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Abstract. This paper shows that the greatest and least monotone extensions
of a null-additive [resp. weakly null-additive], monotone set function from a
ring of subsets to the algebra generated by the ring are null-additive [resp.
weakly null-additive]. In addition, the paper characterizes all the (weakly)
null-additive, monotone extensions.

1 Introduction
The existence of a null-additive, monotone extension of a null-additive, monotone set
function from a ring of subsets to the algebra generated by the ring has been shown
by Pap [3] and Wu and Sun [6]; Pap considered extensions in two cases, but Wu and
Sun pointed out that there was an error in the second case and Pap’s extension in
the first case essentially applies to the second one, and showed that their extension
of a weakly null-additive, monotone set function is weakly null-additive. This paper
points out that their extension is the greatest monotone extension, and shows that
the least monotone extension of a null-additive [resp. weakdy null-additive], monotone
set function ako is null-additive [resp. weakly null-additive]. Furthermore, the paper
characterizes all the (weakly) null-additive, monotone extensions.

The paper is organized as follows. Section 2 provides definitions and properties
of basic concepts. Section 3 shows the above-mentioned results. We omit the proofs
of the results; for the proofs, see [2]. Section 4 gives several examples of (weakly)
null-additive, monotone extensions.

Throughout the paper, $\dot{T}$ is a positive extended real number, i.e., $0<T\leq\infty$ , and
the closed interval $[0, T]$ of the real line is considered as the codomain of functions. In
addition, we assume $sup\emptyset=0$ and $inf\emptyset=T$ . The difference and symmetric difference
of sets $A$ and $B$ are denoted by $A\backslash B$ and $A\triangle B$ , respectively.
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2 Preliminaries
Deflnition 1. Let $(U, Y)$ be an upper semilattice unth ordenng $\preceq$ , and
$\mu:Uarrow[0, T]$ .

(i) $\mu$ is said to be monotone if $\mu(R)\leq\mu(S)$ whenever $R_{f}S\in U$ and $R\preceq S$ .
(ii) [5] $\mu$ is said to be null-additive if $\mu(RYN)=\mu(R)$ whenever $R,$ $N\in U$ and

$\mu(N)=0$ .
(iii) [5] $\mu$ is said to be weakly null-additive if $\mu(N_{1}YN_{2})=0$ whenever $N_{1},$ $N_{2}\in U$

and $\mu(N_{1})=\mu(N_{2})=0$ .
As is well-known, null-additivity implies weak null-additivity.

Throughout the paper, $X$ is a nonempty set and $\mathcal{R}$ is a ring of subsets of $X$ . A set
fimction is a function $\mu:\mathcal{R}arrow[0, T]$ such that $\mu(\emptyset)=0$, where $T$ is a standard upper
bound of the possible values of $\mu$; for example, if $\mu i_{8}$ regarded as a generahzation of
ordinary measures, then $T=\infty$ , and, if $\mu$ is regarded as a generalization of probability
measures, then $T=1$ . We denote the family of null sets with respect to $\mu$ by $\mathcal{N}_{\mu}$ , that
is, $\mathcal{N}_{\mu}=\{N|\mu(N)=0\}$ .

The following lemmas are immediate consequences of Definition 1.

Lemma 1. [5] Let $\mu$ be a monotone set $fi\ell nction$ on a ring $\mathcal{R}$ . The following condi-
tions are equivalent to each other.

(a) $\mu$ is null-additive.

(b) $\mu(R\triangle N)=\mu(R)$ whenever $R\in \mathcal{R}$ and $N\in N_{\mu}$ .
(c) $\mu(R\backslash N)=\mu(R)$ whenever $R\in \mathcal{R}$ and $N\in N_{\mu}$ .

Lemma 2. Let $\mu$ be a monotone set function on a ring $\mathcal{R}$ . Then $\mu\dot{i}$ weakly null-
additive iff $\mathcal{N}_{\mu}$ is an ideal of $\mathcal{R}$.

