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1 Tsallis entropies in classical system
First of all, we define the Tsallis entropy and the Tsallis relative entropy. We denote the q-logarithmic
function by

$\ln_{q}x\equiv\frac{x^{1-q}-1}{1-q}$ $(q\in \mathbb{R},q\neq 1,x>0)$

and the q-exponential function by

$\exp_{q}(x)\equiv\{\begin{array}{l}(1+(1-q)x)\star_{-q}1+(1-q)x>0(q\in R,q\neq 1,x\in \mathbb{R})\end{array}$
$0$ otherwise

For these functions, we have the following relations:
$\ln_{q}(xy)=\ln_{q}x+\ln_{q}y+(1-q)\ln_{q}x\ln_{q}y$, $\exp_{q}(x+y+(1-q)xy)=\exp_{q}(x)\exp_{q}(y)$

and
$\lim_{qarrow 1}\ln_{q}x=\log x$ , $\lim_{qarrow 1}\exp_{q}(x)=\exp(x)$ .

By the use of q-logarithmic function, we define Tsallis entropy [27] by

$S_{q}(A)=- \sum_{j=1}^{n}a_{j}^{q}\ln_{q}a_{j}$ , $(q\neq 1)$ ,

for a probability distribution $A=\{a_{j}\}$ . After about one decade of discover of the Tsallis entropy, the
Tsallis relative entropy was independently introduced in the following [28, 21, 19].

$D_{q}(A|B) \equiv-\sum_{j=1}^{n}a_{jq_{a_{j}}}\iota_{n}^{b}1$ $(q\neq 1)$ ,

for two probability distributions $A=\{a_{j}\}$ and $B=\{b_{j}\}$ .
Note that the Tsallis entropies are one parameter extensions of the Shannon entropy $S_{1}(A)$ and the

relative entropy $D_{1}(A|B)[17,16]$ respectively, in the sense that:

$\lim_{qarrow 1}S_{q}(A)=S_{1}(A)\equiv-\sum_{j=1}^{n}a_{j}$ log $a_{j}$ , (1)

$\lim_{qarrow 1}D_{q}(A|B)=D_{1}(A|B)\equiv\sum_{j=1}^{n}a_{j}$ log $\lrcorner^{a}b_{j}$ (2)
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In addition, the Tsallis entropies for $q\neq 1$ are non-additive entropies in the sense that :

$S_{q}(A\cross B)=S_{q}(A)+S_{q}(B)+(1-q)S_{q}(A)S_{q}(B)$ (3)

$D_{q}(A^{(1)}xA^{(2)}|B^{(1)}xB^{(2)})=D_{q}(A^{(1)}|B^{(1)})+D_{q}(A^{(2)}|B^{(2)})$

$+(q-1)D_{q}(A^{(1)}|B^{(1)})D_{q}(A^{(2)}|B^{(2)})$ , (4)

where

$A^{\langle 1)}xA^{(2)}=\{a_{j}^{(1)}a_{j}^{(2)}|a_{j}^{(1)}\in A^{(1)},a_{j}^{(2)}\in A^{(2)}\},B^{(1)}xB^{(2)}=\{b_{j}^{(1)}b_{j}^{(2)}|b_{j}^{(1)}\in B^{(1)},b_{j}^{(2)}\in B^{(2)}\}$ .

2 A uniqueness theorem of Tsallis relative entropy
A uniqueness theorem for Shannon entropy is fundamental $th\infty rem$ in information $th\infty ry[20,14,15]$ .
In this section, we review the uniqueness theorem of Tsallis relative entropy [8] which was derived by
combining the Hobson’8 axiom [13] and Suyari’s one [22].

$Th\infty rem2.1$ ([13]) We suppose the function $D_{1}(A|B)$ is defined for any pair of two probability distri-
butions $A=\{a_{j}\}$ and $B=\{b_{j}\}$ for $j=1,$ $\cdots$ , $n$ . If $D_{1}(A|B)$ satisfies the foUowing $\infty ndition8$ , then it is
necessary given by the form $k \sum_{j-1}^{n}a_{j}$ log $i_{f}^{a}$ with a positive constant $k$ .
(H1) Continuity $D_{1}(A|B)$ is a continuous function of its $2n$ variables.
(H2) Symmetry:

$D_{1}(a_{1}, \cdots,a_{j}, \cdots,a_{k}, \cdots,a_{n}|b_{1}, \cdots, b_{j}, \cdots, b_{k}, \cdots,b_{n})$

$=D_{1}(a_{1}, \cdots, a_{k}, \cdots,a_{j)}\cdots,a_{n}|b_{1}, \cdots,b_{k}, \cdots, b_{j}, \cdots,b_{n})$ (5)

(H3) Grouping $ax$;

$D_{1}(a_{1,1}, \cdots,a_{1,m},a_{2,1}, \cdots,a_{2,m}|b_{1,1}, \cdots, b_{1,m},b_{2,1}, \cdots,b_{2,m})=D_{1}(c_{1},c_{2}|d_{1},d_{2})$

$+ c_{1}D_{1}(\frac{a_{1,1}}{c_{1}}\cdots\frac{a_{1,m}}{c_{1}}|\frac{b_{1,1}}{d_{1}}\cdots\frac{b_{1,m}}{d_{1}})+c_{2}D_{1}(\frac{a_{2,1}}{c_{2}},$
$\cdots,$

$\frac{a_{2,m}}{c_{2}}|\frac{b_{2,1}}{d_{2}},$
$\cdots,$

$\frac{b_{2,m}}{d_{2}})$

where $C:=\sum_{j=1}^{m}a:,j$ and $d_{:}= \sum_{j=\iota^{b}:,j}^{m}$ .
(H4) $D_{1}(A|B)=0$ if $a_{j}=b_{j}$ for all $j$ .
(H5) $D_{1}( \frac{1}{n}, \cdots, \frac{1}{n},0, \cdots, 0|\frac{1}{n_{0}}, \cdots , \frac{1}{n_{0}})$ is an increasing function of $r\iota_{0}$ and a decreasing function of $n$ , for

any integers $n,n_{0}$ such that $n_{0}\geq n$.
For the Tsallis relative entropy, it is known that the several fundamental properties, which ace sum-

marized in the below, hold as parametrically extensions of the relative entropy. For example, see [11].

