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Abstract
The so-called q-exponential function, one parameter generalization of the exponential function, is

given by the solution of the fundamental nonlinear differential equation. Starting from the differen-
tial equation, it is shown that its solution has a ecaling property and the $\infty rr\alpha ponding$ information
measure to the solution is uniquely determined to be Tsallis entropy. $Mor\infty ver$ , the Shannon ad-
ditivity, one of the axioms of Tsallis entropy, is found to be derived from q-multinomial $\infty efficient$

and the Leibniz product rule of the q-derivative independently.

1 Scaling property derived from a fundamental nonlinear dif-
ferential equation

The exponential function is often appeared in every scientiflc field. Among many properties of the
exponential function, the linear differential function $dy/dx=y$ is the most important characterization
of the exponential function. A slightly nonlinear generalization of this linear differential equation is
given by

$\frac{dy}{dx}=y^{q}$ $(q\in R)$ . (1)

(See the equation (17) at page 5 of [1] and the equations (22)$-(23)$ at page 8 of [2].) This nonlinear
differential equation is equivalent to

$\int\frac{1}{y^{q}}dy=\int dx$ . (2)

Then we define the so-called q-loparithm $\ln_{q}x$ .

$\ln_{q}x:=\frac{x^{1-q}-1}{1-q}$ (3)

as a generalization of $\ln x$ . Applying the property:

$\frac{d}{dx}\ln_{q}x=\frac{1}{x^{q}}$ , (4)

to (2), we obtain
$\ln_{q}y=x+C$ (5)

where $C$ is any $\infty Il8tant[3]$ . Then we deflne the so-called $q- e_{W}ne\mathfrak{n}tial\exp_{q}(x)$ as the inverse function
of $\ln_{q}x$ as follows:

$\exp_{q}(x):=\{\begin{array}{ll}[1+(1-q)x]^{arrow-q} if 1+(1-q)x>0,0 otherwise.\end{array}$ (6)
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Note that the q-logarithm and q-exponential recover the usual logarithm and exponential when $qarrow 1$ ,
respectively (See the pages 84-87 of [4] for the detail properties of these generalized functions $\ln_{q}x$ and
$\exp_{q}(x))$ . Thus, the general solution to the nonlinear differential equation (1) becomes

$y=\exp_{q}(x+C)=\exp_{q}(C)$ exp$q( \frac{x}{(\exp_{q}(C))^{1-q}}I$ (7)

where $C$ is any constant satisfying $1+(1-q)C>0$ . Dividing the both sides by $exp_{q}(C)$ of the above
solution, we obtain

$\frac{y}{\exp_{q}(C)}=\exp_{q}(\frac{x}{(\exp_{q}(C))^{1-q}})$ . (8)

Under the following scaling:

$y’:= \frac{y}{\exp_{q}(C)}$ , $x’;= \frac{x}{(\exp_{q}(C))^{1-q}}$ , (9)

we obtain
$y’=\exp_{q}(x’)$ . (10)

This means that the solution of the nonlinear differential equation (1) obtained above is “scale-invariant’
under the above scaling (9). $Mor\infty ver$, we can choose any $\infty nstantCsatis\Phi ing1+(1-q)C>0$ because
$C$ is an integration constant of (2).

Note that the above scaling (9) with raePaet to both variables $x$ and $y$ can be observed only when
$q\neq 1$ and $C\neq 0$ . In fact, when $q=1$ , i.e., $y=\exp(x+C)$ , (9) reduees to the scaling with respect to
only $y$ , i.e., $x’=x$, and when $C=0$, both scalings in (9) disappears [3].

As similarly as the relation between the exponential function $\exp(x)$ and Shaanon entropy, we $\propto paet$

the corresponding information measure to the $q$-exponential function $\exp_{q}(x)$ . There exist some candi-
dates such as RPnyi entropy, Tsallis entropy and so on. But the algebra derived from the q-exponential
function uniquely determines Tsallis entropy as the corresponding information measure. In the following
sections of this paper, we present the two mathematical results to uniquely determine Tsallis entropy
by means of the dready established formulations such as the $q$-exponential law, the q-multinomial
coefflcient and q-Stirling’s formula.

