1}) < p({no,n.}) while u({no}) = 0. About the monotone extension of

u to A(R), we can make the same argument as the weakly null-additive, monotone

extensions in Example 1.
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