Proposition 2.2 ([11])

(1) (Nonnegativity) $D_{q}(A|B)\geq 0$ .
(2) (Symmetry) $D_{q}(a_{n(1)}, \cdots,a_{\pi(\mathfrak{n})}|b_{\pi(1)}, \cdots, b_{\pi(n)})=D_{q}(a_{1}, \cdots , a_{\mathfrak{n}}|b_{1}, \cdots, b_{n})$ .
(3) (Possibility of extention) $D_{q}(a_{1}, \cdots,a_{n},0|b_{1}, \cdots,b_{n},0)=D_{q}(a_{1}, \cdots,a_{n}|b_{1}, \cdots,b_{n})$ .
(4) (Non-additivity) Eq.(4) holds.

(5) (Joint convexity) For $0\leq\lambda\leq 1$ , any $q\geq 0$ and the probability distributions $A^{(:)}=\{a_{j}^{(:)}\},B^{(:)}=$

$\{b_{j}^{(:)}\},$ $(i=1,2)$ , we have

$D_{q}(\lambda A^{(1)}+(1-\lambda)A^{(2)}|\lambda B^{(1)}+(1-\lambda)B^{\langle 2)})\leq\lambda D_{q}(A^{(1)}|B^{(1)})+(1-\lambda)D_{q}(A^{(2)}|B^{(2)})$ .
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(6) (Strong additivity)

$D_{q}(a_{1,:-1} a, a_{i_{1}}, a_{1_{2}}, a:+1, \cdots, a_{\mathfrak{n}}|b_{1,}b_{i-1}, b_{i_{1}}, b_{1_{2}}, b_{t+1}, \cdots, b_{n})$

$=D_{q}(a_{1}, \cdots, a_{n}|b_{1}, \cdots, b_{\mathfrak{n}})+b:^{-q}a_{1}^{q}D_{q}(\frac{a_{l}}{a}\iota ria_{i}a|_{7’ 7^{\iota}}^{bb}\iota a)$

where $a_{1}=a:_{1}+a_{1_{2}},$ $b:=b:_{1}+b_{1_{2}}$ .
(7) (Monotonicity) For the transition probability matrix $W$, we have

$D_{q}(WA|WB)\leq D_{q}(A|B)$ .

Conversely, we aodomatically characterized the TsalM relative entropy by some of these properties.

$Th\infty rem2.S$ ([8]) If the function $D_{q}(A|B)$ , defined for any pairs of the probabillty distributions $A=$
$\{a_{1}\}$ and $B=\{b:\}$ on a finite probability space, satisfies the conditions $(A1)-(A3)$ in the below, then
$D_{q}(A|B)$ is necesary given by the form

$D_{q}(A|B)= \frac{\sum_{j=1}^{n}(a_{\dot{f}}-a_{j}^{q}b_{j}^{1-q})}{\phi(q)}$

(6)

with a certain function $\phi(q)$ .
(A1) Continuity: $D_{q}(a_{1}, \cdots,a_{n}|b_{1}, \cdots, b_{\mathfrak{n}})$ is a $\infty ntinuous$ function for $2n$ variables.
(A2) $S\psi nmet\tau y$ :

$D_{q}(a_{1}, \cdots,a_{j}, \cdots, a_{k}, \cdots,a_{n}|b_{1}, \cdots,b_{j}, \cdots,b_{k}, \cdots,b_{\mathfrak{n}})$

$=D_{q}(a_{1}, \cdots,a_{k}, \cdots, a_{j}, \cdots,a_{n}|b_{1}, \cdots,b_{k}, \cdots, b_{j}, \cdots, b_{n})$ (7)

(A3) Generalized additivity:

$D_{q}(a_{1,1}, \cdots,a_{1,m}, \cdots, a_{n,1}, \cdots, a_{n,m}|b_{1,1}, \cdots, b_{1,m}, \cdots, b_{n,1}, \cdots,b_{n,m})$

$=D_{q}(c_{1}, \cdots, c_{n}|d_{1}\cdots,d_{n})+\sum_{j=1}^{n}c_{;}^{q}d_{i}^{1-q}D_{q}(\frac{a_{11}}{c_{1}},$
$\ldots,$

$\frac{a_{m}}{c_{i}}|\frac{b_{l,1}}{d_{1}},$

$\ldots,$
$\frac{b_{1,m}}{d_{1}})$ , (8)

where $c_{1}= \sum_{j=1}^{m}4,j$ and $d_{i}= \sum_{j=1}^{m}b_{i,j}$ .
The function $\phi(q)$ was characterized in the following.

Proposition 2.4 ([8]) The property that TsaUis relative entropy is one parameter extension of relative
entropy:

$\lim_{qarrow 1}D_{q}(A|B)=k\sum_{j\Leftrightarrow 1}^{\mathfrak{n}}a_{j}\log\frac{a_{j}}{b_{j}}$ (9)

characterize the function $\phi(q)$ such as
(c1) $b_{qarrow 1}\phi(q)=0$ .
(c2) There exists an interval $(a,b)$ such that $a<1<b$ and $\phi(q)$ is differentiable on the interval

$(a, 1)\subset(1,b)$ .
(c3) There exists positive number $k$ such taht $\lim_{qarrow 1}\oplus=-\pi 1$

Proposition 2.5 ([8]) The condition that

(A5) $D_{q}(A|U)$ takes the minimum value for fixed posterior probability distribution as uniform distribu-
tion $U=t_{n}^{\iota}\cdots,$ $\frac{1}{n}$ } :

$D_{q}(a_{1}, \cdots,a_{n}|\frac{1}{n}, \cdots, \frac{1}{n})\geq D_{q}(\frac{1}{n}, \cdots, \frac{1}{n}|\frac{1}{n}, \cdots’\frac{1}{n})$ ,
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implies

(c4) $\phi(q)(1-q)>0$ for $q\neq 1$ .
As a simple example of $\phi(q)$ to satisfy the above four conditions kom (c1) to (c4), we may take

$\phi(q)=1-q$ and $k=1$ . Then we can obtain the Tsallis relative entropy.
Finall$y$, we give a few remarks on the conditions of our axiom in the following two $prop_{08}itions$ .