2 q-exponential law
The exponential law plays an important role in mathematics, so this law is also expeeted to be

generalized based on the q-exponential function $\exp_{q}(x)$ . IFbr this Purpose, the new multiplication
oPeration $\otimes_{q}$ is introduced in [5] and [6] for satisfying the following identities:

$\ln_{q}(x\Phi_{q}y)=\ln_{q}x+\ln_{q}y$, (11)

$\exp_{q}(x)\Phi_{q}\exp_{q}(y)=\exp_{q}(x+y)$ . (12)

The concrete form of the q-logarithm or q-exponential has been already given in the previous section, so
that the above requirements as $q$-exPonential law leads us to the deflnition of $\otimes_{q}$ between two poeitive
numbers.

Deflnitlon 1 For two positive numbers $x$ and $y$ , the q-product $\otimes_{q}$ is deflned by

$x\otimes_{q}y;=\{\begin{array}{ll}[x^{1-q}+y^{1-q}-1]\neq-\overline{q} if x>0, y>0, x^{1-q}+y^{1-q}-1>0,0, othenvile.\end{array}$ (13)
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The q-product recovers the usual product such that $\lim_{qarrow 1}(x\otimes_{q}y)=xy$ . The fundamental properties
of the q-product $\otimes_{q}$ are almost the same as the usual product, but

$a(x\otimes_{q}y)\neq ax\otimes_{q}y$ $(a,x,y\in \mathbb{R})$ . (14)

The other properties of the q-product are available in [5] and [6].
In order to see one of the validities of the q-product, we recall the well known expraesion of the

exponential function exp $(x)$ given by

exp $(x)= \lim_{narrow\infty}(1+\frac{x}{n})^{n}$ . (15)

Replacing the power on the right side of (15) by the $n$ times of the q-product $\otimes_{q}^{n}$ :

$x^{9_{q}^{n}}:= \frac{x\emptyset_{q}\cdots\otimes_{q}x}{ntime\epsilon}$

, (16)

$\exp_{q}(x)$ is obtained. In other words, $\lim_{\hslasharrow\infty}(1+\frac{x}{n})^{\Phi_{q}^{n}}$ coincides with $\exp_{q}(x)$ .

$\exp_{q}(x)=\lim_{narrow\infty}(1+\frac{x}{n})^{\otimes_{q}^{n}}$ (17)

The proof of (17) is given in the appendix of [7]. This coincidence (17) indicates a validity of the
q-product. In fact, the present results in the following sections reinforce it.

3 q-multinomial coefficient and q-Stirling’s formula
We briefly review the q-multinomial coefficient and the q-Stirling’s formula by means of the q-product

$\otimes_{q}$ . As similarly as for the q-product, q-ratio is introduced as foUows:

Deflnition 2 For two positive numbers $x$ and $y$ , the inverse operation to the $q$ -product is defind by

$x\emptyset qy:=\{\begin{array}{l}[x^{1-q}-y^{1-q}+1]^{r_{-q}^{\llcorner}}x>0,y>0,x^{1-q}-y^{1-q}+1>0\end{array}$

$0$ , othenvise

which is called q-ratio $in/6/$.
$\emptyset_{q}$ is also derived from the following satisfactions, similarly as for $\otimes_{q}[5][6]$ .

