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Some results on Tsallis entropies in classical system*
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Abstract. In this survey, we review some theorems and properties of Tsallis entropies in classical
system without proofs. See our previous papers [11, 8, 9, 10] for the proofs and details.
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1 Tsallis entropies in classical system

First of all, we define the Tsallis entropy and the Tsallis relative entropy. We denote the g-logarithmic

function by
|
lnq:cs—l—_—-—- (9eR,g#1,z>0)
and the ¢g-exponential function by
= +0-92)™, if1+1-gz>0,
expg (z) = { 0 otherwise (¢€R¢#1,2€R).

For these functions, we have the following relations:

Ing(zy) =Ingz +Ingy + (1 — g)Ingzlnyy, expy(z+y + (1 - q)zy) = exp, (z) exp, (v)
and
;Lni Ing z = log z, 31_{111 expy(z) = exp(z). .

By the use of g-logarithmic function, we define Tsallis entropy [27] by

Sq(4) = ~ Za}‘ Inga;, (g#1),

J=1

for a probability distribution A = {a;}. After about one decade of discover of the Tsallis entropy, the
Tsallis relative entropy was independently introduced in the following [28, 21, 19].

n
b
Dy(A|B) = -3 aslng =L, (g#1),
j=1 4
for two probability distributions A = {a;} and B = {b;}.
Note that the Tsallis entropies are one parameter extensions of the Shannon entropy S1(A) and the
relative entropy D;(A|B) [17, 16) respectively, in the sense that :

n
lim Sq(4) = 81(4) = - ;a, logaj, (1)
n a:
i = = ot
lim Dq(4|B) mwm-;wmw- 2)
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In addition, the Tsallis entropies for g # 1 are non-additive entropies in the sense that :

Sq(A x B) = Sg(A) + S¢(B) + (1 - q)S¢(A)S4(B) (3)
D, (A(l) x A@ IB(I) x 3(2)) =D, (A(l) IB(I)) +D, (A(Z) }3(2))
+(@=1) D, (4 |BV) D, (4@ @), @)

where

A® x 4® = {aMa@ o) € AW, a? € AP}, BV x B = {6262 e € BW,bP € B .

2 A uniqueness theorem of Tsallis relative entropy

A uniqueness theorem for Shannon entropy is fundamental theorem in information theory [20, 14, 15).
In this section, we review the uniqueness theorem of Tsallis relative entropy [8] which was derived by
combining the Hobson’s axiom [13] and Suyari’s one [22].

Theorem 2.1 ([18]) We suppose the function D,(A|B) is defined for any pair of two probability distri-
butions A = {a;} and B = {b,} for j = 1,.--,n. If D,(A|B) satisfies the following conditions, then it is
necessary given by the form £3°7_, a;log «“3- with a positive constant k.

(H1) Continuity: D,(A|B) is a continuous function of its 2n variables.
(H2) Symmetry :

Dl(a'li"'1a'j1"'1ak""’aﬂ|b1)"':bj1'"1bkv""bﬂ)
= Dl(ala"',a’k:'":aj)"'yanlbl"")bks"'abj)"',bn) (5)

(H3) Grouping aziom :

Dy (1,1, ++,81,m,82,1, 1 G2,m |b1,1, -+, b1,m, b2,1, - -y b2,m ) = Dy (€1, ¢2 |dy, d3)

a3l Q1,m bll bim a1 aam {b2,1 bam
aDy (==, 2m L Jm )y oDy (S f2mlal | 22m
+11(c1 e | dy ’dl) @ 1(62 e | dy’ dy

where ¢; = 3770, a;; and d; = 71, by 5.
(H4) D1(A|B) =0 if a; = b; for all 5.

(H5) Dy(%,---,3,0,---, ol;—};, e, %) is an increasing function of no and a decreasing function of n, for
any integers n,ng such that ng > n.

For the Tsallis relative entropy, it is known that the several fundamental properties, which are sum-
marized in the below, hold as parametrically extensions of the relative entropy. For example, see [11].