Proposition 2.6 ([8]) The followi$ng$ conditions (A3’) and (A4) imply the condition (A3) in $Th\infty rem$

2.3.

(A3’) Generalized grvuping axiom: The following additivity holds.

$D_{q}(a_{1,1}, \cdots,a_{1,m},a_{2,1}, \cdots, a_{2,m}|b_{1,1}, \cdots,b_{1,m}, b_{2,1,} b_{2,m})=D_{q}(c_{1},c_{2}|d_{1}, d_{2})$

$+ c_{1}^{q}d_{1}^{1-q}D_{q}(\frac{a_{1,1}}{c_{1}},$
$\cdots,$ $\frac{a_{1,m}}{c_{1}}|\frac{b_{1,1}}{d_{1}},$

$\cdots,$ $\frac{b_{1,m}}{d_{1}})+c_{2}^{q}d_{2}^{1-q}D_{q}(\frac{a_{2,1}}{c_{2}},$
$\cdots,$

$\frac{a_{2,m}}{c_{2}}|\frac{b_{2,1}}{d_{2}},$
$\cdots,$

$\frac{b_{2,m}}{d_{2}})$

where $C:=\sum_{j=1}^{m}a_{1j}$ and $d_{:}= \sum_{j=1}^{m}b:,j$ .
(A4) $D_{q}(A|B)=0$ if $a_{j}=b_{j}$ for all $j$ .
$Prop_{O8}ition2.7$ ([8]) The $\infty nditioo$ (A3’) in the above Proposition 2.6 and the following $\infty ndition$

(A4’) imply the condition (A3) Thmoem 2.3.
(A4’) $B\eta andabdity$ :

$D_{q}(a_{1}, \cdots, a_{n},0|b_{1}, \cdots, b_{n}, 0)=D_{q}(a_{1}, \cdots,a_{n}|b_{1}, \cdots, b_{n})$ (10)

Proposition 2.6 and Propoeition 2.7 tell u8 that we may use the axiom composed from the set of
[$(A1),(A2),(A3)$ and (A4)] or [$(A1),(A2),(A3)$ and (A4’)] instead of the set of [$(A1),(A2)$ and
(A3)] in $Th\infty rem2.3$ .

3 A uniqueness theorem of Tsallis entropy
In this section, we review the uniqueness $th\infty rem$ of Tsallis entropy. We proved that the uniqueness
thmrem for the $Tsalli_{8}$ entropy by introducing the generalized Faddeev’s axiom is proven [8].

We suppose that the function $S_{q}(x_{1}, \cdots, x_{\mathfrak{n}})$ is defined for the n-tuple $(x_{1}, \cdots , x_{\mathfrak{n}})$ belonging to
$\Delta_{n}\cong\{(p_{1}, \cdots,p_{n})|\sum_{1=1}^{n}p_{i}=1,p:\geq 0(i=1,2, \cdots , n)\}$ and takes values in $\mathbb{R}^{+}\equiv[0, \infty$ ). In order to
characterize the function $S_{q}(x_{1}, \cdots,x_{\mathfrak{n}})$ , we introduoe the following axiom which is a slight generalization
of Faddoev’s axiom.

Axiom 3.1 (Generalized Faddeev’s axiom $:[8]$ )

(GFI) Continuity. The function $f_{q}(x)\equiv S_{q}(x, 1-x)$ with a parameter $q\geq 0$ is continuous on the closed
interval $[0,1]$ and $f_{q}(x_{0})>0$ for some $x_{0}\in[0,1]$ .

(GF2) Symmetry: For arbitrary permutation $\{x_{k}’\}\in\Delta_{n}$ of $\{x_{k}\}\in\Delta_{n}$ ,

$S_{q}(x_{1}, \cdots,x_{n})=S_{q}(x_{1}’, \cdots,x_{n}’)$ . (11)

(GF3) Generalized additivity; For $x_{n}=y+z,$ $y\geq 0$ and $z>0$ ,

$S_{q}(x_{1}, \cdots,x_{\mathfrak{n}-1}, y, z)=S_{q}(x_{1}, \cdots,x_{n})+x_{n}^{q}S_{q}(\frac{y}{x_{\mathfrak{n}}},$ $\frac{z}{x_{n}})$ . (12)
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The conditions (GF1) and (GF2) are just same with the original Faddeev’s conditions except for the
addition of the parameter $q$ . The condition (GF3) is a generalization of the original Faddeev’s additivity
condition in the sense that our condition (GF3) uses the $x_{n}^{q}$ as the factor of the second term in the right
hand side, while original $co$ndition uses $x_{n}$ itself as the factor of that. It $is$ notable that our condition
(GF3) is a simplification of the condition [GSK3] in the paper [22], since our condition (GF3) does not
have to take the summation on $i$ ffom 1 to $n$ . Moreover our axiom does not need the maximality condition
[GSK2] in [22]. In such viewpoints, our axiom improves the generalized Shannon-Khinchin’s axiom in
[22]. For the above generalized Faddeev’s axiom, we have the following uniqueness theorem for Tsallis
entropy.

$Th\infty rem3.2$ ([8]) Three conditions (GFI),(GF2) and (GF3) uniquely give the form of the function
$S_{q}$ : $\Delta_{n}arrow \mathbb{R}^{+}$ such that

$S_{q}(x_{1}, \cdots, x_{n})=-\lambda_{q}\sum_{:=1}^{\mathfrak{n}}x_{\dot{\iota}}^{q}\ln_{q}x_{1}$ , (13)

where $\lambda_{q}$ is a positive constant number depending on the parameter $q\geq 0$ .
In the rest of this subsection, we study the relation between the generalized Shannon-Khinchin’s axiom

introduced in [22] and the generalized Faddeev’s axiom presented in the previous section. To do so, we
review the generalized Shannon-Khinchin’s axiom in the following.

Axiom 3.3 (Generalized Shannon-Khinchln’s axiom : [22])

(GSKI) Continuity. The function $S_{q}$ : $\Delta_{\mathfrak{n}}arrow \mathbb{R}^{+}$ is continuous.