$\ln_{q}(x\emptyset_{q}y)=\ln_{q}x-\ln_{q}y$ , (19)
$\exp_{q}(x)\emptyset_{q}\exp_{q}(y)=\exp_{q}(x-y)$ . (20)

The q-product and q-ratio are applied to the definition of the q-multinomial $\infty efficient[\eta$ .
Deflnition 3 For $n= \sum_{1-1}^{k}n_{1}$ and $n_{i}\in N(i=1, \cdots k)$ , the q-multinomial coefficient $\dot{u}$ defined by

$[n_{1}$ .
$n$

. $n_{k}]_{q}:=(n!_{q})\otimes_{q}[(n_{1}!_{q})\otimes_{q}\cdots\otimes_{q}(n_{k}!_{q})]$ . (21)

FYom the deflnition (21), it is clear that

$\lim_{qarrow 1}\{n_{1} n n_{k}\}= \{n_{1} n n_{k}\}=\frac{n!}{n_{1}I\cdots n_{k}!}$ . (22)

In addition to the q-multinomial $\infty efficient$ , the q-Stirling’s formula is useful for many applications
such as our main results. By means of the q-product (13), the q-factorial $n!_{q}$ is naturally defined as
follows.
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Deflnition 4 For a natural number $n\in N$ and $q\in N+$ , the q-factorial $n!_{q}$ is defined by

$n!_{q}$ $:=1\otimes_{q}\cdots\otimes_{q}n$ . (23)

Using the definition of the q-product (13), $\ln_{q}(n!_{q})$ is explicitly expressed by

$\ln_{q}(n!_{q})=\frac{\sum_{k=1}^{n}k^{1-q}-n}{1-q}$

. (24)

If an appreximation of $\ln_{q}(n!_{q})$ is not needed, this explicit form should be directly used for its $\infty m-$

putation. However, in order to $Cldri\mathfrak{h}$ the correspondence between the studies $q=1$ and $q\neq 1$ , the
approximation of $\ln_{q}(n!_{q})$ is useful. In fact, using the following q-Stirling’s formula, we obtain the
unique generalized entropy corresponding to the q-exponential function $\exp_{q}(x)$ , shown in the following
sections.

Theorem 5 Let $n!_{q}$ be the q-factorial defined by (23). The rough q-Stirling’s fomula $\ln_{q}(n!_{q})\dot{u}\omega m-$

puted as follows:
$\ln_{q}(n!_{q})=\{\begin{array}{ll}\frac{n}{2-q}\ln_{q}n-\frac{n}{2-q}+O(\ln_{q}n) if q\neq 2,n-\ln n+O(1) if q=2.\end{array}$ (25)

The proof of the above formulas (25) is given in [7].

4 Tsallis entropy uniquely derived from the q-multinomial co-
efflcient and q-Stirling’s formula

In this section we show that Tsallis entropy is uniquely and naturally derived from the fundamental
formulations presented in the previous section. In order to avoid separate discussions on the positivity
of the argument in (21), we consider the q-logarithm of the q-multinomial coefficient to be given by

$\ln_{q}\{n_{1} n n_{k}\}=\ln_{q}(n!_{q})-\ln_{q}(n_{1}!_{q})\cdots-\ln_{q}(n_{k}!_{q})$ . (26)

The unique generalized entropy $corre\epsilon ponding$ to the q-exponential is derived from the q-multinomlal
$\infty efficient$ using the q-Stirling’s formula as follows [7].

Theorem 6 When $n$ is sufficiently large, the q-logarithm of the q-multinomial $\infty effic\dot{u}nt$ coincides urith
Tsallis entropy (28) as follows:

$\ln_{q}\{n_{1} n n_{k}\}\simeq\{\begin{array}{ll}\frac{n^{2-q}}{2-q}\cdot S_{2-q}(\frac{n_{1}}{n}, \cdots \frac{n_{k}}{n}) if q>0, q\neq 2-S_{1}(n)+\sum_{i=1}^{k}S_{1}(n_{i}) if q=2\end{array}$ (27)

where $S_{q}$ is Tsallu entrvpy /8/:
$1- \sum p_{1}^{q}\mathfrak{n}$.