Proposition 2.2 ([11])
(1) (Nonnegativity) D,(A|B) > 0. .
(2) (Symmetry) Dg (ar(1)s**18n(n) [br(1)s**+br(n) ) = Dq (@1, -+, @n [b1, -, bn).
(3) (Possibility of extention) Dy (a1, +,an,0|by, -+ ,bn,0) = Dy (a1, ,an |b1,- -+, bn).
(4) (Non-additivity) Eq.(4) holds.

(5) (Joint convexity) For 0 < A < 1, any ¢ > 0 and the probability distributions A®) = {agi)},B(‘) =
{bg")}, (i =1,2), we have

D, (,\A“) + (1= X)) ADPBD 4 (1 - 2) B<2>) < AD, (A<1>|B<1>) +(1-X)D, (A<=>|B<2)) .
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(6) (Strong additivity)

Dq(alv"'sa'i—laai1vaiz:ai+1)"'yan'bli"')bi—l:bipbt'g;bi-f-l)'"ybn)
_ 1-q ¢ ai) aig by by
= Dq(a1,--,0n b1, -+, bn) +b; aiDq(zf‘,';f‘"g},#

where a; = a;, + ai,, b = by, + b;,.
(7) (Monotonicity) For the transition probability matrix W, we have
D,(WA|WB) < D, (A|B).
Conversely, we axiomatically characterized the Tsallis relative entropy by some of these properties.

Theorem 2.3 ([8]) If the function D,(A|B), defined for any pairs of the probability distributions A =
{ai} and B = {b;} on a finite probability space, satisfies the conditions (A1)-(A3) in the below, then
D,(A|B) is necessary given by the form

L=l (Gj - a}b;-_q)

Dy(41B) = = ©

with a certain function ¢(qg).
(A1) Continuity : Dg(ay,-+,anlb,---,by) is & continuous function for 2n variables.
(A2) Symmetry :

Dq(aly""aj:""ak"";an’bl:"'ab_‘ii‘",bk»""bn)
=Dq(aly"'1aka'")ajx"'aa'nlbl’""bky"'ibj)"'sbn) (7)

(A3) Generalized additivity :

Dq(a'l,li cr3Gimy ')an,l: v ')a"n,mlbl,l" * 'ybl.m’ * ':bn,lr' * "bﬂ,m)

n
- gql-ap (%l Gim by bi,m
Dyfer-eseuld ) + 3l 70Dy (22, Hmbla, || Ym) (g

where ¢; = 3570, a5 and di = T11 ) by j.
The function ¢(g) was characterized in the following.

Proposition 2.4 ([8]) The property that Tsallis relative entropy is one parameter extension of relative
entropy:
a

n
lim Do(4|B) = k S ajlog b;

gesl

(9)

characterize the function ¢(g) such as
(01) umq—ol ¢(Q) =0.

(c2) There exists an interval (a,b) such that a < 1 < b and #(q) is differentiable on the interval
(a,1) € (1,0).

(c3) There exists positive number & such taht limg_,, %ﬂl = —i-.

Proposition 2.5 ([8]) The condition that

(A8) D4(A|U) takes the minimum value for fixed posterior probability distribution as uniform distribu-
tionU ={%,.--,1}:

1

1 1 1 1 1
Dq(ali"'aanl';a"');)ZDq(;""yzl;;)"'v;)v
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implies
(c4) ¢(q)(1 —q) >0 for g # 1.

As a simple example of ¢(g) to satisfy the above four conditions from (cl) to (c4), we may take
#(g) =1 — g and k = 1. Then we can obtain the Tsallis relative entropy.
Finally, we give a few remarks on the conditions of our axiom in the following two propositions.

Proposition 2.6 ([8]) The following conditions (A3’) and (A4) imply the condition (A3) in Theorem
2.3.

(A3) Generulized grouping aziom: The following additivity holds.