If a monotone set function $\mu$ on $\mathcal{R}$ is null-additive, then, since $N_{\mu}$ is an ideal of $\mathcal{R}$

by Lemma 2, we can consider the quotient ring

$\mathcal{R}/N_{\mu}=\{R\triangle N_{\mu}|R\in \mathcal{R}\}$ ,

where $R\triangle \mathcal{N}_{\mu}=\{R\triangle N|N\in \mathcal{N}_{\mu}\}$ , and due to Lemma 1 we can define a monotone,
extended-real-valued function $M$ on $\mathcal{R}/N_{\mu}$ by

$M(R\triangle \mathcal{N}_{\mu})=\mu(R)$ ;

note that $M(\mathcal{N}_{\mu})=\mu(\emptyset)=0$ and that $M(R\triangle N_{\mu})>0$ whenever $R\Delta N_{\mu}\neq \mathcal{N}_{\mu}$.
Conversely, if $\mathcal{N}$ is an ideal of $\mathcal{R}$ , and if $M$ is a monotone, extendd-real-valud function
defined on $\mathcal{R}/\mathcal{N}$ such that $M(N)=0$, then we can define a null-additive, monotone
set function $\mu$ on $\mathcal{R}$ by

$\mu(R)=M(R\triangle N)$ .
Moreover, if $M(R\triangle \mathcal{N})>0$ whenever $R\triangle \mathcal{N}\neq \mathcal{N}$, then it holds that $\mathcal{N}_{\mu}=\mathcal{N}$.

For any ring $\mathcal{R}$ of subsets of $X$ , let $A(\mathcal{R})$ be the algebra on a set $X$ generated by
$\mathcal{R}$, that is, $A(\mathcal{R})=\cap${ $A|\mathcal{A}$ is an algebra on $X$ containing $\mathcal{R}$}.
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Proposition 1. [4] The algebra $\mathcal{A}(\mathcal{R})$ generated by a ring $\mathcal{R}$ on a set $X$ is given by
$\mathcal{A}(\mathcal{R})=\mathcal{R}\cup C\mathcal{R}$, where $C\mathcal{R}$

$:=\{X\backslash R|R\in \mathcal{R}\}$ .

As is well known, the following lemmas hold.

Lemma 3. The following five conditions are equivalent to each other:

(a) $X\in \mathcal{R}$ ,

(b) $\mathcal{R}$ is an algebra,

(c) $A(\mathcal{R})=\mathcal{R}$,

(d) $C\mathcal{R}=\mathcal{R}$ ,

(e) $\mathcal{R}\cap C\mathcal{R}\neq\emptyset$ .

Lemma 4. (i) If $R\in \mathcal{R}$ and $A\in \mathcal{A}(\mathcal{R})$ , then $R\cap A\in \mathcal{R}$ and $R\backslash A\in \mathcal{R}$ .
(ii) If $C\in C\mathcal{R}$ and $A\in A(\mathcal{R})$ , then $C\cup A\in C\mathcal{R}$ .
(hi) If $C,$ $D\in C\mathcal{R}$, then $C\cap D\in C\mathcal{R}$ .
(iv) If $C\in C\mathcal{R}$ and $R\in \mathcal{R}$ , then $C\backslash R\in C\mathcal{R}$ .
(v) If $A\in A(\mathcal{R})$ and $C\in C\mathcal{R}$, then $A\backslash C\in$ R.

It follows from (i) that $\mathcal{R}$ is an ideal in $A(\mathcal{R})$ , and from (ii) and (iii) that $C\mathcal{R}$ is a
filter in $A(\mathcal{R})$ .

3 (Weakly) null-additive extensions
In this section, $\mu$ is assumed to be a monotone set function from a ring $\mathcal{R}$ of subsets
of a set $X$ into $[0, T]$ .
Definition 2. (i) The set fimction $\mu^{*}$ on $\mathcal{A}(\mathcal{R})$ is defined by

$\mu^{*}(A)=\inf\{\mu(R)|A\subset R\in \mathcal{R}\}$ (1)

for $A\in \mathcal{A}(\mathcal{R})$ .