$S_{q}$ $:=\underline{|=1}$ (28)
$q-1$

and $S_{1}(n)i\epsilon$ given by $S_{1}(n):=\ln n$ .
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The proof of this theorem is given in [7].
Note that the above relation (27) reveals a surprising symmetry: (27) is equivalent to

$\ln_{1-(1-q)}\{n_{1} n n_{k}\} \simeq\frac{n^{1+(1-q)}}{1+(1-q)}\cdot S_{1+(1-q)}(\frac{n_{1}}{n},$ $\cdots\frac{n_{k}}{n})$ (29)

for $q>0$ and $q\neq 2$ . This expression represents that there exists a symmetry with a factor $1-q$ around
$q=1$ in the algebra of the q-product. $Sub8titution$ of some concrete values of $q$ into (27) or (29) helps
us understand the meaning of this symmetry.

Remark that the above $\infty rresponden\infty(27)$ and the symmetry (29) reveals that the q-exponential
function (6) derived from (1) is consistent with Tsallis entropy only as information measure.

5 The generalized Shannon additivity derived from the q-multinomial
coefflcient

This section shows another way to uniquely determine the generalized entropy. More precisely, the
identity derived from the q-multinomial coefficient coincides with the generalized Shannon additivity
which is the most important axiom for Tsallis entropy.

Consider a partition of a given natural number $n$ into $k$ groups such as $n= \sum_{\dot{|}=1}^{k}n:$ . In addition,
each natural number $n_{i}$ $(i=1, \cdots , k)$ is divided into $m$: groups such as $n_{i}= \sum_{j-1}^{m_{i}}n_{1j}$ where $n_{1j}\in N$.

$\emptyset 1$ : partition of a natural number $n$

Then, the following identity holds for the q-multinomial $\infty effic\dot{|}ent$ .

$[n_{11}$ .
$n$

. $n_{km_{k}}]_{q}=[n_{1}$ .
$n$

. $n_{k}]_{q}\otimes_{q}\{n_{11} n_{1}\cdots n_{1m_{1}}\}\otimes_{q}\cdots\otimes_{q}\{n_{k1} n_{k} n_{km_{k}}\}$

(30)
It is very easy to prove the above relation (30) by taking the q-logarithm of the both sides and using
(26).

On the other hand, the above identity (30) is reformed to the generalized Shannon additivity in the
following way. Taking the q-logarithm of the both sides of the above relation (30), we have

$\ln_{q}\{n_{11} n n_{km_{k}}\}= \ln_{q}\{n_{1} n n_{k}\}+ \sum_{i=1}^{k}\ln_{q}\{n_{1} n.\cdot n_{m} \}$. (31)
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From the relation (27), we obtain

$s_{2-q}( \frac{n_{11}}{n},$ $\cdots\frac{n_{km_{k}}}{n})=S_{2-q}(\frac{n_{1}}{n},$ $\cdots\frac{n_{k}}{n})+\sum_{:=1}^{k}(\frac{n_{i}}{n})^{2-q}S_{2-q}(\frac{n_{i1}}{n},$ $\cdots,$ $\frac{n_{1m}}{n_{i}})$ . (32)

Then, by means of the following probabilities defined by

$p_{1j}$ $;= \frac{n_{1j}}{n}$ $(i=1, \cdots k, j=1, \cdots m_{k})$ , (33)

$p_{i}$ $:= \sum_{j=1}^{m}p_{1j}=\sum_{j=1}^{m}\frac{n_{1j}}{n}=\frac{m}{n}$ $( \cdot.\cdot n_{1}\cdot=\sum_{j--1}^{m}n_{j})$ , (34)

the identity (32) $be\infty mae$

$S_{q}( p_{11}, \cdots p_{km_{k}})=S_{q}(p_{1}, \cdots,p_{k})+\sum_{1=1}^{k}p_{1}^{q}S_{q}(\frac{p_{11}}{p_{1}}$ , $\cdot$ .. $\frac{p:m_{l}}{p_{1}})$ . (35)

The formula (35) obtained from the q-multinomial coefficient is exactly same as the generalized Shannon
additivity (See [GSK3] given below) which is the most important axiom for Tsallis entropy [9].