(GSK2) Maximality $S_{q}( \frac{1}{n}, \cdots, \frac{1}{n})=\max\{S_{q}(X);x_{1}\in\Delta_{\mathfrak{n}}\}>0$ .
(GSK3) Genemlized Shannon additivity: For $x_{1j}\geq 0,$ $x:= \sum_{j=1^{X}}^{m_{l}}:j’(i=1, \cdots,r\iota;j=1, \cdots, m_{i})$ ,

$S_{q}(x_{11}, \cdots,x_{\mathfrak{n}m_{n}})=S_{q}(x_{1}, \cdots,x_{n})+\sum_{1=1}^{n}x_{l}^{q}S_{q}(\frac{x_{1}}{X_{1}},$ $\cdots,$ $\frac{x_{1m}}{x_{l}})$ .

(GSK4) $B\varphi andability:S_{q}(x_{1}, \cdots,x_{\mathfrak{n}},O)=S_{q}(x_{1}, \cdot\cdot, ,x_{n})$ .
We should note that the above condition (GSK4) is slightly changed from [GSK4] of the original axiom
in [22]. Then we have the fonowing proposition.

Proposition 3.4 ([8]) Axiom 3.3 implies Axiom 3.1.

We also have the following proposition.

Proposition 3.5 ([8]) $S_{q}(X)=- \lambda_{q}\sum_{1-1}^{n}x_{1}^{q}\ln_{q}x_{t}$ satisfies Axiom 3.3.

From $Th\infty rem3.2$ , Proposition 3.4 and Proposition 3.5, we have the following equivalent relation
among Axiom 3.1, Axiom 3.3 and the Tsallis entropy.

$Th\infty rem3.6$ ([8]) The following three statements are equivalent to one another.

(1) $S_{q}$ : $\Delta_{n}arrow \mathbb{R}^{+}$ satisfies Axiom 3.3

(2) $S_{q}$ : $\Delta_{n}arrow \mathbb{R}+$ satisfies Axiom 3.1

(3) For $(x_{1}, \cdots,x_{n})\in\Delta_{n}$ , there exists $\lambda_{q}>0$ such that

$S_{q}(x_{1}, \cdots,x_{\mathfrak{n}})=-\lambda_{q}\sum_{:=1}^{\mathfrak{n}}x_{1}^{q}\ln_{q}x_{i}$ .
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4 Some properties of Tsallis entropies
In this section, we review some information-theoretical properties on the Tsallis entropies. We define the
Tsallis conditional entropy and the Tsallis joint entropy in the following.

Deflnition 4.1 ([9]) For the conditional probability $p(x_{i}|y_{j})\equiv p(X=x_{i}|Y=y_{j})$ and the joint prob-
ability $p(x:, y_{j})\cong p(X=x_{1}, Y=y_{j})$ , we define Tsallis conditional entropy and Tsallis joint entropy
by

$S_{q}(X| Y)\equiv-\sum_{1=1}^{\mathfrak{n}}\sum_{j=1}^{m}p(x:,y_{j})^{q}\ln_{q}p(x_{i}|y_{j})$ , $(q\neq 1)$ , (14)

and

$S_{q}(X, Y)\equiv-\sum_{:=1j}^{n}\sum_{=1}^{m}p(x_{i},y_{j})^{q}\ln_{q}p(x_{i},y_{j})$ , $(q\neq 1)$ . (15)

We note that the above definitions were essentially introduced in $[5, 3]$ by

$H_{\beta}(X, Y)\equivarrow\sum_{1=1}^{n}\sum_{=1}^{m}(p(x_{1},y_{j})^{\beta}-p(x_{i}, y_{j}))2^{1-\beta}-1$
$(\beta>0,\beta\neq 1)$

$H_{\beta}(X| Y)\equiv\sum_{1=1j}^{\mathfrak{n}}\sum_{\sim 1}^{m}p(y_{j})^{\beta}H_{\beta}(X|y_{j})$ , $(\beta>0,\beta\neq 1)$

except for the difference of the multiplicative function. And then a chain rule and a subadditivity:

$H_{\beta}(X, Y)=H_{\beta}(X)+H_{\beta}(Y|X)$ ,
$H_{\beta}(Y|X)\leq H_{\beta}(Y)$ , $\beta>1$ ,

were shown in $Th\infty rem8$ of [5].
It is important to study so-called a chain rule which gives the relation between a conditional entropy

and a joint entropy in not only information theory [4] but also statistical physics. For these Tsallis
entropies, the following chain rule holds as similar as the chain rule holds for the joint entropy of type $\beta$

and the $\infty nditioffl$ entropy of type $\beta$ .
Proposition 4.2 ([5])

$S_{q}(X,Y)=S_{q}(X)+S_{q}(Y|X)$ . (16)
(Therefore immediately $S_{q}(X)\leq S_{q}(X,$ $Y).$ )

As a $\infty rollary$ of the above Proposition 4.2, we have the following lemma.

Lemma 4.3 The folowing chain rules hold.

(1) $S_{q}(X,Y,Z)=S_{q}(X, Y|Z)+S_{q}(Z)$ .
(2) $S_{q}(X,Y|Z)=S_{q}(X|Z)+S_{q}(Y|X, Z)$ .

From the non-additivity Eq.(3), for $q\geq 1$ and two independent random vatiables $X$ and $Y$ , the
subadditivity holds:

$S_{q}(XxY)\leq S_{q}(X)+S_{q}(Y)$ .
It is known that the subadditivity for general random variables $X$ and $Y$ holds in the case of $q>1$ ,
thanks to the following proposition.

Proposition 4.4 ([5]) The following inequality holds for two random variables $X$ and $Y$ , and $q\geq 1$ ,

$S_{q}(X|Y)\leq S_{q}(X)$ , (17)

with equality if and only if $q=1$ and $p(x:|y_{\dot{f}})=p(x:)$ for all $i=1,$ $\cdots,n$ and $j=1,$ $\cdots,m$ .
Eq.(17) and Eq.(16) imply the subadditivity of Tsallis entropies.
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Theorem 4.5 ([5]) For $q\geq 1$ , we have

$S_{q}(X, Y)\leq S_{q}(X)+S_{q}(Y)$ . (18)

On the other hand, we easily find that for two independent random variablos $X$ and $Y$ , and $0\leq q<1$ ,
the superadditivity holds:

$S_{q}(XxY)\geq S_{q}(X)+S_{q}(Y)$ .
However, in general the superadditivity for two $\infty rrelated$ random variables $X$ and $Y$ , and $0<q<1$
does not hold. Because we can show many counterexamples. For example, we consider the $f_{0}11_{oWing}^{-}$ joint
distribution of $X$ and Y.