(ii) The set function $\mu_{*}$ on $A(\mathcal{R})$ is defined by

$\mu_{*}(A)=\sup\{\mu(R)|R\in \mathcal{R}, R\subset A\}$ (2)

for $A\in A(\mathcal{R})$ .
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Since $inf\emptyset=T$ , it follows that

$\mu^{*}(A)=\{\begin{array}{ll}\mu(A) if A\in \mathcal{R},T if A\in \mathcal{A}(\mathcal{R})\backslash \mathcal{R}.\end{array}$ (3)

The set function $\mu^{*}$ is a monotone extension of $\mu$ , i.e., it is an extension of $\mu$ and
is monotone [3], [6], and obviously so is $\mu_{*}$ ; hence, if $\mathcal{R}$ is an algebra, $\mu^{*}=\mu_{*}=\mu$ . In
addition, for any monotone extension $\overline{\mu}$ on $\mathcal{A}(\mathcal{R})$ of $\mu$ , it follows that $\mu$. $\leq\pi\leq\mu^{*}$ .
Therefore, $\mu^{*}$ and $\mu_{*}$ are respectively the greatest and least monotone extensions of $\mu$ ,
and obviously, if $\mu_{*}=\mu^{*}$ , then the monotone extension of $\mu$ is unique.

Pap [3], Wu and Sun [6] have shown that the greatest monotone extension $\mu^{*}$

preserves the null-additivity and weak null-additivity of $\mu$ .
Theorem 1. For eve$ry$ monotone set fimction $\mu$ on $\mathcal{R}$, the folloutng hold:

(i) [3], [6] If $\mu$ is null-additive, then so is $\mu^{*}$ .
(ii) [6] $If\mu$ is weakly null-additive, then so is $\mu^{*}$ .

The folowing is one of our main theorems of this paper, which shows that the least
monotone extension $\mu_{*}ako$ preserves the null-additivity and weak null-additivity of
$\mu$ .
Theorem 2. For every monotone set function $\mu$ on $\mathcal{R}$ , the following hold:

(i) If $\mu$ is null-additive, then so is $\mu_{*}$ .
(ii) If $\mu$ is weakly null-additive, then so is $\mu_{*}$ .

Proof. See [2]. 口

Remark 1. The outer and inner set functions [1] induced by $\mu$ are the set functions
$\mu^{*}$ and $\mu_{*}$ on $2^{X}$ defined by Eqs. (1) and (2) for $A\in 2^{X}$ , respectively. If $\mu$ is a nul-
additive [resp. weakly null-additive] monotone set function on a ring $\mathcal{R}$, then, while
the outer and inner set functions $\mu^{*}$ and $\mu_{*}$ induced by $\mu$ are null-additive [resp. weakly
null-additive] on $\mathcal{A}(\mathcal{R})$ by Theorems 1 and 2, they are not necessarily null-additive or
weakly null-additive on $2^{X}$ . This fact is shown by the following example.

Consider the real line $\mathbb{R}$ as the whole set $X$ . Let $\mathcal{R}$ be the ring generated by the
family $\mathcal{I}=\{(a, b]|-\infty<a<b<\infty\}$ of all bounded left half-open intervals, i.e,,
$\mathcal{R}=\cap${ $\mathcal{R}_{0}|\mathcal{R}_{0}$ is a ring on $\mathbb{R}$ containing $\mathcal{I}$}. Define $\mu:\mathcal{R}arrow[0, \infty]$ by

$\mu(R)=\{\begin{array}{ll}\infty if \{0,1\}\subset R,\lambda(R) othe\mathfrak{m}ise,\end{array}$ $(R\in \mathcal{R})$ ,

where $\lambda$ is the Lebesgue measure on R. Obviously $\mu$ is monotone, and, since $\mu$ vanishes
only at the empty set, $\mu$ is null-additive. However, neither the outer set function $\mu^{*}$

nor the inner set function $\mu_{*}$ is weakly null-additive. Indeed, $\mu^{*}(\{0\})=\mu^{*}(\{1\})=0$

and $\mu^{*}(\{0,1\})=\infty$ , and besides, $\mu_{*}(\mathbb{Q})=\mu_{*}(\mathbb{R}\backslash \mathbb{Q})=0$ and $\mu_{*}(\mathbb{R})=\infty$ , where $\mathbb{Q}$ is
the set of rational numbers. Note that this implies that the restrictions of $\mu^{*}$ and $\mu_{l}$