In fact, the generalized Shannon-Khinchin axioms and the uniqueness $th\infty rem$ for the nonuten-
sive entropy are already given and rigorously proved in [9]. The present result (35) and the already
established axiom [GSK3] perfectly $\infty incide$ with each other.

Theorem 7 Let $\Delta_{\mathfrak{n}}$ be defined by the n-dimensiond simplex:

$\Delta_{n}$ $:=\{(p_{1}, \ldots,p_{n})$

I
$p:\geq 0,$ $\sum_{1=1}^{n}p:=1\}$ . (36)

The folloutng axioms [$GSKlJ\sim[GSK4J$ determine the function $S_{q}$ : $\Delta_{\mathfrak{n}}arrow \mathbb{R}+$ such that

$S_{q}( p_{1}, \ldots,p_{\mathfrak{n}})=\frac{1-\sum_{1--1}^{n}p_{1}^{q}}{\phi(q)}$

, (37)

where $\phi(q)$ satisfies $p$roperties $(i)\sim(iv)$ ;

(i) $\phi(q)$ is continuous and has the same sign as $q-1,i.e.$ ,

$\phi(q)(q-1)>0$ ; (38)

(ii)

$\lim_{qarrow 1}\phi(q)=\phi(1)=0$, $\phi(q)\neq 0(q\neq 1)$ ; (39)

(iii) there exists an interval $(a, b)cR+$ such that $a<1<b$ and $\phi(q)$ is differentiable on the interval

$(a, 1)\cup(1,b)$ ; (40)

and

(iv) there exists a $con8tantk>0$ such that

$\lim_{qarrow 1}\frac{d\phi(q)}{dq}=\frac{1}{k}$ . (41)
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[GSKI] continuity: $S_{q}$ is continuous in $\Delta_{\mathfrak{n}}$ and $q\in \mathbb{R}^{+}$ ,

[GSK2] maximality: for any $q\in R^{+}$ , any $n\in N$ and any $(p_{1}, \cdots p_{n})\in\Delta_{n}$ ,

$S_{q}(p_{1}, \cdots p_{n})\leq S_{q}(\frac{1}{n},$
$\ldots,$

$\frac{1}{n})$ , (42)

[GSK3] generalized Shannon additivity: if

$p_{1j}\geq 0,$ $p:= \sum_{j--1}^{m_{t}}p_{1j}\forall i=1,$ $\cdots,n,\forall j=1,$ $\cdots,m:$ , (43)

then the following equality holds:

$S_{q}(p_{11}, \cdots,p_{nm_{k}})=S_{q}(p_{1}, \cdots p_{n})+\sum_{:=1}^{n}p_{1}^{q}S_{q}(\frac{p_{11}}{p},$ $\cdots\frac{p_{1m_{l}}}{p_{1}})$ , $(u)$

[GSK4] ezpansibility:
$S_{1}(p_{1}, \ldots,p_{n},0)=S_{1}(p_{1}, \ldots,p_{n})$ . (45)

Note that, in order to uniquely determine the Tsallis entropy (28) in the above set of the axioms,
$\lim_{qarrow 1}$ should be removed from (41), that is, $*^{d\phi}=k1$ (i.e., $\phi(q)=i(q-1)$ ) should be used instead

of (41). The general form $\phi(q)$ perfectly corresponds to Tsallis’ original introduction of the so-called
Tsallis entropy in 1988 [8]. See his original characterization shown in page 9 of [1] for the detail $(\phi(q)$

corresponds to $a$
’ in his notation. His simplest choice of $a$

’ coincides with the $8impl\infty t$ form of $\phi(q)$

i.e., $\ovalbox{\tt\small REJECT}=l1.$ ).
When one of the authors (H.S.) submitted the paper [9] in 2002, nobody presented the idea of the q-

product. However, as shown above, the identity on the q-multinomial coefficient [7] which was formulated
based on the q-product $[5][6]coincid\infty$ with one of the axioms ([GSK3]: generalized Shannon additivity)
in [9]. This $mean8$ that the whole $th\infty ry$ based on the q-product is $self\sim\infty nsi8tent$ . $Mor\infty ver$ , other
fundamental applications of the $q$-product, such as law of error [10] and the derivation of the unique
non self-referential q-canonical distribution [11][12], are also based on the q-product.