$p(x_{1},y_{1})=p(1-x),p(x_{1},y_{2})=(1-p)y,p(x_{2},y_{1})=px,p(x_{l},y_{2})=(1-p)(1-y)$, (19)

where $0\leq p,x,y\leq l$ . Then each marginal distribution can be computed by

$p(x_{1})=p(1-x)+(1-p)y,p(x_{2})=px+(1-p)(1-y),p(y_{1})=p,p(y_{2})=1-p$. (20)

In general, we clearly see $X$ and $Y$ are not independent each other for the above example. Then the
value of $\Delta\equiv S_{q}(X, Y)-S_{q}(X)-S_{q}(Y)$ takms both positive and negative so that there does not exist
the complete ordering between $S_{q}(X,Y)$ and $S_{q}(X)+S_{q}(Y)$ for correlated $X$ and $Y$ in the case of
$0\leq q<1$ . Indeed, $\Delta=-0.287089$ when $q=0.8,p=0.6,x=0.1,y=0.1$ , while $\Delta=0.0562961$ when
$q=0.8,p=0.6,x=0.1,y=0.9$ .

We also have the strong subadditivity holds in the case of $q\geq 1$ .
$Th\infty rem4.6$ ([9]) For $q\geq 1$ , the strong subadditivity

$S_{q}(X,Y, Z)+S_{q}(Z)\leq S_{q}(X, Z)+S_{q}(Y, Z)$ (21)

holds with equality if and only if $q=1$ and, random variables $X$ and $Y$ are independent for a given
random variable $Z$ .
$Th\infty rem4.7$ ([9]) Let $X_{1},$ $\cdots$ , $X_{n+1}$ be the random variables. For $q>1$ , we have

$S_{q}(X_{n+1}|X_{1\prime}\cdots,X_{n})\leq S_{q}(X_{n+1}|X_{2}, \cdots,X_{n})$. (22)

The subadditivity for $T_{8}alli\epsilon$ entropies conditioned by $Z$ holds.

Proposltion 4.8 ([9]) For $q\geq 1$ , we have

$S_{q}(X, Y|Z)\leq S_{q}(X|Z)+S_{q}(Y|Z)$ . (23)

Proposition 4.8 can be generalized in the following.

$Th\infty rem4.9$ ([9]) For $q\geq 1$ , we have

$S_{q}(X_{1,} X_{n}|Z)\leq S_{q}(X_{1}|Z)+\cdots+S_{q}(X_{n}|Z)$. (24)

In addition, we have the following propositions.

. Proposition 4.10 ([9]) For $q\geq 1$ , we have

$2S_{q}(X,Y,Z)\leq S_{q}(X,Y)+S_{q}(Y, Z)+S_{q}(Z,X)$ .
Proposition 4.11 ([9]) For $q>1$ , we have

$S_{q}(X_{n}|X_{1})\leq S_{q}(X_{2}|X_{1})+\cdots+S_{q}(X_{n}|X_{n-1})$ .
For normalized Tsallis entropies, the mutual information was defined in [31] with the assumption of

its non-negativity. We define the Tsallis rnutual $entro_{W}$ in terms of the original (not normalized) Tsallis
type entropies. The inequality Eq.(17) naturally leads us to deflne Tsallis mutual entropy without the
assumption of its non-negativity.
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Deflnition 4.12 ([9]) For two random variables $X$ and $Y$ , and $q>1$ , we define the Tsallis mutual
entropy as the difference between Tsallis entropy and Tsallis conditional entropy such that

$I_{q}(X;Y)\cong S_{q}(X)-S_{q}(X|Y)$ . (25)

Note that we never use the term mutual infomation but use mutual entropy through this paper, since
a proper evidence of channel coding $th\infty rem$ for information transmission has not ever been shown in
the context of Tsallis statistics. From Eq.(16), Eq.(18) and Eq.(17), we easily find that $I_{q}(X;Y)$ has the
following fundamental properties.

Proposition 4.13 ([9])

(1) $0 \leq I_{q}(X;Y)\leq\min\{S_{q}(X),S_{q}(Y)\}$ .
(2) $I_{q}(X;Y)=S_{q}(X)+S_{q}(Y)-S_{q}(X,Y)=I_{q}(Y;X)$ .

Note that we have
$S_{q}(X)\leq S_{q}(Y)\Leftrightarrow S_{q}(X|Y)\leq S_{q}(Y|X)$ (26)

from the symmetry of Tsallis mutual entropy. We also define the Tsallis conditional mutual entropy

$I_{q}(X;Y|Z)\equiv S_{q}(X|Z)-S_{q}(X|Y, Z)$ (27)

for three random variables $X,$ $Y$ and $Z$ , and $q>1$ . In addition, $I_{q}(X;Y|Z)$ is nonnegative. For these
quantities, we have the following chain rules.

$Th\infty rem4.14$ ([9])

(1) For three random variables $X,$ $Y$ and $Z$ , and $q>1$ , the chain rule holds:

$I_{q}(X;Y, Z)=I_{q}(X;Z)+I_{q}(X;Y|Z)$ . (28)

(2) For random variables $X_{1},$ $\cdots,$ $X_{n}$ and $Y$ , the chain rule holds:

$I_{q}(X_{1}, \cdots,X_{n};Y)=\sum_{:=1}^{n}I_{q}(X_{i};Y|X_{1}, \cdots ,X_{i-1})$. (29)

We have the following inequality for Tsallis mutual entropies by the strong subadditivity.

Proposition 4.15 ([9]) For $q>1$ , we have

$I_{q}(X;Z)\leq I_{q}(X,Y_{j}Z)$ .

5 Maximum Tsallis entropy principle
Here we discuss the maximum entropy principle which is one of most important $th\infty rem$ in entropy $th\infty ry$

and statistical physics. We give a new proof of the thmrems on the maximum entropy principle in Tsallis
statistics. That is, we show that the q-canonical distribution attains the maximum value of the Tsallis
entropy, subject to the constraint on the q-expectation value and the q-Gaussian distribution attains the
maximum value of the Tsallis entropy, subject to the constraint on the q-variance, as applications of the
non-negativity of the Tsallis relative entropy, without using the Lagrange multipliers method.