to the $\sigma$-ring generated by $\mathcal{R}$ are not weakly null-additive.
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If $\overline{\mu}$ is a monotone extension of a monotone set function $\mu$ on a ring $\mathcal{R}$ to the
algebra $\mathcal{A}(\mathcal{R})$ , then obviously $\mathcal{N}_{\mu}=\mathcal{N}_{\mu}\cdot\subset \mathcal{N}_{\overline{\mu}}\subset N_{\mu}$ . ; note that $\mathcal{N}_{\mu}.\cap \mathcal{R}=\mathcal{N}_{\overline{\mu}}\cap \mathcal{R}=$

$N_{\mu}\cdot\cap \mathcal{R}=\mathcal{N}_{\mu}$ . Now, we show our second main theorem.

Theorem 3. Let $\overline{\mu}$ be a monotone extension of a monotone set hnction $\mu$ on $\mathcal{R}$ to
$\mathcal{A}(\mathcal{R})$ , and $\mathcal{N}_{\mu}\subsetneqq \mathcal{N}_{\overline{\mu}}$ .

(i) $If\overline{\mu}$ is null-additive, then $\overline{\mu}=\mu_{*}$ .
(ii) $If\overline{\mu}$ is weakly null-additive, then $\mathcal{N}_{\overline{\mu}}=\mathcal{N}_{\mu}.\cdot$

Proof. See [2]. $\square$

As a direct consequence of the above theorem, we can obtain the following theo-
rem, which characterizes the (weakly) nun-additive monotone extensions. Note that
condition (b) of (i) follows $hom$ the remark just below Lemma 2. In either case (i) or
(i1), $\mu_{*}$ satisfies condition (a) and $\mu^{*}$ satisfies condition (b).

Theorem 4. Assume $X\not\in \mathcal{R}$ .
(i) Let $\mu$ be a null-additive, monotone set function on $\mathcal{R}$ . Then $\overline{\mu}$ is a null-additive,

monotone extension of $\mu$ on $A(\mathcal{R})$ if and only if (a) or (b) bdow holCilS:
(a) $\overline{\mu}=\mu_{*}$ .
(b) There exists a monotone fimction $M_{t}$ defined on $(C\mathcal{R})/\mathcal{N}_{\mu}=\{C\triangle \mathcal{N}_{\mu}|$

$C\in C\mathcal{R}\}$ such that

$\overline{\mu}(A)=\{\begin{array}{ll}\mu(A) if A\in \mathcal{R},M_{G}(A\triangle \mathcal{N}_{\mu}) if A\in G\mathcal{R},\end{array}$

and that $M_{G}$ satisfies both of the following conditions:
(b-1) $M_{G}(C\triangle \mathcal{N}_{\mu})\geq\mu_{l}(C)$ for all $C\in C\mathcal{R}$ ,
(b-2) $M_{G}(C\triangle \mathcal{N}_{\mu})>0$ for all $C\in C\mathcal{R}$ .

(ii) Let $\mu$ be a weakly null-additive, monotone set fimction on $\mathcal{R}$ . $Then\overline{\mu}$ is a weauy
null-additive, monotone extension of $\mu$ on $A(\mathcal{R})$ if and only if there eaxis$ts$ $a$

monotone function $\mu_{G}$ defined on $C\mathcal{R}$ such that

$\overline{\mu}(A)=\{\begin{array}{ll}\mu(A) if A\in \mathcal{R},\mu_{C}(A) if A\in C\mathcal{R},\end{array}$

and that ffl satisfies
$\mu c(C)\geq\mu_{*}(C)$ for all $C\in C\mathcal{R}$

and one of the following two conditions:

(a) $\{N\in C\mathcal{R}|M(N)=0\}=\mathcal{N}_{\mu_{*}}\backslash N_{\mu z}$

(b) $\{N\in C\mathcal{R}|\mu_{0}(N)=0\}=\emptyset$ .
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4 Examples
Let $\mu$ be a monotone set function on a ring $\mathcal{R}$ . Then for any nondecreasing function
$\varphi$ : $[0, T]arrow[0, T]satis\theta ing\varphi(r)\geq r$ for all $r\in[0, T]$ , the set function $\overline{\mu}_{\varphi}$ defined
below is a monotone extension of $\mu$ on $A(\mathcal{R})$ :