Dq (al,l;‘"aal,vma2,1,"‘,a2,m lbl,h"'abl,"th,lv"':bZ.m) =Dq (clyc2 |d11d2)
ggl-ap, (%1t ... %um by bum) | ga-ap (021 Gam b1 __bz»m)z
+cld1 q( ¢ ’ ’ a dl ] y dl +c2d2 Dq ca ’ k] 2 d2 ] ] d2

where C = E,;n=1 ai,j and d,' = Z;':—-l b."j.
(A4) Dq(AIB) =0 if a; = bj for all 3
Proposition 2.7 ([8]) The conditions (A3’) in the above Proposition 2.6 and the following condition
(A4’) imply the condition (A3) Theorem 2.3.
(A4’) Ezpandability :
Dq(als Tty anvolblv te ,bm O) = Dq(aly s »anlbl; Tty bﬂ) (10)

Proposition 2.6 and Proposition 2.7 tell us that we may use the axiom composed from the set of
[(A1),(A2),(A3’) and (A4)] or [(A1),(A2),(AS’) and (A4)] instead of the set of [(A1),(A2) and
(A3)] in Theorem 2.3.

3 A uniqueness theorem of Tsallis entropy

In this section, we review the uniqueness theorem of Tsallis entropy. We proved that the uniqueness
theorem for the Tsallis entropy by introducing the generalized Faddeev’s axiom is proven [8].

We suppose that the function Sq(z1,-+,zn) is defined for the n-tuple (21, --,2n) belonging to
An={(p1, o) il P =1,pi 20 (i=1,2,---,n)} and takes values in R+ = [0,00). In order to
characterize the function Sy(z1,- - -, z,), we introduce the following axiom which is a slight generalization
of Faddeev’s axiom.

Axiom 3.1 (Generalized Faddeev’s axiom :[8])

(GF1) Continuity: The function f,(z) = Sq(z,1 - x) with a parameter ¢ > 0 is continuous on the closed
interval [0, 1] and f,(zo) > 0 for some zq € [0,1].

(GF2) Symmetry : For arbitrary permutation {z}} € A, of {zx} € A,,
Sa(@1, -+, Tn) = Sg(@Y, -+ -, 7). (11)

(GF3) Generalized additivity : For 2, =y + 2,y >0 and z > 0,

¥4
Sq(zly s Tn-1, Y, z) = Sq(zh v ,xn) + zg.Sq (_&‘_, '—) . (12)
T &

n
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The conditions (GF1) and (GF2) are just same with the original Faddeev’s conditions except for the
addition of the parameter g. The condition (GF3) is a generalization of the original Faddeev’s additivity
condition in the sense that our condition (GF3) uses the zg as the factor of the second term in the right
hand side, while original condition uses z, itself as the factor of that. It is notable that our condition
(GF3) is a simplification of the condition [GSK3] in the paper [22], since our condition (GF3) does not
have to take the summation on i from 1 to n. Moreover our axiom does not need the maximality condition
[GSK2] in [22]. In such viewpoints, our axiom improves the generalized Shannon-Khinchin’s axiom in
[22]. For the above generalized Faddeev’s axiom, we have the following uniqueness theorem for Tsallis
entropy.

Theorem 3.2 ([8]) Three conditions (GF1),(GF2) and (GF3) uniquely give the form of the function
Sq: An — R* such that

n
Sq(@1,+,Tn) = =Aq sz Ing z;, (13)

i=1

where ), is a positive constant number depending on the parameter g > 0.

In the rest of this subsection, we study the relation between the generalized Shannon-Khinchin’s axiom
introduced in [22] and the generalized Faddeev's axiom presented in the previous section. To do 80, we
review the generalized Shannon-Khinchin’s axiom in the following.

Axiom 8.3 (Generalized Shannon-Khinchin’s axiom : [22])
(GSK1) Continuity: The function S, : A, — R* is continuous.
(GSK2) Magzimality: Sg(%,-, L) =maz {S4(X) : z; € An} > 0.
(GSK3) Generalized Shannon additivity: For zi; > 0, z; = Yithxg, (=1 ni=1,.-- my),

. A
Zil Timyg

Sy(z11,++\ Tamy) = Sy(@1, -, zn) + 3 285, (____ ,
i=1 Ts Ti

(GSK4) Ezpandability: Sg(x1,--+,%n,0) = Sg(z1,+++,Zn).

- We should note that the above condition (GSK4) is slightly changed from [GSK4] of the origina.i axiom
in [22]. Then we have the following proposition.

Proposition 3.4 ([8]) Axiom 3.3 implies Axiom 3.1.
We also have the following proposition.