The set of all probability density function on $\mathbb{R}$ is represented by

$D_{cl}\equiv\{f$ : $\mathbb{R}arrow \mathbb{R}:f(x)\geq 0,\int_{-\infty}^{\infty}f(x)dx=1\}$ .

In the classical continuous system, Tsallis entropy [27] is then defined by

$H_{q}( \phi(x))\equiv-\int_{-\infty}^{\infty}\phi(x)^{q}\ln_{q}\phi(x)dx$ (30)
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for any nonnegative real number $q$ and a probability distribution function $\phi(x)\in D_{ct}$ . In addition, the
Tsallis relative entropy is defined by

$D_{q}( \phi(x)|\psi(x))\cong\int_{-\infty}^{\infty}\phi(x)^{q}(\ln_{q}\phi(x)-\ln_{q}\psi(x))dx$ (31)

for any nonnegative real number $q$ and two probability distribution functions $\phi(x)\in D_{d}$ and $\psi(x)\in$

$D_{cl}$ . Taking the limit as $qarrow 1$ , the Tsallis entropy and the Tsallis relative entropy converge to the
Shannon entropy $H_{1}( \phi(x))\equiv-\int_{-\infty}^{\infty}\phi(x)1og\phi(x)$ and the Kullback-Leibler divergence $D_{1}(\phi(x)|\psi(x))\equiv$

$\int_{-\infty}^{\infty}\phi(x)(\log\phi(x)-\log\psi(x))dx$.
We define two sets involving the constraints on the q-expectation and the q-variance:

$c_{q}^{(c)}\equiv\{f\in D_{c1}$ : $\frac{1}{c_{q}}\int_{-\infty}^{\infty}xf(x)^{q}dx=\mu_{q}\}$

and
$c_{q}^{(g)}\equiv\{f\in C_{q}^{(c)}$ : $\frac{1}{c_{q}}\int_{-\infty}^{\infty}(x-\mu_{q})^{2}f(x)^{q}dx=\sigma_{q}^{2}\}$ .

Then the q-canonical distribution $\phi_{q}^{(c)}(x)\in D_{d}$ and the q-Gaussian distribution $\phi_{q}^{(g)}(x)\in D_{d}$ were
formulated [18, 30, 2, 1, 22, 25, 29] by

$\phi_{q}^{(\epsilon)}(x)\equiv\frac{1}{z_{q}^{(c)}}\infty_{q}\{-\beta_{q}^{(c)}(x-\mu_{q})\},$ $z_{q}^{(c)} \equiv\int_{-\infty}^{\infty}\exp_{q}\{-\beta_{q}^{(e)}(x-\mu_{q})\}$

and

$\phi_{q}^{(g)}(x)\equiv\frac{1}{z_{q}^{(g)}}\exp_{q}\{-\frac{\beta_{q}^{(g)}(x-\mu_{q})^{2}}{\sigma_{q}^{2}}I,$ $Z_{q}^{(g)} \equiv\int_{-\infty}^{\infty}\exp_{q}\{-\frac{\beta_{q}^{(g)}(x-\mu_{q})^{2}}{\sigma_{q}^{2}}\}$ ,

respectively.
Here, we revisit the maximum entropy principle in non-additive statistical physics. The maximum

entropy principles in Tsallis $stati_{8}tic8$ have been studied and modified in many literatures [18, 30, 2, 1, 23].
Here we prove two theorems that maxinlize the Tsallis entropy under two different constraints by the
use of the non-negativity of the Tsallis relative entropy instead of the use of the Lagrange multipliers
method.

Lemma 5.1 For $q\neq 1$ , we have
$D_{q}(\phi(x)|\psi(x))\geq 0$ ,

with equality if and only if $\phi(x)=\psi(x)$ for all $x$ .

$Th\infty rem5.2$ ([10]) If $\phi\in c_{q}^{(c)}$ , then

$H_{q}( \phi(x))\leq-c_{q}1n_{q}\frac{1}{z_{q}^{(\epsilon)}}$ ,

with equality if and only if
$\phi(x)=\frac{1}{z_{q}^{(c)}}\exp_{q}\{-\beta_{q}^{(c)}(x-\mu_{q})\}$ ,

where $z_{q}^{(c)} \equiv\int_{-\infty}^{\infty}\exp_{q}\{-\beta_{q}^{(e)}(x-\mu_{q})\}dx$ and $c_{q}\equiv\int_{-\infty}^{\infty}\phi(x)^{q}dx$ .

Corollary 5.3 If $\phi\in c_{q}^{(c)}$ , then $H_{q}(\phi(x))\leq\log Z_{1}^{(c)}$ with equality if and only if

$\phi(x)=\frac{1}{z_{1}^{(\epsilon)}}$ exp $\{-\beta_{1}^{(e)}(x-\mu)\}$ .
By the condition on the existence of $q-va\dot{n}ance\sigma_{q}$ (i.e., the convergenoe condition of the integral

$\int x^{2}\exp_{q}(-x^{2})dx)$ , we consider $q$ such that $0<q<3,$ $q\neq 1$ .
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Theorem 5.4 ([10]) If $\phi\in c_{q}^{(g)}$ for $q$ such that $0<q<3,$ $q\neq 1$ , then

$H_{q}( \phi(x))\leq-c_{q}\ln_{q}\frac{1}{z_{q}^{(g)}}+\beta_{q}^{(g)}c_{q}Z_{q}^{(g)^{q-1}}$ ,

with equality if and only if

$\phi(x)=\frac{1}{z_{q}^{(g)}}\exp_{q}\{-\beta_{q}^{(g)}(x-\mu_{q})^{2}/\sigma_{q}^{2}\}$ ,

where $z_{q}^{(g)} \equiv\int_{-\infty}^{\infty}\exp_{q}\{-\beta_{q}^{(g)}(x-\mu_{q})^{2}/\sigma_{q}^{2}\}dx$ with $\beta_{q}^{(g)}=1/(3-q)$ .