$\overline{\mu}_{\varphi}(A)=\{\begin{array}{ll}\mu(A) if A\in \mathcal{R},\varphi(\mu_{r}(A)) if A\in A(\mathcal{R})\backslash \mathcal{R}.\end{array}$ (4)

If $\mu$ is weakly null-additive, then so is $\overline{\mu}_{\varphi}$ . If $\mu\neq\mu^{*}$ , then there is an monotone
extension $\overline{\mu}_{\varphi}$ different from $\mu_{*}$ and $\mu^{*}$ ; there is $C\in C\mathcal{R}$ such that $\mu_{r}(C)<\mu^{*}(C)$ ,
and there is $\varphi$ : $[0, T]arrow[0, T]$ such that $\varphi(r)\geq r$ for all $r\in[0, T]$ and $\mu_{n}(C)<$

$\varphi(\mu_{*}(C))<\mu(C)$ .
As mentioned before, if $\overline{\mu}$ is a monotone extension of a monotone set function $\mu$

on $\mathcal{R}$ to $\mathcal{A}(\mathcal{R})$ , then $\mathcal{N}_{\mu}=\mathcal{N}_{\mu}\cdot\subset \mathcal{N}_{\overline{\mu}}\subset \mathcal{N}_{\mu}.\cdot$ Regardless whether $\mu$ is (weakly)
null-additive or not, the following cases can occur:

Case I. $\mathcal{N}_{\mu^{*}}=\mathcal{N}_{\overline{\mu}}=N_{\mu}.$ ,

Case II. $\mathcal{N}_{\mu}\cdot=N_{\overline{\mu}}\subset \mathcal{N}_{\mu}\neq.$ ,

Case III. $N_{\mu}\cdot\subsetneqq N_{\overline{\mu}}=N_{\mu}.$ ,

Case rv. $N_{\mu\neq}\subset \mathcal{N}_{\overline{\mu}}\subsetneqq \mathcal{N}_{\mu_{*}}$.
By Theorem 3, if $\overline{\mu}$ is weakly null-additive, then Case IV does not hold.

In what folows, consider the set $N$ of positive integers as the whole set $X$ , and let
$\mathcal{R}$ be the ring of血面 te subsets of N. Then $c_{\mathcal{R}}$ is the family of $\infty finite$ subsets of $N$, and
$\mathcal{A}(\mathcal{R})=\mathcal{R}\cup C\mathcal{R}$. For a function $f$ : $Narrow[0, T]$ , we write $N_{f}=\{n\in N|f(n)=0\}$
and $T_{f}=\{n\in N|f(n)=T\}$ .
Example 1. Consider a imction $f$ : $Narrow[0, T]$ , and let $\mu$ be the set function on $\mathcal{R}$

defined by
$\mu(R)=\vee f(n)n\in R$

$(R\in \mathcal{R})$ ,

where $\vee$ stands for supremum. Then, by definition, $\mu$ is monotone and null-additive,
and $\mathcal{N}_{\mu}=\{N\in \mathcal{R}|N\subset N_{f}\}=2^{N_{f}}\cap \mathcal{R}$. The least monotone extension $\mu_{r}$ is given
as

$\mu_{r}(A)=f(n)n\in A$

for $A\in A(\mathcal{R})$ , and it follows that

$N_{\mu}$. $=\{N\in \mathcal{A}(\mathcal{R})|N\subset N_{f}\}=\mathcal{N}_{\mu}\cup\{N\in C\mathcal{R}|N\subset N_{f}\}$ . (5)

(The greatest monotone extension $\mu^{*}$ is given by Eq. (3).)
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We consider the following three cases:
1. Let $T_{f}$ be infinite or $_{n\in N\backslash T_{f}}f(n)=T$ . Then $\mu_{*}=\mu^{*}$ and hence the monotone

extension of $\mu$ is unique. Hence Case I holds, and all the conditions in Theorem 4,
(a), (b) of (i) and (a), (b) of (ii), are satisfied.