Proposition 8.8 ([8]) Sy(X) = -A; Y0, z¥In, z; satisfies Axiom 3.3.

From Theorem 3.2, Proposition 3.4 and Proposition 3.5, we have the following equivalent relation
among Axiom 3.1, Axiom 3.3 and the Tsallis entropy.

Theorem 3.6 ([8]) The following three statements are equivalent to one another.
(1) Sq: Ap — R satisfies Axiom 3.3
(2) Sy: A, — Rt satisfies Axiom 3.1
(3) For (z1,--,Zn) € An, there exists Ay > 0 such that

n
Sg(z1,+,20) = —Aqu?lnqa:;.

t=1
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4 Some properties of Tsallis entropies

In this section, we review some information-theoretical properties on the Tsallis entropies. We define the
Tsallis conditional entropy and the Tsallis joint entropy in the following.

Definition 4.1 ([9]) For the conditional probability p(z:|y;) = p(X = z;]Y = y;) and the joint prob-
ability p(z;,y;) = p(X = z;,Y = y;), we define Tsallis conditional entropy and Tsallis joint entropy
by

So(XIY) = = 33" ples, 45)9 Ing plzilys), (a#1), (14)

t=1 j=1

and . m
So(X,Y) = =33 (i) g plziy5), (g #1). (15)

i=1 j=1

We note that the above definitions were essentially introduced in (5, 3] by

o, v) = E I EEIE 00l (550,541

Ha(X|Y) =Y p(u;)PHp(Xly;), (8>0,8#1)

=1 j=1

except for the difference of the multiplicative function. And then a chain rule and a subadditivity:
Hg(X,Y) = Hp(X) + Hp(Y|X),
Hg(Y|X) < Hp(Y), B>1,

were shown in Theorem 8 of [5].

It is important to study so-called a chain rule which gives the relation between a conditional entropy
and & joint entropy in not only information theory [4] but also statistical physics. For these Tsallis
entropies, the following chain rule holds as similar as the chain rule holds for the joint entropy of type 8
and the conditional entropy of type g.

Proposition 4.2 ([5])
S¢(X,Y)=8,(X)+ S, (Y|X). (16)
(Therefore immediately Sq(X) < Sy (X,Y).)
As a corollary of the above Proposition 4.2, we have the following lemma.

Lemma 4.3 The following chain rules hold.
(1) S¢(X,Y,2Z) = So(X,Y|2) + 5,(2).
(2) S¢(X,Y|Z) = So(X|2) + S,(Y'|X, Z).

From the non-additivity Eq.(3), for ¢ > 1 and two independent random variables X and Y, the
subadditivity holds:

So(X X ¥) < 5,(X) + 5,(¥).

It is known that the subadditivity for general random variables X and Y holds in the case of g1,
thanks to the following proposition.

Proposition 4.4 ([5]) The following inequality holds for two random variables X and Y, and ¢ > 1,
So(X[Y) < 54(X), a7
with equality if and only if ¢ = 1 and p(zily;) = p(z;) foralli=1,---,nand j=1,---,m.
Eq.(17) and Eq.(16) imply the subadditivity of Tsallis entropies.
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Theorem 4.5 ([5]) For g > 1, we have
So(X,¥) < So(X) + 5,(¥). (18)

On the other hand, we easily find that for two independent random variables X and Y,and0<¢g<1,
the superadditivity holds:
S¢(X X Y) 2 84(X) + 54(Y).

However, in general the superadditivity for two correlated random variables X and Y,and0<g<1
does not hold. Because we can show many counterexamples. For example, we consider the following joint
distribution of X and Y,

P(21,91) = p(1 - ), p(21,92) = (1 - p)y, P(22, 1) = pz, p(2,2) = (1 - P)(1 — ), (19)
where 0 < p,z,y < 1. Then each marginal distribution can be computed by
p(z1) =p(1 — z) + (1 - ply, p(x2) = px + (1 - P)(1 = y), p(41) = p, p(v3) = 1 — p. (20)

In general, we clearly see X and Y are not independent each other for the above example. Then the
value of A = §y(X,Y) — §3(X) — S,(Y) takes both positive and negative so that there does not exist
the complete ordering between S,(X,Y) and Sg(X) + S,(Y) for correlated X and Y in the case of
0 < ¢ <1 Indeed, A = —0.287089 when ¢ = 0.8,p = 0.6,z = 0.1,y = 0.1, while A = 0.0562961 when
¢g=08,p=06,2=0.1,y =0.9,

We also have the strong subadditivity holds in the case of ¢ > 1.