Corollary 5.5 If $\phi\in c_{q}^{(g)}$ , then $H_{1}(\phi(x))\leq 1og\sqrt{2\pi e}\sigma$ with equality if and only if

$\phi(x)=\frac{1}{\sqrt{2\pi}\sigma}$ exp $\{-\frac{(x-\mu)^{2}}{2\sigma^{2}}\}$ .

The previous theorem and the fact that the Gaussian distribution minimizes the Fisher information
leads us to study the Tsallis distribution (q-Gaussian distribution) minimizes the q-Fisher information
as a parametric extension. To this end, we prepare some definitions. That is, we deflne the q-Fisher
information and then prove the q-Cram\’er-Rao inequality which implies the q-Gaussian distribution with
special q-variances attains the minimum veJue of the q-Fisher information.

In what follows, we abbreviate $\beta_{q}$ and $Z_{q}$ instead of $\beta_{q}^{(g)}$ and $z_{q}^{(g)}$ , respectively.

Deflnition 5.6 ([10]) For the random variable $X$ with the probability density function $f(x)$ , we deflne
the q-score function $s_{q}(x)$ and q-Fisher information $J_{q}(X)$ by

$s_{q}(x) \cong\frac{d\ln_{q}f(x)}{dx}$ , (32)

$J_{q}(X)\equiv E_{q}[s_{q}(x)^{2}])$ (33)

where $q$-expectation $E_{q}$ is defined by $E_{q}(X)\equiv\ovalbox{\tt\small REJECT}_{x}^{x_{f}x_{l}^{q}dx}$ .
Example 5.7 For the random variable $G$ obeying to q-Gaussian distribution

$p_{q-G}(x) \equiv\frac{1}{Z_{q}}\exp_{q}\{-\frac{\beta_{q}(x-\mu_{q})^{2}}{\sigma_{q}^{2}}\}$ ,

where $\beta_{q}\equiv\frac{1}{3-q}$ and q-partition function $Z_{q} \equiv\int\exp_{q}\{-R_{\sigma_{q}}l\}dx$ , q-score function is calculated as

$s_{q}(x)=- \frac{2\beta_{q}Z_{q}^{q-1}}{\sigma_{q}^{2}}(x-\mu_{q})$ .

Thus we can calculate q-Fisher information as

$J_{q}(G)= \frac{4\beta_{q}^{2}Z_{q}^{2q-2}}{\sigma_{q}^{2}}$ . (34)

Note that
1

$\lim_{qarrow 1}J_{q}(G)=_{\nabla,\sigma_{1}}$
. (35)

Theorem 5.8 ([9]) For any $q\in[0,1$ ) $U(1,3$], we have the following statement.
(I) Given the random variable $X$ with the probability density function $p(x)$ , the q-expectation value

$\mu_{q}\equiv E_{q}[X]$ and q-variance $\sigma_{q}^{2}\equiv B_{q}[(X-\mu_{q})^{2}]$ , we have the inequality :

$J_{q}(X) \geq\frac{1}{\sigma_{q}^{2}}(\frac{2}{\int p(x)^{q}dx}-\iota)$ . (36)
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(II) We have the inequality

$\frac{4\beta_{q}^{2}Z_{q}^{2q-2}}{\sigma_{q}^{2}}\geq\frac{1}{\sigma_{q}^{2}}(\frac{2}{\int p_{q}-c(x)^{q}dx}-1)$ ,

with equality if

$\sigma_{q}=\frac{2(3-q)q-\iota T(1-q)1}{B(\frac{1}{2},\frac{1}{1-q})}$ , $(0<q<1)$

or

$\sigma_{q}=\frac{2^{\tau_{-\sigma(3-q)^{1\Gamma_{l}}(q-1)}^{\llcorner^{3-\mp\}}}}{B(\lrcorner)}$ , $(1 <q<3)$

(37)

(38)

(39)

6 Conclusion, remarks and discussions
As we have $s\infty n$ , we have characteriz\’e the Tsallis relative entropy by the parametrically extended
conditioo of the axiom formulated by A.Hobson [13]. This means that our thmrem is ageneralization of
Hobson’s one. Our raeult ako includes the $uniquen\infty sth\infty rem$ proven by H.Suyari [22] as aspecial case,
in the $sen\epsilon e$ that the choice of atrivial distribution for $B=\{b_{j}\}$ of the Tsallis relative entropy produces
the essential form of the Tsallis entropy. However we should give acomment that our theorem require
the spmetry (A2), although Suyari’s one not so.

In addition, the $Tsalli_{8}$ entropy was characteriz\’e by the generalized Faddaev’s axiom which is asim-
plification of the generalized Shannon-Khinchin’s axiom introduced in [22]. And then we slightly improved
the $uniquen\infty sth\infty rem$ proved in [22], by introducing the generalized Faddaev’s axiom. $Simul\tan\infty usly$,
our result givoe ageneralization of the uniqueness thmrem for Shannon entropy by means of Faddeev’s
axiom $[7, 26]$ .

$R\iota rthermore$, we have prov\’e the chain $rul\infty$ and the subadditivity for $T\epsilon allis$ entropiae. Thus we
$\omega uld$ give important results for the Tsallis entropies in the $c\epsilon se$ of $q\geq 1\hslash om$ the information $th\infty retical$

point of view.
Finally, we derived the maximum entropy principle for the Tsallis entropy by applying the non-

negativity of the Tsallis relative entropy. Also we introduced the $q$-Fisher information and then deriv\’e
q-Cram\’er-R\epsilon o inequality.

In the following subaectioo, we give $\epsilon ome$ remarks and discussions on the Tsallis entropies and related
topics.

6.1 Inequalities on non-additivity
The non-additivity Eq.(3) for independent random variables $X$ and $Y$ gives rise to the mathematical
interest whether we have the complete ordering between the left hand side and the right hand side in
Eq.(3) for two general random variables $X$ and $Y$ . Such a kind of problem was taken in the paper [6] for
the normalized Tsallis type entropies which are different from the definitions of the Tsallis type $entropie8$
in the present paper. However, its inequality appeared in (3.5) of the paper [6] was not true as we found
the counter example in [24].