2. Let $T_{f}$ be finite and $_{n\in N\backslash T_{f}}f(n)<T$ . Then, since $N\backslash T_{f}\in C\mathcal{R}$ and

$\mu_{*}(N\backslash T_{f})=\vee f(n.)<T=\mu^{l}(N\backslash T_{f})n\in N\backslash T_{f}$

it $f_{0}n_{oWS}$ that $\mu_{*}\neq\mu^{*}$ . Now, let $N\backslash N_{f}$ be infinite, i.e., $N_{f}$ be not cofinite. Then
it follows from Eq. (5) that $\mathcal{N}_{\mu}=N_{\mu^{*}}=N_{\mu}.$ ; Case I holds again.

2-1. Every $\overline{\mu}_{\varphi}$ defined by Eq. (4) is null-additive and satisfies (b) in $Th\infty rem4$

(i).
2-2. Every monotone extension $\overline{\mu}$ of $\mu$ is weakly null-additive and satisfies (a)

and (b) in Theorem 4 (ii).

3. Let $N_{f}$ be cofinite; this implies that $T_{f}$ is finite and $_{n\in N\backslash T_{f}}f(n)<T$ . Then,
since $N_{f}\in C\mathcal{R}$ and henoe $N_{f}\in \mathcal{N}_{\mu}$. $\backslash \mathcal{N}_{\mu}$ , it follows that $N_{\mu}=N_{\mu^{*}}\subsetneqq N_{\mu_{r}}$ .
3-1. If $\varphi(0)>0$ , then $\overline{\mu}_{\varphi}$ is null-additive and satisfies (i) (b) and (ii) (b) in

Theorem 4; in this case, Case II holds.
3-2. If $\varphi(0)=0$ and $\overline{\mu}_{\varphi}\neq\mu_{*},$ then $\overline{\mu}_{\varphi}$ is not null-additive but weakly null-

additive, and satisfies (ii) (a) in Theorem 4; in this case, Case III holds.
3-3. Let $v\in N_{f}$ and

$\overline{\mu}_{v}(A)=\{\begin{array}{ll}T if v\in A\in C\mathcal{R},\mu_{*}(A) otherwise\end{array}$ (6)

for $A\in \mathcal{A}(\mathcal{R})$ . Then $\overline{\mu}_{v}$ is a monotone extension of $\mu$ , and it folows that
$\mathcal{N}_{\mu}=\mathcal{N}_{\mu}\cdot\subsetneqq \mathcal{N}_{\overline{\mu}_{v}}=\mathcal{N}_{\mu}\cup\{N\in C\mathcal{R}|N\subset N_{f}\backslash \{v\}\}\subsetneqq N_{\mu}$ . Hence
Case IV holds. This $P_{v}$ is not weakly null-additive; $\overline{\mu}_{v}(N_{f})=T>0$ while
$\overline{\mu}_{v}(\{v\})=\mu_{*}(\{v\})=\mu(\{v\})=0$ and $\overline{\mu}_{v}(N_{f}\backslash \{v\})=\mu_{*}(N_{f}\backslash \{v\})=0$.

Remark 2. In a similar way to the above example, we can construct an example of
monotone extensions of a weakly null-additive, monotone set function. For instance,
in the same setting as Example 1 with the additional condition $T>1$ , assume there
are $n_{0},$ $n_{1}\in N$ such that $f(n_{0})=0$ and $f(n_{1})>1$ , and define the set function $\mu$ on $\mathcal{R}$

by

$\mu(R)=\{\begin{array}{ll}1 if R=\{n_{1}\},n\in Rf(n) otherwise,\end{array}$ $(R\in \mathcal{R})$ .

Then $\mu$ is a weakly null-additive, monotone set function. By assumption, $\mu$ is not nul-
additive; $\mu(\{n_{1}\})<\mu(\{n_{0},n_{1}\})$ while $\mu(\{n_{0}\})=0$ . About the monotone extension of
$\mu$ to $A(\mathcal{R})$ , we can make the same argument as the weakly null-additive, monotone
extensions in Example 1.
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