Theorem 4.8 ([9]) For ¢ > 1, the strong subadditivity
50 (X,Y,2) + 5,(2) < 54 (X, Z) + 5, (¥, Z) (21)

holds with equality if and only if ¢ = 1 and, random variables X and Y are independent for a given
random variable Z.

Theorem 4.7 ([8]) Let X, --, X421 be the random variables. For ¢ > 1, we have
Se(Xn+11X1,- -+, Xn) < Sg(Xn+1|1X2, -+, Xp). (22)
The subadditivity for Tsallis entropies conditioned by Z holds.
Proposition 4.8 ([9]) For ¢ 2> 1, we have
S¢(X,Y|2) < 54(X12) + 54(Y)2). (23)
Proposition 4.8 can be generalized in the following.
Theorem 4.9 ([9]) For ¢ > 1, we have
Sq(X1,-+, XalZ) < S¢(X1|2) + - -+ + Sg(Xn|2). (24)
In addition, we have the following propositions.
Proposition 4.10 ([9]) For ¢ > 1, we have
25,(X,Y, Z) < So(X,Y) + S,(Y, Z) + $,(Z, X).
Proposition 4.11 ([8]) For ¢ > 1, we have
S¢(XnlX1) < So(X2|X1) + - - + Sg(Xn|Xn_1).

For normalized Tsallis entropies, the mutual information was defined in [31] with the assumption of
its non-negativity. We define the Tsallis mutual entropy in terms of the original (not normalized) Tsallis
type entropies. The inequality Eq.(17) naturally leads us to define Tsallis mutual entropy without the
assumption of its non-negativity.
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Definition 4.12 ([9]) For two random variables X and Y, and ¢ > 1, we define the Tsallis mutual
entropy as the difference between Tsallis entropy and Tsallis conditional entropy such that

L(X;Y) = 5,(X) — So(X]Y). (25)

Note that we never use the term mutual information but use mutual entropy through this paper, since
a proper evidence of channel coding theorem for information transmission has not ever been shown in
the context of Tsallis statistics. From Eq.(16), Eq.(18) and Eq.(17), we easily find that I,(X;Y) has the
following fundamental properties.

Proposition 4.13 ([9])
(1) 0< L(X; ¥) < min{S,(X), S,(¥)}.
(2) I(X;Y) = So(X) + 5,(Y) = §,(X,Y) = I,(Y; X).
Note that we have

Sg(X) < 8(Y) <= So(X|Y) < S4(Y]X) (26)
from the symmetry of Tsallis mutual entropy. We also define the Tsallis conditional mutual entropy
I(X;Y|Z) = 84(X|Z) - So(X|Y, Z) (27)

for three random variables X, Y and Z, and ¢ > 1. In addition, I(X;Y|Z) is nonnegative. For these
quantities, we have the following chain rules.

Theorem 4.14 ([9])
(1) For three random variables X, Y and Z, and ¢ > 1, the chain rule holds:
I(X;Y, Z) = I(X; Z) + I,(X;Y|2). (28)
(2) For random variables X}, -, X, and Y, the chain rule holds:
n
Xy, XaiY) = Y L(Xs Y|Xy, -+, Xica). (29)
=1
We have the following inequality for Tsallis mutual entropies by the strong subadditivity.
Proposition 4.15 ([9]) For ¢ > 1, we have
I(X;2) < I(X,Y; 2).

5 Maximum Tsallis entropy principle

Here we discuss the maximum entropy principle which is one of most important theorem in entropy theory
and statistical physics. We give a new proof of the theorems on the maximum entropy principle in Tsallis
statistics. That is, we show that the g-canonical distribution attains the maximum value of the Tsallis
entropy, subject to the constraint on the g-expectation value and the g-Gaussian distribution attains the
maximum value of the Tsallis entropy, subject to the constraint on the g-variance, as applications of the
non-negativity of the Tsallis relative entropy, without using the Lagrange multipliers method.