Unfortunately, in the present case, we also find the counter example for the inequalities between
$S_{q}(X, Y)$ and $S_{q}(X)+S_{q}(Y)+(1-q)S_{q}(X)S_{q}(Y)$ . In the same setting of Eq.(19) and Eq.(20), $\delta\equiv$

$S_{q}(X,Y)-\{S_{q}(X)+S_{q}(Y)+(1-q)S_{q}(X)S_{q}(Y)\}$ takes both positive and negative values for both cases
$0\leq q<1$ and $q>1$ . Indeed, $\delta=$ 0.00846651 when $q=1.8,p=0.1,$ $x=0.1,$ $y=0.8$, while $\delta=$

-0.0118812 when $q=1.8,p=0.1,x=0.8,$ $y=0.1$ . Also, $\delta=0.00399069$ when $q=0.8,p=0.1,$ $x=$
0.8, $y=0.1$ , while $\delta=-0.0128179$ when $q=0.8,p=0.1,x=0.1,$ $y=0.8$ .

Therefore there does not exist the complete ordering between $S_{q}(X,Y)$ and $S_{q}(X)+S_{q}(Y)+(1-$
$q)S_{q}(X)S_{q}(Y)$ for both cases $0\leq q<1$ and $q>1$ .
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6.2 A remarkable inequality derived from subadditivity for Tsallis entropies
From Eq.(18), we have the following inequality

$\sum_{:=1}^{n}(p(X, y_{j}))^{r}.:,(\sum_{i=1j}^{n}\sum_{=1}^{m}p(x_{i}, y_{j}))^{r}$ (40)

for $r\geq 1$ and $p(x_{i}, y_{j})$ satisfying $0\leq p(x:, y_{j})\leq 1$ and $\sum_{*=1}^{n}\sum_{j=1}^{m}p(x_{i}, y_{j})=1$ . By putting $p(x_{i}, y_{j})=$

$R_{3-1}^{a_{i}}s=1a\iota g$ in Eq.(40), we have the following inequality as a corollary of $Th\infty rem4.5$ .

Corollary 6.1 For $r\geq 1$ and $a_{ij}\geq 0$ ,

$\sum_{1=1}^{\mathfrak{n}}(\sum_{j=1}^{m}a_{j})^{r}+\sum_{j=1}^{m}(\sum_{i=1}^{n}a_{1j})^{r}\leq\sum_{1=1j}^{\mathfrak{n}}\sum_{=1}^{m}a_{ij}^{r}+(\sum_{1\approx 1j}^{\mathfrak{n}}\sum_{=1}^{m}a_{j})^{r}$ . (41)

It is remarkable that the following inequality holds [12]

$\sum_{i\approx 1}^{\mathfrak{n}}(\sum_{j=1}^{m}a_{1\dot{f}})^{r}\geq\sum_{i=1j}^{n}\sum_{=1}^{m}a_{ij}^{r}$ (42)

for $r\geq 1$ and $a_{1j}\geq 0$ .

6.3 Difference between $T_{8}allis$ entropy and Shannon entropy
We point out on the difference between Tsallis entropy and Shannon $entro_{N}$ from the viewpoint of
mutual entropy. In the case of $q=1$ , the relative entropy between the joint probability $p(x:)y_{j})$ and the
direct probability $p(x:)p(y_{j})$ is equal to the mutual entropy:

$D_{1}((X, Y)|XxY)=S_{1}(X)-S_{1}(X|Y)$ .
However, in the general case $(q\neq 1)$ , there exists the following relation:

$D_{q}((X,Y)|XxY)=S_{q}(X)-S_{q}(X|Y)$

$+ \sum_{1j}:,$ : 恥 $p(x:)p(y_{j})$ }, (43)

which gives the crucial difference between the special case $(q=1)$ and the general case $(q\neq 1)$ . The third
term of the right hand side in the above equation $Eq.(43)$ vanishes if $q=1$ . The existenoe of the third
term of Eq.(43) means that we have two possibilities of the definition of Tsallis mutual entropy, that is,
$I_{q}(X;Y)\equiv S_{q}(X)-S_{q}(X|Y)$ or $I_{q}(X;Y)\equiv D_{q}((X, Y)|XxY)$ . We have adopted the former definition
in the present paper, along with the definition of the capacity in the origin of information theory by
Shannon [20].

6.4 Another candidate of Tsallis conditional entropy
It is remarkable that Tsallis entropy $S_{q}(X)$ can be regarded as the expected value of $\ln_{q_{\dot{P}^{x}}}\cap^{1}:$

’ that is,
since $\ln_{q}(x)=-x^{1-q}\ln_{q}(1/x)$ , it is expressed by

$S_{q}(X)= \sum_{:=1}^{n}p(x:)\ln_{q}\frac{1}{p(x_{i})}$ , $(q\neq 1)$ , $(u)$

where the convention $0\ln_{q}(\cdot)=0$ is set. Along with the view of Eq.(44), we may define Tsallis conditional
entropy and Tsallis joint entropy in the following.
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Definition 6.2 For the conditional probability $p(x_{i}|y_{j})$ and the joint probability $p(x:, y_{j})$ , we defineTsallis conditional entropy and Tsallis joint entropy by

$\hat{S}_{q}(X|Y)\cong\sum_{:=1j}^{n}\sum_{=1}^{m}p(x_{i}, y_{j})\ln_{q}\frac{1}{p(x_{1}|y_{j})}$ , $(q\neq 1)$ , (45)

and

$S_{q}(X, Y) \equiv\sum_{1=1j}^{n}\sum_{=1}^{m}p(x:,y_{j})h_{q}\frac{1}{p(x_{1}\cdot,y_{j})}$ , $(q\neq 1)$ . (46)

We. should note that Tsallis conditional entropy defined in Eq.(45) is not equal to that deflned in Eq,(14),while Tsallis joint entropy defin\’e in Eq.(46) is equal to that defined in Eq.(15). If we adopt the abovedefinitioni $Eq.(45)$ instead of Eq.(14), we have the following inequality.

Proposition 6.3 For $q>1$ , we have

$S_{q}(X, Y)\leq S_{q}(X)+\hat{S}_{q}(Y|X)$ .
For $0\leq q<1$ , we have

$S_{q}(X, Y)\geq S_{q}(X)+\hat{S}_{q}(Y|X)$ .

Therefore we do not have the chain rule for $\hat{S}_{q}(Y|X)$ in general, namely we are not able to $\infty nstruct$ aparametrically extended information $th\infty ry$ under Definition 6.2.
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