6 The generalized Shannon additivity derived from the Leibniz
product rule of the q-derivative

Jackson’s q-derivative often appeared in the studies of quantum group is applied to another charac-
terization of Tsallis entropy.

Deflnition 8 For a function $f:Rarrow \mathbb{R}$ , q-derivative of the function $f$ is defined by

$D_{q}f:= \frac{f(qx)-f(x)}{(q-.1)x}$ . (46)

Then, Tsallis entropy is characterized as the following form [13].

Theorem 9 Let $\{p_{i}\}$ be a probabuity distribution. For the fimction $f$ :

$f(x):= \sum_{\mathfrak{i}}p_{1}^{x}$
, (47)

Tsallis entropy is given by
$S_{q}=-D_{q}f(x)|_{x=1}$ . (48)
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Straightforward computation proves the above result.
For the q-derivative, we have the following Leibniz product rule [14].

Theorem 10 For functions $f,$ $g:Rarrow R$ ,

$D_{q}(f(x)g(x))=D_{q}(f(x))M_{q}(g(x))+M_{q}(f(x))D_{q}(g(x))$ (49)

where $D_{q}$ is the q-derivative (46) and $M_{q}$ is the average operator defined by

$M_{q}f(x):= \frac{f(qx)+f(x)}{2}$ . (50)

Then we derive the generalized Shannon additivity (35) as an application of the Leibniz product rule
(49).

Theorem 11 For a $jo$int probability distribution $\{p_{1j}\}$ , the two hnctims are defined by

$f(x):=p_{1}^{x}$ , $g(x):=p_{j1:}^{x.\lrcorner}=_{p:}^{p_{i}}= \frac{p_{ij}}{\sum_{j}p_{1j}}$ . (51)

The fimctions $f(x),$ $g(x)$ and $f(x)g(x)=p_{1j}^{x}$ are applied to the above Leibnig product rude $(J9)$ utth
summing up utth respect to $i$ and $j$ and taking a limit $xarrow 1$ , so that we obtain the generaliu $d$ Shannon
additirrity $(S5)$ .

This is also easily confirmed by a straightforward computation.
The discussions in this section is generalized to the two-parameter entropies by using Chakrabarti

and Jagannathan (CJ) difference operator [15] instead of the q-derivative (46). See [14] for the detail.

7 Conclusion
Starting from a fundamental nonlinear equation $dy/dx=y^{q}$ , we present the scaling property and the

algebraic structure of its solution. Moreover, we prove that the algebra determined by its solutions is
mathematically $\infty n\S istent$ with Tsallis entropy only as the $\infty rraeponding$ unique information messure
based on the following 2 mathematical reasons: (1) derivation of Tsallis entropy from the q-multinomial
coefficient and q-Stirling’s formula, (2) coincidence of the identity derived from the q-multinomial $\infty ef-$

flcient with the generalized Shannon additivity which is the most important axiom for Tsallis entropy.
$Mor\infty ver$ , we $8how$ that the generaliz\’e Shannon additivity is also derived from the Leibniz product rule
of the q-derivative. As shown in this paper, the generalized Shannon additivity plays an important role
in mathematical structure in Tsallis statistics. Very recently, using the generalized Shannon additivity
one of the authors (H.S.) shows that a lower bound of average description length for the $q- general\dot{w}\alpha 1$

D-ary code tree is given by Tsallis entropy [16].
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