The set of all probability density function on R is represented by

{e <]
Dy = {f:]R—olR:f(z)zo,/ f(x)dz=l}.
~00
In the classical continuous system, Tsallis entropy [27] is then defined by

H#@) =~ [ 6(a)ting $(a)ds (30)
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for any nonnegative real number ¢ and a probability distribution function &é(z) € Dy. In addition, the
Tsallis relative entropy is defined by

[ =}
Do#@Nb(e) = [ (2)7(1ng 9(2) ~ Ing (e (31)
for any nonnegative real number ¢ and two probability distribution functions #(z) € Dy and y(z) €

D,. Taking the limit as ¢ — 1, the Tsallis entropy and the Tsallis relative entropy converge to the
Shannon entropy Hi(¢(z)) = — [*° ¢(z)log () and the Kullback-Leibler divergence D; (¢(x)|yp(x)) =

JZ2, #(x)(log ¢(z) — log ¥(z))dx.

We define two sets involving the constraints on the g-expectation and the g-variance:

) = 1 [
C§)= {feDd : a[ﬂzf(z)"dx:yq}

ng) = {f € Cg") : El;./;eo(z ~ pg)?f(z)ldz = "3}-

Then the g-canonical distribution ¢{(z) € Dy and the ¢-Gaussian distribution ¢&(z) € Dy were
formulated [18, 30, 2, 1, 22, 25, 29] by

4@ = e, (606}, 200 = [ ew, {-AP( - o))
q

—o0
and (9) (@
1 Bg” (x = pg)? * Ba” (z — pg)?
9 (z) = exp {-—-——-—3—- , 29 = exp, { — LT L
q Z'quT q o2 q o P o2
respectively.

Here, we revisit the maximum entropy principle in non-additive statistical physics. The maximum
entropy principles in Tsallis statistics have been studied and modified in many literatures [18, 30, 2, 1, 23).
Here we prove two theorems that maximize the Tsallis entropy under two different constraints by the
use of the non-negativity of the Tsallis relative entropy instead of the use of the Lagrange multipliers
method.

Lemma 5.1 For ¢ # 1, we have
Dq(#(z)l¥(z)) 2 0,
with equality if and only if ¢(z) = ¥(z) for all z.

Theorem 5.2 ([10]) If ¢ € C{, then
1
Hy(¢(z)) < —cqlng pesE
Zq

with equality if and only if 1
= 8 (x —
#(z) z§°5 **Pq { B (= l-‘q)} ,

where Z{° = JZo, exp, {—ﬂéc) (- uq)} dz and ¢, = [%_¢(z)%dz.
Corollary 5.3 If ¢ € C{7, then H,(¢(x)) < log 2 with equality if and only if
1
#a) = Sy e {-80@=-m}.

By the condition on the existence of g-variance o, (i.e., the convergence condition of the integral
J #® exp (~z2)dz), we consider ¢ such that 0 < ¢ < 3,q # 1.
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Theorem 5.4 ({10]) If ¢ € Cég) for ¢ such that 0 < ¢ < 3,¢ # 1, then
1 -1
Ho(¢(z)) < —cqlng 7@ + ’ng)cngg)' ’
q

with equality if and only if !
= ex —B9(x — ;)2 /02
¢(z) = Z,Sg) Pq { ﬁq (x ,uq) /aq} »

where Z{9 = J2o, exp, {—-ﬂé")(z - pq)z/ag} dz with 8 = 1/(3 - g).

Corollary 5.5 If ¢ € C{), then H;(¢(z)) < log v/2meo with equality if and only if

) = e {-E7 1

The previous theorem and the fact that the Gaussian distribution minimizes the Fisher information
leads us to study the Tsallis distribution (g-Gaussian distribution) minimizes the g-Fisher information
as a parametric extension. To this end, we prepare some definitions. That is, we define the g-Fisher
information and then prove the g-Cramér-Rao inequality which implies the g-Gaussian distribution with
special g-variances attains the minimum value of the g-Fisher information.

In what follows, we abbreviate 3, and Z, instead of é") and Zég), respectively.

Definition 5.6 ([10]) For the random variable X with the probability density function f (z), we define
the g-score function s4(z) and g-Fisher information J,(X) by

= 85212 "
Jo(X) = B, [s4(2)?], (33)

where g-expectation E, is defined by E,(X) = %

Example 5.7 For the random variable G obeying to g-Gaussian distribution

2
Pe-c(z) = Ziqequ {_&L(ia%ﬁi)_} ,

where 3, = 3-_‘:3 and g-partition function Z,; = [ exp, {—&L’;}f‘-’-ﬁ} dx, g-score function is calculated as
<

26,231
30(@) = =2l (2~ ).
q

Thus we can calculate g-Fisher information as

4 '32 ZZq—Z
To(G) = —A—. (34)
q
Note that 1
i Jo(G) = 7. (35)

Theorem 5.8 ([9]) For any q € [0,1) U (1, 3], we have the following statement.

(I) Given the random variable X with the probability density function p(z), the g-expectation value
Hg = E4[X] and g-variance ag = E, [(X - ,uq)zl, we have the inequality :

1 2
Jo(X) 2 oz (TB(:c)_ﬂdz - 1) : (36)
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(IT) We have the inequality

4327292
P s (s ) (37)
o2 o2 [ pg-c(z)dx

with equality if .
_ 2T (3-q)% T (1 - g)

q B (4 ;)
* s (3= o) (o _ b
g =22 B=a)T D (¢ - 1) (1<qg<3) (39)

B(Ar-114)

6 Conclusion, remarks and discussions

As we have seen, we have characterized the Tsallis relative entropy by the parametrically extended
conditions of the axiom formulated by A.Hobson [13]. This means that our theorem is a generalization of
Hobson’s one. Our result also includes the uniqueness theorem proven by H.Suyari [22] as a special case,
in the sense that the choice of a trivial distribution for B = {b;} of the Tsallis relative entropy produces
the essential form of the Tsallis entropy. However we should give a comment that our theorem require
the symmetry (A2), although Suyari’s one not so.

In addition, the Tsallis entropy was characterized by the generalized Faddeev’s axiom which is a sim-
plification of the generalized Shannon-Khinchin’s axiom introduced in [22]. And then we slightly improved
the uniqueness theorem proved in [22], by introducing the generalized Faddeev’s axiom. Simultaneously,
our result gives a generalization of the uniqueness theorem for Shannon entropy by means of Faddeev’s
axiom {7, 26).

Furthermore, we have proved the chain rules and the subadditivity for Tsallis entropies. Thus we
could give important results for the Tsallis entropies in the case of ¢ > 1 from the information theoretical
point of view.

Finally, we derived the maximum entropy principle for the Tsallis entropy by applying the non-
negativity of the Tsallis relative entropy. Also we introduced the g-Fisher information and then derived
¢-Cramér-Rao inequality.

In the following subsections, we give some remarks and discussions on the Tsallis entropies and related
topics.

6.1 Inequalities on non-additivity

The non-additivity Eq.(3) for independent random variables X and Y gives rise to the mathematical
interest whether we have the complete ordering between the left hand side and the right hand side in
Eq.(3) for two general random variables X and Y. Such a kind of problem was taken in the paper [6] for
the normalized Tsallis type entropies which are different from the definitions of the Tsallis type entropies
in the present paper. However, its inequality appeared in (3.5) of the paper [6] was not true as we found
the counter example in [24].

Unfortunately, in the present case, we also find the counter example for the inequalities between
Sq(X,Y) and Sg(X) + S4(Y) + (1 — g)Sg(X)S(Y). In the same setting of Eq.(19) and Eq.(20), 6 =
Sq(X,Y) ={84(X) + 54(Y) + (1 — g)S¢(X)S,(Y)} takes both positive and negative values for both cases
0<g<1andgqg> 1 Indeed, § = 0.00846651 when q = 1.8,p = 0.1,z = 0.1,y = 0.8, while § =
—0.0118812 when ¢ = 1.8,p = 0.1,z = 0.8,y = 0.1. Also, § = 0.00399069 when ¢ = 0.8,p = 0.1,z =
0.8,y = 0.1, while § = —0.0128179 when ¢ = 0.8,p = 0.1,z = 0.1,y = 0.8.

Therefore there does not exist the complete ordering between S,(X,Y) and S,(X) + S,(Y) + (1 -
q)Sq(X)S4(Y) for both cases 0 < g< land g > 1.
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6.2 A remarkable inequality derived from subadditivity for Tsallis entropies
From Eq.(18), we have the following inequality

Zn: (Zp(xf,yj)) +3 (Zp(zi,y,-)) <3S p(ow) + (Z Zp(wi,yj)) (40)
t=1 \j=1 J=1 \i=1 i=] j=1 1=1 j=1

for r > 1 and p(z;, ;) satisfying 0 < p(=z;,y;) < 1 and p I Z;-';lp(z.‘, yj) = 1. By putting p(z;,y;) =
m%; in Eq.(40), we have the following inequality as a corollary of Theorem 4.5.

Corollary 6.1 For r > 1 and a;; > 0,

n

2": (i%’)r +§: (iau)r < Zn:f:arj + (';j:la,-j)r. (41)

Ms

i=1 \ j=1 J=1 \i=1 =1 j=1

It is remarkable that the following inequality holds [12]

5 (£e) 255w ”

i=1 \j=1 =1 j=1

for r > 1 and a;; 2 0.

6.3 Difference between Tsallis entropy and Shannon entropy

We point out on the difference between Tsallis entropy and Shannon entropy from the viewpoint of
mutual entropy. In the case of ¢ = 1, the relative entropy between the joint probability p(z;, y;) and the
direct probability p(z:)p(y;) is equal to the mutual entropy:

Dl((X, Y)IX X Y) = Sl(X) ot S1(X|Y)
However, in the general case (g # 1), there exists the following relation:
Dg((X,Y)|X x Y) = S¢(X) — So(X]Y)
+ (i, y5) {P(2:)77} Ing p(2) + p(y;) 7 Ing p(y5) — P(2i,45) "  Ing p(ze)p(y;)} »  (43)
&

which gives the crucial difference between the special case (¢ = 1) and the general case (g # 1). The third
term of the right hand side in the above equation Eq.(43) vanishes if ¢ = 1. The existence of the third
term of Eq.(43) means that we have two possibilities of the definition of Tsallis mutual entropy, that is,
I(X;Y) = Sg(X) — So(X[|Y) or I(X;Y) = Dg((X,Y)|X x Y). We have adopted the former definition
in the present paper, along with the definition of the capacity in the origin of information theory by
Shannon [20).

6.4 Another candidate of Tsallis conditional entropy

It is remarkable that Tsallis entropy S¢(X) can be regarded as the expected value of Ing 52, that is,
since Ing(z) = —z'~91ny(1/z), it is expressed by

1

SalX) = 3_p(mn)Ing 5,

i=1

(¢ # l)a (44)

where the convention 0ln,(-) = 0 is set. Along with the view of Eq.(44), we may define Tsallis conditional
entropy and Tsallis joint entropy in the following.
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Definition 6.2 For the conditional probability p(x;y;) and the joint probability p(zi,y;), we define
Tsallis conditional entropy and Tsallis joint entropy by

. nm 1

Sq(XIY) = ;;p(xhyj)lnq m» (q # 1)) (45)
and n m .

Si(X,Y) = ggp(z.-,y,-)an ey @*D: - (48)

We should note that Tsallis conditional entropy defined in Eq.(45) is not equal to that defined in Eq.(14),
while Tsallis joint entropy defined in Eq.(46) is equal to that defined in Eq.(15). If we adopt the above
definitions Eq.(45) instead of Eq.(14), we have the following inequality.

Proposition 6.3 For ¢ > 1, we have
S¢(X,Y) S So(X) + 8,(Y|X).

For 0 < ¢ < 1, we have )
S5¢(X,Y) 2 5,(X) + S,(Y]X).

Therefore we do not have the chain rule for .§',,(Y|X ) in general, namely we are not able to construct a
parametrically extended information theory under Definition 6.2.
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